现代交流电机控制技术基础
- 格式:pptx
- 大小:1.98 MB
- 文档页数:48
第一章机电设备的发展与分类第一节机电设备的发展机电设备广泛用于国民经济各行业。
机电设备的技术水平,在一定程度上反映了国家工业生产的水平和能力。
所以,采用先进的机电设备,管好、用好机电设备,对提高企业效益,促进国民经济的发展都起着十分重要的作用。
一、机电设备的发展过程机电设备是随着科学技术的发展而不断发展的。
传统的机电设备是以机械技术和电气技术应用为主的设备。
例如,普通机床,其运动的传递、运动速度的变换主要是由机械机构来实现的,而运动的控制则是由开关、接触器、继电器等电器构成的电气系统来实现的,这里的“机”、“电”分别构成各自独立的系统,两者的“融合性”很差,这是传统机电设备的共同特点.虽然,传统的机电设备也能实现自动化,但是自动化程度低,功能有限,耗材多,能耗大,设备的工作效率低,性能水平不高。
为了提高机电设备的自动化程度和性能,从20 世纪60 年代开始,人们自觉或不自觉地将机械技术与电子技术结合,以改善机械产品的性能,结果出现了许多性能优良的机电产品或设备。
到了20 世纪70、80 年代,微电子技术获得了惊人的发展,各种功能的大规模集成电路不断涌现,导致计算机与信息技术广泛使用。
这时人们自觉、主动地利用微电子技术的成果,开发新的机电产品或设备,使得机电产品或设备的发展发生了脱胎换骨的变化,机电产品或设备不再是简单的“机”和“电”相加,而是成为集机械技术、控制技术、计算机与信息技术等为一体的全新技术产品。
到了20 世纪90 年代,这种机电一体化技术迅猛发展,时至今日,机电一体化产品或设备已经透渗到国民经济和社会生活的各个领域。
二、现代机电设备的特点现代机电设备,如电动缝纫机、电子调速器、自动取款机、自动售票机、自动售货机、自动分检机、自动导航装置、数控机床、自动生产线、工业机器人、智能机器人等都是应用机电一体化技术为主的设备。
与传统机电设备相比,现代机电设备具有以下特点:1、体积小,重量轻机电一体化技术使原有的机械结构大大简化,如电动缝纫机的针脚花样主要是由一块单片集成电路来控制的,而老式缝纫机的针脚花样是由350 个零件构成的机械装置控制的.机械结构的简化,使设备的结构减小,重量减轻,用材减少。
现代电机控制技术
现代电机控制技术是电力驱动的系统的核心部分,能够满足现代电机多种要求。
由于发展迅速,越来越多的机械设备被自动化,越来越依赖电机的控制,电机的控制技术有着极其重要的作用。
本文主要介绍现代电机控制技术的基础:
1. 马达控制原理:马达控制通过电源和传动系统来控制电机,由于电源传输的能量可以控制电机驱动的机械元件,所以可以控制机械设备的运动状态。
2. 机器控制内容:机器控制是采用数字化电机控制系统来控制机械设备的运动状态。
它是将电机的控制信号与机器设备的动作联系起来,使机械设备可以根据电源传输的能量实现控制。
3. 电力控制:电力控制是指在指定的电流或功率中对电机进行控制,以实现特定的动作。
它通常是指根据电机控制信号调整电机输出参数,实现电机控制的能力。
4. 电源信号控制:电源信号控制是指用电源传输的信号来控制电机的运动状态,可以实现电机的高精度控制。
综上所述,现代电机控制技术已经发展得相当成熟,取得了很大的成就,它深刻地改变了机械设备的结构,并有效地提升了机械设备的性能,为各种机械设备的自动化提供了有力的支持。
电工技术基础:控制三相交流电动机引言在现代工业领域中,三相交流电动机广泛应用于各类机械设备中,如泵、风机、压缩机等。
掌握控制三相交流电动机的基本知识和技术,对于确保工业设备的正常运行和提高生产效率至关重要。
本文将介绍控制三相交流电动机的基础原理和常用的控制方法。
一、三相交流电动机的基本原理三相交流电动机是一种将电能转换为机械能的装置。
它由定子和转子两部分组成。
其中,定子上绕有三相绕组,通过定子绕组中的电流在旋转磁场的作用下,使转子旋转。
三相交流电动机的基本原理可以归结为两个关键概念:磁场旋转和感应电动机原理。
•磁场旋转:三相交流电动机的定子绕组通电后,产生的磁场会随着电流的变化而旋转。
这个旋转的磁场与转子磁铁产生相互作用,从而导致转子旋转。
•感应电动机原理:根据法拉第电磁感应定律,当导体(转子)在变化的磁场中移动时,会在导体中产生感应电动势。
这个感应电动势将导致转子上产生感应电流,感应电流与旋转磁场相互作用,从而推动转子旋转。
二、三相交流电动机的控制方法控制三相交流电动机有多种方法,常见的包括直接启动、自耦变压器启动、起动器控制和变频调速等。
下面将对这些方法一一进行介绍。
1. 直接启动直接启动是最简单的一种控制方法,它适用于小型电动机和起动负载不大的情况。
直接启动的主要步骤如下:•通过接线将电动机的三相绕组与电源连接。
•打开电源开关,给电动机供电。
•电动机直接启动,并开始工作。
然而,直接启动可能会对电网和电动机本身造成较大的冲击。
因此,在大型电动机和重载起动的情况下,需要采用更加先进的控制方法。
2. 自耦变压器启动自耦变压器启动是一种减小启动冲击的方法。
它通过引入自耦变压器来减小启动时的电压冲击。
自耦变压器启动的主要步骤如下:•通过接线将电动机的三相绕组、自耦变压器和电源连接。
•打开电源开关,给电动机和自耦变压器供电。
•首先,通过自耦变压器将电动机的起动电压减小为较低的值。
•待电动机达到正常转速后,通过切换开关去除自耦变压器,使电动机工作于额定电压下。
《现代电机控制技术》复习题1.试述磁共能的意义,磁能和磁共能有什么关系?2.试解释以磁能和磁共能表示的电磁转矩公式的物理意义。
3.试以“磁场”和“Bli ”的观点,阐述电磁转矩生成的原因和实质。
4.任意波形的定子电流通入相绕组后能否产生基波磁动势?为什么?5.试论述三相感应电动机各磁链矢量σψs 、g ψ、s ψ、σψr 、和r ψ的物理含义,指出它们之间的联系和区别,并写出相应的磁链方程。
6.为什么可以采用空间矢量理论来分析电动机的动态控制问题?矢量控制的含义是什么?7.为什么在转子磁场作用下,转子笼型绕组会具有换向器绕组的特性?8.什么是磁场定向?为什么在基于转子磁场的矢量控制中,一定要先将MT 轴系沿转子磁场方向进行磁场定向?9.什么是换向器变换?MT 轴系沿转子磁场定向后,为什么通过换向器变换可将转子绕组最终变换为换向器绕组?10.试论述电动机参数变化对直接和间接磁场定向的影响。
11.试论述定子电流3种控制模式的优缺点。
12.基于气隙磁场定向和基于定子磁场定向的矢量控制与基于转子磁场定向的矢量控制比较,有什么本质的不同?13.PMSM 的磁场定向指的是什么?为什么PMSM 的转子磁场定向相对三相感应电动机的转子磁场定向要容易得多?14.对于面装式PMSM ,是怎样将其变换为一台等效的直流电动机的?15.试论述弱磁控制的基本原理和控制方式。
16.为什么说PMSM矢量控制是一种自控式的控制方式?矢量控制会不会发生失步现象?为什么?17.试将PMSM与本相感应电动机的转子磁场定向的矢量控制进行比较性分析。
并指出两者存在差异的根本原因是什么?18.试论述谐波转矩产生的原因,并分析其对低速性能的影响。
19.试论述直接转矩控制的基本原理。
20.除了定子磁链和转矩会计外,滞环比较控制是否还利用了电动机数学模型,这有什么好处?21.电动机转速大小对直接转矩控制有什么影响?为什么?22.为什么直接转矩控制是一种非线性控制?为什么通常选择滞环比较控制方式?这种控制方式有什么优点和不足?23.直接转矩控制能否改变三相感应电动机固有的非线性机械特性?为什么?24.试分析滞环比较控制中转矩脉动的原因,您能提出哪些有效的解决方法?25.在直接转矩控制原理上,PMSM与三相感应电动机有什么共同之处?又有什么差别?26.电动机转速变化对直接转矩控制有什么影响?27.直接转矩控制是非线性的,根本原因是什么?28.直接转矩控制中能够引起转矩脉脉动的因素有哪些?为什么低速时容易引起转矩脉动和产生冲击电流?如何解决?29.在模型参考自适应系统中,自适应律起什么作用?它的物理含义是什么?30.试论述由模型参考自适应系统估计转子磁链和转速的优点和不足?31.扩展的卡尔曼滤与自适应观测器有什么相同之处,又有什么不同?扩展的卡尔曼滤波中增益矩阵起什么作用?。