现代电气传动及控制技术的发展
- 格式:doc
- 大小:19.50 KB
- 文档页数:4
我国电力电子与电力传动系统的发展状况分析传动无疑有着很大的意义,随着电力电子技术、计算机技术以及自动控制技术的迅速发展,电气传动技术也得到了长足的发展。
本文在对大量国内外文献分析的基础上,总结和论述了我国在电力电子和电力传动系统领域的研究现状。
从学术的角度来看,电力电子技术的主要任务是研究电力电子器件(功率半导体)设备,转换器拓扑结构,控制和电力电子应用,实现电力和磁场的能量转换、控制、传输和存储,以便实现合理和有效使用的各种形式的能源,高品质的人力的电力和磁场的能量。
1 电力电子的研究方向就目前情况而言,我国电力电子的研究范围与研究内容主要包括:1)电力电子元器件及功率集成电路;2)电力电子变换器技术的研究主要包括新的或电力能源的节约和新能源电力电子,军事和空间应用等作为特殊的电力电子转换器技术的智能电力电子变换器技术,控制电力电子系统和计算机仿真建模;3)电力电子技术的应用,其研究内容包括超高功率转换器,在能源效率,可再生能源发电,钢铁,冶金,电力,电力牵引,船舶推进应用,电力电子系统的信息化和网络;电力电子系统的故障分析和可靠性;复杂的电力电子系统的稳定性和适应性;4)电力电子系统集成,其研究内容包括标准化电力电子模块;单芯片和多芯片系统设计,集成电力电子系统的稳定性和可靠性。
2 我国电力电子发展中存在的问题当前的主要问题是:中国的电力电子产品和设备目前生产的大部分是也主要是晶闸管,虽然它可以创造一些高科技电子产品和电气设备,但他们都使用电力电子外国生产设备和多组分组装集成的制造方法,尤其是先进的全控型电力电子器件全部依赖进口,而许多关系到国民经济和国家安全,在一些关键领域的核心技术,软件,硬件和关键设备,我国的外资控制和封锁。
特别是在关系国民经济和国家安全,更多先进水平的核心技术差距的关键领域,这种情况正在迅速变化的挑战和我们的道德律令。
在过去,虽然我国国民经济的各个部门,先后引进了国外先进技术,已开始注意到国内突出的问题,从表面上看,虽然对引进技术的绝大多数可以在几年后达到国产化率70%的要求,但只要仔细分析,不难发现,并最终拒绝外国公司转让技术和关键部件,都涉及到高科技的电力电子技术和动力传动产品在核心技术。
交流传动取代直流传动是现代工业发展的趋势[摘要]随着现代工业发展的步伐不断的前行和电力电子器件的更新换代,人们更加趋向于对效率的追求。
交流传动比较直流传动的优越性明显,同时在使用的范围上也是有着得天独厚的优势,比之直流传动有着结构坚固、成本低、使用工作环境多、重量轻等诸多优点,因此在现代工业应用中交流传动相比直流传动在使用上势必会取而代之。
[关键词]交流传动现代工业直流传动取而代之中图分类号:f426.31 文献标识码:a 文章编号:1009-914x (2013)17-527-011引言随着科技的不断发展,交流传动与控制技术已经成为了发展最快的技术之一,同时也代表着电气传动技术新时代的来临。
交流传动的广泛使用也代表着改善工艺流程和增加提高产品质量新技术全面应用的标的。
随着大功率的晶闸管特别是大功率可关断晶闸管(gto)的出现和微机控制技术等的发展,20世纪70年代以后出现了交-直-交传动(交流发电机或交流供电-硅整流-逆变器-交流电动机),也就人们俗称的交流传动,其出现以后又十分自然的取代了交-直传动成为了工业应用当中的主要动力提供源头。
截止到今天为止,交流传动在工业生产当中的使用已经占据了动力输出的70%以上,只有老式的工业作业企业始终没有更换。
从而我们也总结出了交流传动与直流传动相比而言有着得天独厚的优势,也是印证了现代工业发展的趋势,因此深入了解交流传动的走向,在现实来看具有十分积极的意义。
2交直流传动发展现状分析直流传动和交流传动均是在19世纪先后真正的和世人见面诞生,自成功面世以来直流传动一直以来凭借着优越的可控性能收人们所广泛的关注是使用,而在工业上一般都会用直流电机来进行生产,使用交流电机则是因为约占电气传动总80%的不变速传动需求。
上述的分工一直是其后100多年以来人们所公认的分工格局。
一直到了20世纪70年代,由于采用电力电子变换器的高效交流变频传动开发成功,结构简单、成本低廉、工作可靠、维护方便、效率高、转动惯量小的交流笼型电机进入了可调速领域,一直被认为是天经地义的交直流传动按调速分工的格局终于被打破了。
电气传动技术的原理和应用电气传动技术是现代工业生产中不可或缺的一个重要领域。
它以电能为动力源,通过电机的转化和控制来实现机械的运动和工艺生产过程中的各种动作。
电气传动技术的原理和应用是现代工业生产发展的重要推动力,本文将从电气传动技术的原理入手,系统介绍电气传动技术的应用现状和未来发展趋势。
一、电气传动技术的原理1.电气传动系统的基本构成电气传动系统包括电动机、变速器、传动轴系、工作机构以及控制系统等。
其中,电动机是整个电气传动系统的核心部件,它负责将电能转化为机械能。
电动机根据其结构和类型可以分为直流电动机、异步电动机和同步电动机等。
另外,电气传动系统的变速器也是非常重要的,它能够将电动机的驱动力根据需要调节为适宜的转速和扭矩,以满足机械的运动需要。
2.电气传动系统的工作过程电气传动系统的工作过程是将电能转换为机械能以完成一定的工作过程。
其过程可分为两个阶段:推进阶段和回收阶段。
在推进阶段,电能源经由电动机通过变速器等元件,最终转化为机械能使作动机构完成一定的工作任务。
在回收阶段,作动机构释放能量,通过电子线路、反力装置将能量回收到电动机,从而使电动机在未消耗过多电能的情况下维持工作。
二、电气传动技术的应用现状1.电气传动技术在工业生产中的应用电气传动技术在工业生产过程中是不可或缺的。
它在机械加工、卷绕、冲压、成型、组装、输送和起重等方面都起着重要的作用。
现代工业生产控制系统中的PLC技术的出现更是推进了电气传动技术的应用。
2.电气传动技术在船舶工业中的应用电气传动技术在船舶工业中应用广泛。
由于高功率柴油机在使用过程中燃油消耗非常大,因此电气传动技术的出现被广泛应用在大型涡轮电船中。
这类电船采用电动机作为动力源,将马达通过发电机转化的电能传送到电驱动器和螺旋桨上,达到推进的效果。
3.电气传动技术在交通运输领域中的应用电气传动技术在交通运输领域中也被广泛应用。
例如高速列车、地铁等公共交通工具采用电气传动技术,其由于无烟零污染,运行效率高、安全性能好而受到广泛的关注。
电气工程中的智能控制技术应用研究进展在当今科技飞速发展的时代,电气工程领域取得了显著的进步,其中智能控制技术的应用发挥了至关重要的作用。
智能控制技术以其高效、精准和自适应的特点,为电气工程的发展带来了新的机遇和挑战。
本文将对电气工程中智能控制技术的应用研究进展进行详细探讨。
智能控制技术是一种融合了多种学科知识的先进控制方法,它能够处理复杂的、不确定性的系统,并且具有自学习、自适应和自优化的能力。
在电气工程中,智能控制技术主要应用于电力系统、电机控制、电气传动、智能电网等多个方面。
在电力系统中,智能控制技术的应用有效地提高了系统的稳定性和可靠性。
例如,通过智能控制技术对电力系统的潮流进行优化控制,可以实现电力的合理分配,降低网络损耗,提高能源利用效率。
此外,智能控制技术还可以用于电力系统的故障诊断和预测。
利用先进的传感器和数据分析算法,能够实时监测电力设备的运行状态,及时发现潜在的故障隐患,并提前采取措施进行预防和修复,从而大大减少了停电事故的发生,保障了电力供应的连续性和稳定性。
电机控制是电气工程中的一个重要领域,智能控制技术的应用使得电机的控制性能得到了显著提升。
传统的电机控制方法往往难以满足高精度、高动态性能的要求,而智能控制技术如模糊控制、神经网络控制等则能够有效地解决这些问题。
以模糊控制为例,它不需要精确的数学模型,而是根据专家经验和模糊规则来进行控制,对于具有非线性、时变特性的电机系统具有很好的控制效果。
神经网络控制则通过对大量数据的学习和训练,能够自适应地调整控制参数,实现对电机的精确控制。
电气传动系统在工业生产中有着广泛的应用,智能控制技术的引入极大地改善了传动系统的性能。
例如,在数控机床、机器人等设备中,采用智能控制技术可以实现高精度的位置控制和速度控制,提高生产效率和产品质量。
此外,智能控制技术还可以实现电气传动系统的节能控制,根据负载变化自动调整电机的运行状态,降低能耗。
智能电网是未来电网的发展方向,智能控制技术在其中发挥着关键作用。
论电气自动化技术在化工生产中的应用及发展趋势电气自动化技术是指利用电气传动和控制技术实现设备和工艺自动化的一种技术。
在化工生产领域,电气自动化技术不仅可以提高生产效率,降低能耗成本,还可以提高产品质量和安全性。
本文将探讨电气自动化技术在化工生产中的应用及发展趋势。
1. 生产过程自动化控制在化工生产中,电气自动化技术可以用于生产过程中的控制和监测。
通过PLC(可编程逻辑控制器)控制系统,可以实现生产过程的自动化控制,比如化工生产中的温度、压力、流量等参数的监测和控制。
这不仅提高了生产效率,还降低了人为操作的错误率,提高了产品质量。
化工生产中通常使用大量的设备和机械设备,通过电气自动化技术可以实现对这些设备的自动化控制。
比如利用变频调速技术对泵、风机等设备进行控制,可以更精准地控制生产过程中的流量和压力,提高了设备的使用效率,同时也降低了能耗成本。
3. 能源管理在化工生产中,能源成本通常是一个重要的支出,通过电气自动化技术可以实现对能源的精细管理,比如利用智能仪表监测系统实时监测能源的使用情况,以便根据实际情况调整能源的使用方式,达到节能减排的目的。
4. 安全监测与控制化工生产中涉及到的化学品往往具有一定的危险性,通过电气自动化技术可以实现对生产过程中的安全监测与控制。
比如利用PLC系统实时监测化工生产中的有毒有害气体的浓度,一旦超过安全范围就进行自动报警和自动关闭设备,减少了人员的安全风险。
1. 智能化随着人工智能和大数据技术的不断发展,电气自动化技术也朝着智能化方向迈进。
智能化的电气自动化系统能够实现更加智能化的控制和监测,比如利用机器学习算法对生产过程中的数据进行分析和预测,实现更加精准的控制。
2. 信息化电气自动化技术与信息技术的结合也是发展趋势之一。
通过网络传输数据、云平台管理等信息化手段,可以实现对化工生产过程中的数据实时监测和远程控制,从而提高了生产的灵活性和便利性。
3. 系统集成化未来的电气自动化系统将更加注重整个生产系统的集成化。
(完整)交流调速系统的现状及发展趋势交流调速系统的现状及发展趋势摘要随着电力电子器件的发展,以及对效率的追求,交流调速得到快速发展,加上新技术、新理论不断渗透到交流调速之中,使其不断呈现新的面貌。
关键词交流调速;脉宽调制;智能化0 引言近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。
电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。
变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。
深入了解交流传动与控制技术的走向,具有十分积极的意义。
1 交流调速系统的发展及现状长期以来,直流电动机由于调速性能优越而掩盖了结构复杂等缺点广泛的应用于工程过程中。
直流电动机在额定转速以下运行时,保持励磁电流恒定,可用改变电枢电压的方法实现恒定转矩调速;在额定转速以上运行时,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。
采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。
因此,20世纪80年代以前,在变速传动领域中,直流调速一直占据主导地位.交流变频调速[1]的优越性早在20世纪20年代被人们所认识。
但受当时电力电子器件的限制而未能广泛应用。
从电力拖动的发展过程来看,交、直流两大调速系统一直并存于各个工业领域,虽然由于各个时期科学技术的发展使得它们所处的地位有所不同,但它们始终是随着工业技术的发展,特别是随着电力电子元器件的发展而在相互竞争.随着电力电子器件,单片机的迅速发展,以及现代控制理论向交流电气传动领域的渗透,为交流调速系统的开发研究进一步创造了有利的条件。
1。
1 电力电子器件是交流调速装置的支柱电力电子器件是现代交流调速装置的支柱,其发展直接决定和影响交流调速技术的发展。
浅析基于我国电力电子与电力传动系统的发展状况分析摘要:在人类所利用的能源当中,电能是最清洁最方便的;电气传动无疑有着很大的意义,随着电力电子技术、计算机技术以及自动控制技术的迅速发展,电气传动技术也得到了长足的发展。
本文在对大量国内外文献分析的基础上,总结和论述了我国在电力电子和电力传动系统领域的研究现状。
关键词:电力工程电力电子电力传动系统从学术的角度来看,电力电子技术的主要任务是研究电力电子器件(功率半导体)设备,转换器拓扑结构,控制和电力电子应用,实现电力和磁场的能量转换、控制、传输和存储,以便实现合理和有效使用的各种形式的能源,高品质的人力的电力和磁场的能量。
1 电力电子的研究方向就目前情况而言,我国电力电子的研究范围与研究内容主要包括:1)电力电子元器件及功率集成电路;2)电力电子变换器技术的研究主要包括新的或电力能源的节约和新能源电力电子,军事和空间应用等作为特殊的电力电子转换器技术的智能电力电子变换器技术,控制电力电子系统和计算机仿真建模;3)电力电子技术的应用,其研究内容包括超高功率转换器,在能源效率,可再生能源发电,钢铁,冶金,电力,电力牵引,船舶推进应用,电力电子系统的信息化和网络;电力电子系统的故障分析和可靠性;复杂的电力电子系统的稳定性和适应性;4)电力电子系统集成,其研究内容包括标准化电力电子模块;单芯片和多芯片系统设计,集成电力电子系统的稳定性和可靠性。
2 我国电力电子发展中存在的问题当前的主要问题是:中国的电力电子产品和设备目前生产的大部分是也主要是晶闸管,虽然它可以创造一些高科技电子产品和电气设备,但他们都使用电力电子外国生产设备和多组分组装集成的制造方法,尤其是先进的全控型电力电子器件全部依赖进口,而许多关系到国民经济和国家安全,在一些关键领域的核心技术,软件,硬件和关键设备,我国的外资控制和封锁。
特别是在关系国民经济和国家安全,更多先进水平的核心技术差距的关键领域,这种情况正在迅速变化的挑战和我们的道德律令。
试论冶金自动化与电气传动控制系统的发展摘要:随着我国经济的发展和科技的进步,高科技进入了工业生产的各个领域,由于新的科技和设备的出现,工业化水平和工业效率大大提高。
冶金行业也是如此,由于自动化设备和信息化的出现,冶金行业的生产效率大大提高,有效的推动了我国的工业生产水平。
本文将针对冶金航和的发展现状和电气传动控制系统的发展问题进行分析。
关键字:冶金;电气传动;控制;发展abstract: with china’s economic development and the advancement of technology, high-tech into the various areas of industrial production, the emergence of new technology and equipment made the levels of industrialization and industrial efficiency greatly improved. due to the emergence of automation equipment and information technology, the production efficiency of metallurgical industry has greatly improve and promote china’s industrial production level. this article will focus on the development of the metallurgy airlines and development status and electrical transmission control system.key words: metallurgy; electrical transmission; control; development中图分类号:[tf-9]文献标识码:a文章编号:2095-2104(2012)随着我国经济的发展和科技的进步,高科技进入了工业生产的各个领域,由于新的科技和设备的出现,工业化水平和工业效率大大提高。
现代电气传动及控制技术的发展
1 电气传动技术概述
电气传动技术,是指用电动机把电能转换成机械能,去带动各种类型的生产机械、交通车辆以及生活中需要运动的物品的技术。
是通过合理使用电动机实现生产过程机械设备电气化及其自动控制的电气设备及系统的技术总称。
一个完整的电气传动系统包括三部分:控制部分、功率部分、电动机。
2电气传动优点
(1)电机的效率高,运转比较经济;
(2)电能的传输和分配比较方便;
(3)电能容易控制,因此现在电气传动已经成为绝大部分机械的传动方式,成为工业化的重要基础。
传动方式的一种,有机械式如摇臂之类,有压力如液压传动,而通过控制电机来传动的方式就是电气传动。
3 电气传动技术的发展史
电气传动技术诞生于20世纪初的第二次工业革命时期,电气传动技术大大推动了人类社会的现代化进步。
它是研究如何通过电动机控制物体和生产机械按要求运动的学科。
随着传感器技术和自动控制理论的发展,由简单的继电、接触、开环控制,发展为较复杂的闭环控制系统。
自从人类发明并掌握各种机械帮助自己劳动以来,就需要有推动机械的原动力,除人力本身外,最初使用的是畜力、水力和风力,后来又发明了蒸汽机、柴油机、汽油机,19世纪才发明电动机。
20世纪60年代,特别是80年代以来,随着电力电子技术、现代控制理论、计算机技术和微电子技术的发展,逐步形成了集多种高新技术于一身的全新学科技术一现代电气传动技术。
4 电气传动的主体——电动机
电动机分为交流电动机和直流电动机。
二者的结构、工作原理不同,所需的电气传动装置也不同。
电气传动可分为两类:直流电气传动和交流电气传动。
由于历史上最早出现的是以蓄电池形式供电的直流电动机,所以直流传动也是唯一的电气传动方式。
直到1885年意大利都灵大学发明了感应电动机,而后出现了交流电,解决了三相制交流电的输变问题交流电气传动才出现。
20世纪80年代之前,直流电
气传动在高性能的电气传动领域占绝对统治地位。
此后,随着电力电子技术和计算机控制技术的发展,以及现代控制理论的应用,交流电气传动得到了快速发展,静动态性能可以与直流电气传动相媲美。
因此交流电气传动在高性能的电气传动领域所占比例逐年上升,目前已处于主导地位。
4.1 直流电动机传动
直流电动机的转速n 的表达式为:
式中: Ua- 电动机电枢两端的电压;Ia -电动机电枢回路电流; R -电动机回路电阻; Ke -电动机电势常数; φ -电动机励磁磁通。
直流电气传动控制技术的发展经历了以下演变过程:开环控制→单闭环控制→多闭环控制;分立元件电路控制→小规模集成电路控制→大规模集成电路控制; 模拟电路控制→数模电路混合控制→数字电路控制;硬件控制→软件控制。
4.2 交流电动机传动
交流电动机分异步电动机和同步电动机两大类。
按照异步电动机的基本原理,从定子传入转子的电磁功率Pm 可分为两部分:一部分是拖动负载的有效功率P 1=(1-s) Pm ,另一部分是转差功率Ps =sPm。
转差功率是评价调速系统效率高低的一种标志,因此交流异步电动机调速方式分三类:
一是转差功率消耗型调速, 即把全部转差功率转化成热能消耗掉。
该调速方式结构简单,但效率低,而且转速越低,效率越低;
二是转差功率回馈型调速,即转差功率的一部分转化成热能消耗掉,大部分则通过变流装置回馈电网或转化为机械能予以利用。
该调速方式结构复杂,但效率比第一类高;
三是转差功率不变型调速,即无论转速高低,消耗的转差功率基本不变。
该调速方式结构复杂,但效率最高。
在异步电动机的各种调速方式中,效率最高、性能最好、应用最广泛的是变压变频调速方式。
它是一种转差功率不变型调速,可以实现大范围平滑调速。
同步电动机没有转差,当然也没有转差功率,所以同步电动机调速只能是转差功率不变型调速。
而同步电动机转子极对数固定,因此只能采用变压变频调速
Φ-=e a
a K RI U n
方式。
交流电气传动控制模式的发展经历了以下演变过程:转速开环的恒压频比控制→转速闭环转差频率控制→矢量控制→解耦控制→模糊控制;分立元件电路控制→小规模集成电路控制→大规模集成电路控制;模拟电路控制→数字电路控制;硬件控制→软件控制。
5 现代电气传动的物质基础——电子电力器件
1957年世界上第一只晶闸管(SCR)的问世标志着电力电子学的诞生,从此,电力电子器件的发展日新月异。
从20世纪60年代第一代半控型电力电子器件一晶闸管(SCR)发明至今,已经历了第二代有自关断能力的全控型电力电子器件CTR,GTO,MOSFET,第三代复合场控制器件一IGBT,SIT,MCT等和正蓬勃发展的第四代模块化功率器件一功率集成电路(PIC),如智能化模块IPM和专用功率器件模块ASPM等。
6智能化传动系统
电气传动正面临着一场革命,是说它正在向智能化迈进。
上百年来研究电动机只是实现了自动化,现在再进入到一个智能化,也就是一个系统优化的问题。
优化的焦点是把微电子技术、电力电子技术、传感技术融人到电气传动的领域,这三者构成“大电子体系”,只有这样的大电子体系,才能带动、改造传动产业升级换代。
这样的融入能把物料流、能源流、信息流三者汇流在一起,形成当代的智能化传动系统。
7 人工智能在电气传动领域的发展概况
人工智能控制技术一直没能取代古典控制方法。
但随着现代控制理论的发展,控制器设计的常规技术正逐渐被广泛使用的人工智能软件技术(人工神经网络、模糊控制、模糊神经网络、遗传算法等)所替代。
这些方法的共同特点是:都需要不同数量和类型的必须的描述系统和特性的“a priori”知识。
由于这些方法具有很多优势,因此工业界强烈希望开发、生产使用这些方法的系统,但又希望该系统实现简单、性能优异。
由于控制简单,直流传动在过去得到了广泛的使用。
但由于它们众所周知的限制以及DSP技术的进步,直流传动正逐渐被高性能的交流传动所取代。
但最近,许多厂商也推出了一些改进的直流驱动产品,但都没有使用人工智能技术。
确信,一旦使用人工智能后,直流传动技术的性能得到进一步的提高。
在将来,智能技术在电气传动技术中占相当重要的地位,特别是自适应模糊神经元控制器在性能传动产品中将得到广泛应用。
但是,还有很多研究工作要做,现在还只有少数实际应用的例子(学术研究组实现少,工业运用的就更少了),大多数研究只给出了理论或仿真结果,因此,常规控制器在将来仍要使用相当长一段时间。
8 电气传动自动化技术发展总趋势及主要的发展方向
电气传动自动化技术发展总趋势是:交流变频调速逐步取代直流调速、无触点控制取代有接点逻辑控制、全数字控制与数模复合控制并存。
电气自动化技术的发展是由用户的需求和相关学科的技术发展所推动的,他直接涉及改善电气传动的性能、价格、尺寸、能源消耗与节约设计,调试等方面。
其主要发展方向有:(1)实现高水平控制;
(2)开发清洁电能的变流器;
(3)系统化;
(4)CAD技术;
(5)缩小装置尺寸。
9 总结
虽然使用人工智能技术的实际产品和应用还不多,但不久的将来,人工智能技术在电气传动领域将会取得重要的地位,特别是自适应模糊神经控制器将在高性能驱动产品中得到广泛使用。
在电气传动技术的发展过程中,虽然各个学科所起的作用不同,但它们相互促进、交叉融合。
现代电气传动技术将能源流、信息流有机结合,向交流化、高频化、集成化、数字化、智能化、网络化和绿色。
参考文献:
[1]电力电子器件与交流调速技术的进展电气自动化1991年第1期
[2] 交流电机调速度技术的发展和我们的对策电气传动1989年第5期
[3] 现代电力传动智能化发展趋势电气传动1993年第3期
--。