2015-2016年安徽省宿州市十三校联考八年级上学期数学期中试卷与答案
- 格式:doc
- 大小:294.50 KB
- 文档页数:16
宿州市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)△ABC中,如果两条直角边分别为3,4,则斜边上的高线是()A .B .C . 5D . 不能确定2. (2分)要测量河两岸相对的两点A、B的距离,先在AB的垂线上取两点C、D,使 BC=CD,再作出BF的垂线DE,使E与A、C在一条直线上(如图所示),可以测得DE的长就是AB的长(即测得河宽),可由△EDC≌△ABC 得到,判定这两个三角形全等的理由是()A . 边角边B . 角边角C . 边边边D . 边边角3. (2分)(2017·临沂模拟) 下面四个手机应用图标中是轴对称图形的是()A .B .C .D .4. (2分)已知点A(a,3)和点B(4,b)关于y轴对称,则a+b的值是()A . 1B . -1C . 7D . -75. (2分)(2017·江都模拟) 下列运算正确的是()A . ﹣ =B . =﹣3C . a•a2=a2D . (2a3)2=4a66. (2分) (2017八上·南京期末) 如图,在平面直角坐标系中,点B在x轴上,△AOB是等边三角形,AB =2,则点A的坐标为()A . (2,)B . (1,2)C . (1,)D . (,1)7. (2分)(2020·台州) 把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A . 7+3B . 7+4C . 8+3D . 8+48. (2分)下列运算正确的是()A . a2+a2=2a4B . (﹣a2)3=﹣a8C . (﹣ab)2=2ab2D . (2a)2÷a=4a10. (2分) (2018九上·富顺期中) 如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0,其中正确的命题是()A . ①②③B . ①③C . ①④D . ①③④二、填空题. (共10题;共11分)11. (1分) (2017七下·宜兴期中) 若一个多边形的每个外角都为40°,则它的边数是________.12. (1分)如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为________13. (1分) (2017八上·虎林期中) 小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是________.14. (1分) (2017八上·汉滨期中) 如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“AAS”需要添加条件________.15. (1分) (2020八上·青山期末) 给出下列5种图形:①平行四边形②菱形③正五边形、④正六边形、⑤等腰梯形中,既是轴对称又是中心对称的图形有________个。
宿州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·邵武期中) 已知:,则A(x,y)的坐标为()A . (3,2)B . (3,-2)C . (-2,3)D . (-3,-2)2. (2分)如图,直线与 =-x+3相交于点A,若<,那么()A . x>2B . x<2C . x>1D . x<13. (2分)在下列关系中,y不是x的函数的是()A . y + x = 0B . |y|= 2xC . y =|2x|D . y + 2x2=44. (2分)(2020·丰润模拟) 如图,内接于圆,,,若,则弧的长为()A .B .C .D .5. (2分) (2016八上·青海期中) 下列命题正确的是()A . 两条直角边对应相等的两个直角三角形全等B . 一条边和一个锐角对应相等的两个三角形全等C . 有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等D . 有两条边对应相等的两个直角三角形全等6. (2分)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A .B . 4C .D .7. (2分)已知三角形的三边分别为2,a-1,4那么a的取值范围是().A . 1<a<5B . 2<a<6C . 3<a<7D . 4<a<68. (2分)如图,AB是⊙O直径,点C,D在⊙O上,OD∥AC,下列结论错误的是()A . ∠BOD=∠BACB . ∠BAD=∠CADC . ∠C=∠DD . ∠BOD=∠COD9. (2分) (2020九下·龙岗月考) 如图,在平面直角坐标系xOy中,直线y=﹣x+4与坐标轴交于A,B两点,OC⊥AB于点C,P是线段OC上的一个动点,连接AP,将线段AP绕点A逆时针旋转45°,得到线段AP',连接CP',则线段CP'的最小值为()A .B . 1C .D .10. (2分) (2017八上·临海期末) 如图:△ABC中,ACB=90°,AC=BC,AB=4,点E在BC上,且BE=2,点P在ABC的平分线BD上运动,则PE+PC的长度最小值为()A . 1B .C .D .二、填空题 (共4题;共4分)11. (1分)命题“全等三角形的面积相等”的逆命题是________,它是________(真或假)命题.12. (1分) (2019八下·舒城期末) 函数y= 自变量x的取值范围是________.13. (1分)如图所示,∠B=67°,∠ACB=74°,∠AED=48°,则∠BDF=________.14. (1分)(2016·广安) 若反比例函数y= (k≠0)的图象经过点(1,﹣3),则一次函数y=kx﹣k(k≠0)的图象经过________象限.三、解答题 (共9题;共90分)15. (10分) (2019七下·鼓楼月考) 如图,从① ,②,③ 三个条件中选出两个作为已知条件,另一个作为结论可以组成3个命题.(1)这三个命题中,真命题的个数为________;(2)选择一个真命题,并且证明.(要求写出每一步的依据)16. (5分)(1)如图1,在等边△ABC中,点M是边BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是边BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠A CN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.联结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.17. (15分)(2020·重庆A) 在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x …﹣5﹣4﹣3﹣2﹣1012345…y=…﹣﹣﹣﹣303…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3.③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大.(3)已知函数y=2x﹣1的图象如图所示,结合你所画的函数图象,直接写出不等式>2x﹣1的解集(保留1位小数,误差不超过0.2).18. (5分)已知△ABC的三个内角分别是∠A、∠B、∠C,若∠A=30°,∠C=2∠B,求∠B的度数.19. (10分)如图,直线的解析表达式为,且与轴交于点.直线经过点、,直线,交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积;(4)在直线上存在异于点的另一个点,使得与的面积相等,求点的坐标.20. (5分) (2020七上·溧水期末) 如图,点O是直线AB上一点,OC⊥OE,OF平分∠AOE,∠COF=25°,求∠BOE的度数.21. (15分) (2019七下·商南期末) 在平面直角坐标系中,已知点,试分别根据下列条件,求出点的坐标。
2016-2017学年安徽省宿州市XX中学八年级(上)期中数学试卷一、选择题:本题共10个小题.每小题3分.共30分1.的平方根是()A.±2 B.2 C.±4 D.42.下列各式中,正确的是()A.a3+a2=a5 B.2a3•a2=2a6C.(﹣2a3)2=4a6D.﹣(a﹣1)=﹣a﹣l3.下列各式中,正确的是()A.B.=2 C.=﹣4 D.4.实数,,1.412,π,,1.2020020002…,,0.121121112,2﹣中,无理数有()A.2个 B.3个 C.4个 D.5个5.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4=(x+2)26.如果x2+y2=8,x+y=3,则xy=()A.1 B.C.2 D.﹣7.下列式子中,不能用平方差公式计算的是()A.(m﹣n)(n﹣m) B.(x2﹣y2)(x2+y2) C.(﹣a﹣b)(a﹣b)D.(a2﹣b2)(b2+a2)8.若(a+b)2加上一个单项式后等于(a﹣b)2,则这个单项式为()A.2ab B.﹣2ab C.4ab D.﹣4ab9.若(3x+a)(3x+b)的结果中不含有x项,则a、b的关系是()A.ab=1 B.ab=0 C.a﹣b=0 D.a+b=010.下列说法中:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④﹣是的相反数.正确的有()A.0个 B.1个 C.2个 D.3个二、填空题:每小题3分,共30分.11.立方根等于本身的数是.12.计算:(﹣4a2b3)÷(﹣2ab)2=;(﹣a2)3+(﹣a3)2=.13.若3×9m×27m=321,则m=.14.命题“对顶角相等”的逆命题是.15.计算:(1)2016×(﹣)2017=.16.如图,AD平分∠BAC,要使△ABD≌△ACD,可添加条件.(添加一个即可)17.已知x2﹣kx+9是一个完全平方式,则k的值是.18.若a m=2,a n=5,则a2m+n=.19.若y=++3,则x+y=.20.x+=3,则x2+=.三、解答题:21.(25分)计算.(1)+(﹣1)2016﹣(2)(a4)3•(a2)3÷(a4)2(3)(2x2y﹣x3y2﹣xy3)÷(﹣xy)(4)9(x+2)(x﹣2)﹣(3x﹣1)2(5)[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(x﹣2y)]÷2x.22.(20分)将下列各式因式分解:(1)8x3y5﹣12x4y3﹣4x3y3(2)9x2+30x+25(3)x3﹣25x(4)m2(a﹣b)+n2(b﹣a)23.(7分)已知(﹣2x)2(3x2﹣ax﹣6)﹣4x(x2﹣6x)中不含x的三次项,求代数式(a+1)2的值.24.(7分)已知:2a﹣7和a+4是某正数的平方根,b﹣7的立方根为﹣2.(1)求:a、b的值;(2)求a+b的算术平方根.25.(7分)已知a﹣b=5,ab=3,求代数式a3b﹣2a2b2+ab3的值.26.(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.27.(8分)如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.28.(8分)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<()2<32,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是,小数部分是(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值.2016-2017学年安徽省宿州市XX中学八年级(上)期中数学试卷参考答案与试题解析一、选择题:本题共10个小题.每小题3分.共30分1.的平方根是()A.±2 B.2 C.±4 D.4【考点】平方根;算术平方根.【分析】先求出16的算术平方根为4,再根据平方根的定义求出4的平方根即可.【解答】解:∵=4,4的平方根为±2,∴的平方根为±2.故选A【点评】此题考查了平方根,以及算术平方根,熟练掌握平方根的定义是解本题的关键.2.下列各式中,正确的是()A.a3+a2=a5 B.2a3•a2=2a6C.(﹣2a3)2=4a6D.﹣(a﹣1)=﹣a﹣l【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方.【分析】根据合并同类项的法则,单项式的乘法法则,积的乘方法则,去括号法则分别计算各个选择支,然后确定正确答案.【解答】解:因为a3与a2不是同类项,不能加减;2a3•a2=2a5≠2a6;(﹣2a3)2=(﹣2)2a3×2=4a6;﹣(a﹣1)=﹣a+1≠﹣a﹣1.综上只有C正确.故选C.【点评】本题考查了合并同类项法则、单项式的乘法法则、积的乘方法则、去括号法则,记住法则会运用法则是关键.3.下列各式中,正确的是()A.B.=2 C.=﹣4 D.【考点】立方根;算术平方根.【分析】原式各项利用算术平方根及立方根定义计算得到结果,即可做出判断.【解答】解:A、原式=5,正确;B、原式=﹣2,错误;C、原式没有意义,错误;D、原式为最简结果,错误.故选A.【点评】此题考查了立方根,以及算术平方根,熟练掌握运算法则是解本题的关键.4.实数,,1.412,π,,1.2020020002…,,0.121121112,2﹣中,无理数有()A.2个 B.3个 C.4个 D.5个【考点】无理数.【分析】由于无理数就是无限不循环小数,利用无理数的概念即可判定选择项.【解答】解:无理数有:,π,1.2020020002…,2﹣;故选C【点评】此题要熟记无理数的概念及形式.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4=(x+2)2【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积,故B正确;C、没把一个多项式转化成几个整式积,故C错误;D、分解错误,故D错误;故选:B.【点评】本题考查了因式分解的意义,利用把一个多项式转化成几个整式积是解题关键.6.如果x2+y2=8,x+y=3,则xy=()A.1 B.C.2 D.﹣【考点】完全平方公式.【分析】首先把x+y=3两边同时平方得到x2+2xy+y2=9,然后把x2+y2=8代入其中即可求出xy的值.【解答】解:∵x+y=3,∴x2+2xy+y2=9,而x2+y2=8,∴2xy=9﹣8=1,∴xy=.故选B.【点评】此题主要考查了利用完全平方公式进行代数变形,然后利用整体代值的思想即可解决问题.7.下列式子中,不能用平方差公式计算的是()A.(m﹣n)(n﹣m) B.(x2﹣y2)(x2+y2) C.(﹣a﹣b)(a﹣b)D.(a2﹣b2)(b2+a2)【考点】平方差公式.【分析】根据公式(a+b)(a﹣b)=a2﹣b2的特点进行判断即可.【解答】解:A、(m﹣n)(n﹣m)=﹣(n﹣m)2,不能用平方差公式进行计算,故本选项正确;B、(x2﹣y2)(x2+y2)=x4﹣y4,故本选项错误;C、(﹣a﹣b)(a﹣b)=(﹣b)2﹣a2,故本选项错误;D、(a2﹣b2)(b2+a2)=a4﹣b4,故本选项错误.故选A.【点评】本题主要考查对平方差公式的理解和掌握,能判断是否能用公式进行计算是解此题的关键.8.若(a+b)2加上一个单项式后等于(a﹣b)2,则这个单项式为()A.2ab B.﹣2ab C.4ab D.﹣4ab【考点】完全平方公式.【分析】完全平方公式是(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2,根据以上公式得出即可.【解答】解:(a+b)2+(﹣4ab)=(a﹣b)2,故选D.【点评】本题考查了对完全平方公式的应用,能熟记完全平方公式是解此题的关键,注意:完全平方公式是(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.9.若(3x+a)(3x+b)的结果中不含有x项,则a、b的关系是()A.ab=1 B.ab=0 C.a﹣b=0 D.a+b=0【考点】多项式乘多项式.【分析】根据多项式乘多项式的运算法则,展开后令x的一次项的系数为0,即可得出答案.【解答】解:(3x+a)(3x+b)=9x2+3bx+3ax+ab=9x2+3(a+b)x+ab,∵(3x+a)(3x+b)的结果中不含有x项,∴a+b=0,∴a、b的关系是a+b=0;故选D.【点评】本题考查了多项式乘多项式的运算法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.10.下列说法中:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④﹣是的相反数.正确的有()A.0个 B.1个 C.2个 D.3个【考点】实数与数轴;实数的性质.【分析】①根据有理数与数轴上的点的对应关系即可判定;②根据无理数的定义即可判定;③根据立方根的定义即可判定;④根据相反数的定义即可解答.【解答】解:①实数和数轴上的点一一对应,故①说法错误;②不带根号的数不一定是有理数,如π,故②说法错误;③负数有立方根,故③说法错误;④﹣是的相反数.故④说法正确.故选:B.【点评】此题主要考查了实数的定义和计算.有理数和无理数统称为实数,要求掌握这些基本概念并迅速做出判断.二、填空题:每小题3分,共30分.11.立方根等于本身的数是1,﹣1,0.【考点】立方根.【分析】根据立方根的性质可知等于图本身的数只有3个±1,0.【解答】解:∵=1,=﹣1,=0∴立方根等于本身的数是±1,0.【点评】此题主要考查了立方根的运用,要掌握一些特殊的数字的特殊性质,如:±1,0,牢记这些数的特性可以快捷的解决这类问题.12.计算:(﹣4a2b3)÷(﹣2ab)2=﹣b;(﹣a2)3+(﹣a3)2=0.【考点】整式的除法;幂的乘方与积的乘方.【分析】原式先计算乘方运算,再计算除法及加法运算即可得到结果.【解答】解:原式=(﹣4a2b3)÷(4a2b2)=﹣b;原式=﹣a6+a6=0,故答案为:﹣b;0【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.13.若3×9m×27m=321,则m=4.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:3×9m×27m=3×32m×33m=35m+1,故5m+1=21,解得:m=4.故答案为:4.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.14.命题“对顶角相等”的逆命题是相等的角为对顶角.【考点】命题与定理.【分析】交换原命题的题设与结论即可得到其逆命题.【解答】解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为相等的角为对顶角.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.15.计算:(1)2016×(﹣)2017=﹣.【考点】幂的乘方与积的乘方.【分析】原式利用幂的乘方与积的乘方运算法则变形,计算即可得到结果.【解答】解:原式=(﹣×)2016×(﹣)=﹣,故答案为:﹣【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.16.如图,AD平分∠BAC,要使△ABD≌△ACD,可添加条件AB=AC.(添加一个即可)【考点】全等三角形的判定.【分析】根据AD平分∠BAC,可得∠1=∠2,再根据AD是公共边,可添加角相等或边相等的条件,答案不唯一.【解答】解:∵AD平分∠BAC,∴∠1=∠2,又∵AD=AD,∴添加AB=AC后,根据SAS可判定△ABD≌△ACD.故答案为:AB=AC.【点评】本题主要考查了全等三角形的判定,解决问题的关键是掌握全等三角形的5种判定方法,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.17.已知x2﹣kx+9是一个完全平方式,则k的值是±6.【考点】完全平方式.【分析】由于x2﹣kx+9是一个完全平方式,则x2﹣kx+9=(x+3)2或x2﹣kx+9=(k﹣3)2,根据完全平方公式即可得到k的值.【解答】解:∵x2﹣kx+9是一个完全平方式,∴x2﹣kx+9=(x+3)2或x2﹣kx+9=(k﹣3)2,∴k=±6.故答案是:±6.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.18.若a m=2,a n=5,则a2m+n=20.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】原式利用幂的乘方与积的乘方运算法则变形,将已知等式代入计算即可求出值.【解答】解:∵a m=2,a n=5,∴原式=(a m)2×a n=20,故答案为:20【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.19.若y=++3,则x+y=8.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x﹣5≥0,5﹣x≥0,解得,x=5,则y=3,x+5=8,故答案为:8.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.20.x+=3,则x2+=7.【考点】分式的混合运算.【分析】直接利用完全平方公式将已知变形,进而求出答案.【解答】解:∵x+=3,∴(x+)2=9,∴x2++2=9,∴x2+=7.故答案为:7.【点评】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.三、解答题:21.(25分)(2016秋•埇桥区校级期中)计算.(1)+(﹣1)2016﹣(2)(a4)3•(a2)3÷(a4)2(3)(2x2y﹣x3y2﹣xy3)÷(﹣xy)(4)9(x+2)(x﹣2)﹣(3x﹣1)2(5)[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(x﹣2y)]÷2x.【考点】整式的混合运算;实数的运算.【分析】(1)先算乘方和开方,再算加减即可;(2)先算乘方,再算乘除;(3)根据多项式除以单项式法则进行计算即可;(4)先算乘法,再合并同类项即可;(5)先算乘法,再合并同类项,最后算除法即可.【解答】解:(1)+(﹣1)2016﹣=2+1+3=6;(2)(a4)3•(a2)3÷(a4)2=a12•a6÷a8=a10;(3)(2x2y﹣x3y2﹣xy3)÷(﹣xy)=﹣4x+2x2y+y2;(4)9(x+2)(x﹣2)﹣(3x﹣1)2=9x2﹣36﹣9x2+6x﹣1=6x﹣37;(5)[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(x﹣2y)]÷2x=[x2﹣4xy+4y2+x2﹣4y2﹣2x2+4xy]÷2x=0.【点评】本题考查了整式的混合运算和实数的运算,能灵活运用知识点进行计算和化简是解此题的关键.22.(20分)(2016秋•巴中期中)将下列各式因式分解:(1)8x3y5﹣12x4y3﹣4x3y3(2)9x2+30x+25(3)x3﹣25x(4)m2(a﹣b)+n2(b﹣a)【考点】提公因式法与公式法的综合运用.【分析】(1)根据提公因式法,可得答案;(2)根据完全平方公式,可得答案;(3)根据提公因式法,可得平方差公式,根据平方差公式,可得答案;(4)根据提公因式法,可得平方差公式,根据平方差公式,可得答案.【解答】解:(1)原式=4x3y3(2y2﹣3x﹣1);(2)原式=(3x+5)2;(3)原式=x(x2﹣25)=x(x+5)(x﹣5);(4)原式=(a﹣b)(m2﹣n2)=(a﹣b)(m+n)(m﹣n).【点评】本题考查了因式分解,一提,二套,三检查,分解要彻底.23.已知(﹣2x)2(3x2﹣ax﹣6)﹣4x(x2﹣6x)中不含x的三次项,求代数式(a+1)2的值.【考点】整式的混合运算—化简求值.【分析】原式整理后,根据结果不含x的三次项确定出a的值,代入原式计算即可得到结果.【解答】解:原式=12x4﹣(4a+4)x3,根据题意得4a+4=0,解得:a=﹣1,则原式=0.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.24.已知:2a﹣7和a+4是某正数的平方根,b﹣7的立方根为﹣2.(1)求:a、b的值;(2)求a+b的算术平方根.【考点】平方根;算术平方根;立方根.【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a的值,根据立方根的定义求出b的值,根据算术平方根的定义求出a+b 的算术平方根.【解答】解:(1)由题意得,2a﹣7+a+4=0,解得:a=1,b﹣7=﹣8,解得:b=﹣1;(2)a+b=0,0的算术平方根为0.【点评】本题考查的是平方根、立方根和算术平方根的定义,正数的平方根有两个,且互为相反数;正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.25.已知a﹣b=5,ab=3,求代数式a3b﹣2a2b2+ab3的值.【考点】因式分解的应用.【分析】首先把代数式a3b﹣2a2b2+ab3分解因式,然后尽可能变为和a﹣b、ab相关的形式,然后代入已知数值即可求出结果.【解答】解:∵a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2而a﹣b=5,ab=3,∴a3b﹣2a2b2+ab3=3×25=75.【点评】本题主要运用完全平方公式对所给代数式进行因式分解,然后利用所给条件代入即可求出结果.26.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.【考点】整式的混合运算.【分析】长方形的面积等于:(3a+b)•(2a+b),中间部分面积等于:(a+b)•(a+b),阴影部分面积等于长方形面积﹣中间部分面积,化简出结果后,把a、b的值代入计算.3a+b)(2a+b)﹣(a+b)2,【解答】解:S阴影=(=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2,=5a2+3ab(平方米)当a=3,b=2时,5a2+3ab=5×9+3×3×2=45+18=63(平方米).【点评】本题考查了阴影部分面积的表示和多项式的乘法,完全平方公式,准确列出阴影部分面积的表达式是解题的关键.27.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.【考点】全等三角形的判定与性质.【分析】易证△BED≌△CFD,根据全等三角形对应边相等的性质即可解题.【解答】解:∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴BE=CF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中找出全等三角形并证明是解题的关键.28.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<()2<32,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是3,小数部分是﹣3(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值.【考点】估算无理数的大小.【分析】(1)利用已知得出的取值范围,进而得出答案;(2)首先得出,的取值范围,进而得出答案.【解答】解:(1)∵<<,∴3<<4,∴的整数部分是3,小数部分是:﹣3;故答案为:3,﹣3;(2)∵<<,∴的小数部分为:a=﹣2,∵<<,∴的整数部分为b=6,∴a+b﹣=﹣2+6﹣=4.【点评】此题主要考查了估计无理数,得出无理数的取值范围是解题关键.。
安徽省宿州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)(2018·鼓楼模拟) 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的()A . 三条高线的交点B . 三条中线的交点C . 三个角的角平分线的交点D . 三条边的垂直平分线的交点2. (1分)在π、、﹣、、3.1416中,无理数的个数是()A . 1个B . 2个C . 3个D . 4个3. (1分) (2019八下·黄陂月考) △ABC在下列条件下,不是直角三角形的是()A .B .C .D .4. (1分)的立方根是()A .B .C .D .5. (1分) (2017七下·曲阜期中) 已知|a﹣1|+ =0,则a+b=()A . ﹣8B . ﹣6C . 66. (1分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A . BC=EC,∠B=∠EB . BC=EC,AC=DCC . BC=EC,∠A=∠DD . ∠B=∠E,∠A=∠D7. (1分) (2018八上·大连期末) 如图,等腰△ABC的面积为S,AB=AC=m,点D为BC边上任意一点,DE⊥AB 于E,DF⊥AC于F,则DE+DF=()A .B .C .D .8. (1分) (2018七上·襄州期末) 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中正确的结论的个数是()B . 3个C . 4个D . 5个9. (1分)如图,64、400分别为所在正方形的面积,则正方形A的面积是()A . 336B . 164094C . 464D . 15590410. (1分)(2017·邹平模拟) 如图,将矩形ABCD沿对角线BD折叠,使C落在F处,BF交AD于E,则下列结论不一定成立的是()A . AD=BFB . △ABE≌FDEC . sinD . △ABE∽△CBD二、填空题 (共8题;共8分)11. (1分) (2019七下·莆田期中) 已知点A,B,C在数轴上表示的数a、b、c的位置如图所示,化简=________12. (1分) (2020八上·嘉陵期末) 如图,在△ABC中,AB=AC,点D在AC边上,BD=BC,若∠ABD=45°,则∠A的度数是________。
2016-2017学年安徽省宿州市埇桥区朱仙庄矿中学八年级(上)期中数学试卷一、选择题(每题2分共20分)1.下列数据中,哪一组能构成直角三角形()A.1,2,3 B.5,8,5 C.3,4,5 D.6,8,122.下列函数中,一次函数为()A.y=x3B.y=2x2+1 C.y= D.y=﹣3x3.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间4.在实数中:,|﹣3|,,,,0.8080080008…(相邻两个8之间0的个数逐次加1),无理数的个数有()A.4个B.3个C.2个D.1个5.若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=﹣3 B.x=2,y=3 C.x=﹣2,y=3 D.x=2,y=﹣36.与2﹣相乘,结果是1的数为()A.B.2﹣C.﹣2+D.2+7.下面计算正确的是()A.3+=3B.÷=3 C.•=D. =±28.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.9.过点(﹣2,﹣4)的直线是()A.y=x﹣2 B.y=x+2 C.y=2x+1 D.y=﹣2x+110.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标可能有()个.A.1个B.2个C.3个D.4个二、填空题:(每小题2分,共20分)11.比较大小:35.12.计算:的平方根= .13.图象经过(1,2)的正比例函数的表达式为.14.已知2a﹣1的平方根是±3,则a= .15.将直线y=2x向上平移1个单位,得到的一次函数的解析式是.16.如图,直线a的与坐标轴围成的三形的面积是.17.若点(1,m)和点(n,2)都在直线y=x﹣1上,则m+n的值为.18.已知直角三角形的两条直角边长分别为6cm和8cm,则斜边上的高为cm.19.已知点(﹣5,y1),(0,y2)都在直线y=﹣3x+2上,则y1,y2的大小关系是.20.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿着直线AD 折叠,使它落在斜边AB上,且与AE重合,则CD的长为cm.三、解答题:(共60分)“看准、想清、写明”21.计算题①(+)2﹣②+6﹣③﹣4④+×.22.解方程(1)(x﹣1)3=27(2)2x2﹣50=0.23.如图,圆柱形玻璃容器,高8cm,底面周长为30cm,在外侧下底的点S处有一只蚂蚁,与蚂蚁相对的圆柱形容器的上口外侧的点F处有食物,求蚂蚁要吃到食物所走的最短路线长度.(画出侧面展开图并计算)24.写出如图格点△ABC各顶点的坐标,求出此三角形的周长.25.如图,l A、l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发与A相距千米.(2)B出发后小时与A相遇.(3)分别求出A、B行走的路程S与时间t的函数关系式.(4)出发2时,A、B之间的距离是多?(5)通过计说明谁到达30千米处?26.某单位今年“十一”期间要组团去北京旅游,与旅行社联系时,甲旅行社提出每人次收300元车费和住宿费,不优惠,乙旅社提出每人次收350元车费和住宿费,但有3人可享受免费待遇(1)分别写出甲、乙两旅行社的收费与旅行人数之间函数关系式.(2)在同一坐标系内作出它们的图象;(3)如果组织20人的旅行团,选择哪家旅行社比较合算?当旅行团为多少人时,选甲或乙旅行社所需费用一样多?(4)由于经费紧张,单位领导计划此次旅行费用不超过5000元,选哪一家旅行社去的人多一些?最多去多少人?2016-2017学年安徽省宿州市埇桥区朱仙庄矿中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题2分共20分)1.下列数据中,哪一组能构成直角三角形()A.1,2,3 B.5,8,5 C.3,4,5 D.6,8,12【考点】勾股数.【分析】根据勾股定理的逆定理可知,当三角形中三边的关系为:a2+b2=c2时,则三角形为直角三角形.【解答】解:A、12+22≠32,故不是直角三角形,错误;B、52+52≠82,故不是直角三角形,错误;C、32+42=52,故是直角三角形,正确;D、62+82≠122,故不是直角三角形,错误.故选C.2.下列函数中,一次函数为()A.y=x3B.y=2x2+1 C.y= D.y=﹣3x【考点】一次函数的定义.【分析】利用一次函数的意义:一般地,形如y=kx+b(k≠0,k,b是常数),那么y叫做x 的一次函数.当b=0时,y=kx+b即y=kx,即正比例函数,所以说正比例函数是一种特殊的一次函数,由此选择答案即可.【解答】解:A、B、C都不是一次函数;D、是一次函数.故选:D.3.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【考点】估算无理数的大小.【分析】利用”夹逼法“得出的范围,继而也可得出的范围.【解答】解:∵2=<=3,∴3<<4,故选B.4.在实数中:,|﹣3|,,,,0.8080080008…(相邻两个8之间0的个数逐次加1),无理数的个数有()A.4个B.3个C.2个D.1个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣、﹣、0.8080080008…都是无理数,|﹣3|、、是有理数,故选B.5.若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=﹣3 B.x=2,y=3 C.x=﹣2,y=3 D.x=2,y=﹣3【考点】关于x轴、y轴对称的点的坐标.【分析】熟悉:平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y).【解答】解:根据轴对称的性质,得x=2,y=﹣3.故选D.6.与2﹣相乘,结果是1的数为()A.B.2﹣C.﹣2+D.2+【考点】分母有理化.【分析】用1除以2﹣,得出的结果即为所求的数.【解答】解: ==2+.故选D.7.下面计算正确的是()A.3+=3B.÷=3 C.•=D. =±2【考点】实数的运算.【分析】A、根据合并二次根式的法则即可判定;B、根据二次根式的除法法则即可判定;C、根据二次根式的乘法法则即可判定;D、根据二次根式的性质即可判定.【解答】解:A、不能合并,故选项错误;B、÷==3,故选项正确;C、,故选项错误;D、=2,故选项错误.故选B.8.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的性质.【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限.故选A.9.过点(﹣2,﹣4)的直线是()A.y=x﹣2 B.y=x+2 C.y=2x+1 D.y=﹣2x+1【考点】一次函数图象上点的坐标特征.【分析】把点(﹣2,﹣4)分别代入各直线的解析式进行检验即可.【解答】解:A、当x=﹣2时,y=﹣2﹣2=﹣4,故本选项正确;B、当x=﹣2时,y=﹣2+2=0≠﹣4,故本选项错误;C、当x=﹣2时,y=﹣4+1=﹣3≠﹣4,故本选项错误;D、当x=﹣2时,y=4+1=5≠﹣4,故本选项错误.故选A.10.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标可能有()个.A.1个B.2个C.3个D.4个【考点】等腰三角形的判定;坐标与图形性质.【分析】分以OA为腰和底边两种情况作出点P的位置,即可得解.【解答】解:点P的位置如图所示共有4种情况,所以点P的坐标可能有4个.故选D.二、填空题:(每小题2分,共20分)11.比较大小:3<5.【考点】实数大小比较.【分析】首先把两个数平方,再根据实数的大小比较方法即可比较大小.【解答】解:∵(3)2=45,(5)2=75,∴3<5.故填空答案:<.12.计算:的平方根= ±2.【考点】算术平方根;平方根.【分析】先求出的值,再根据平方根的定义解答.【解答】解:∵ =8,∴的平方根为,±即±2.故答案为:±2.13.图象经过(1,2)的正比例函数的表达式为y=2x .【考点】待定系数法求正比例函数解析式.【分析】本题中可设图象经过(1,2)的正比例函数的表达式为y=kx,然后结合题意,利用方程解决问题.【解答】解:设该正比例函数的表达式为y=kx∵它的图象经过(1,2)∴2=k∴该正比例函数的表达式为y=2x.14.已知2a﹣1的平方根是±3,则a= 5 .【考点】平方根.【分析】根据平方根的定义列方程求解即可.【解答】解:由题意得,2a﹣1=9,解得a=5.故答案为:5.15.将直线y=2x向上平移1个单位,得到的一次函数的解析式是y=2x+1 .【考点】一次函数图象与几何变换.【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1.故答案为:y=2x+1.16.如图,直线a的与坐标轴围成的三形的面积是 3 .【考点】一次函数图象上点的坐标特征.【分析】直接根据三角形的面积公式解答即可.【解答】解:∵由图可知,直线与坐标轴的交点分别为(3,0),(0,2),∴直线a的与坐标轴围成的三形的面积=×2×3=3.故答案为:3.17.若点(1,m)和点(n,2)都在直线y=x﹣1上,则m+n的值为 3 .【考点】一次函数图象上点的坐标特征.【分析】先把点(1,m)和点(n,2)代入直线y=x﹣1求出m、n的值,进而可得出结论.【解答】解:∵点(1,m)和点(n,2)都在直线y=x﹣1上,∴m=1﹣1=0,2=n﹣1,解得m=0,n=3,∴m+n=3.故答案为:3.18.已知直角三角形的两条直角边长分别为6cm和8cm,则斜边上的高为 4.8 cm.【考点】勾股定理.【分析】设斜边上的高为hcm,由勾股定理求出斜边长,再由直角三角形面积的计算方法即可得出斜边上的高.【解答】解:设斜边上的高为hcm,由勾股定理得: =10cm,直角三角形的面积=×10×h=×6×8,解得:h=4.8.故答案为:4.8cm.19.已知点(﹣5,y1),(0,y2)都在直线y=﹣3x+2上,则y1,y2的大小关系是y1>y2.【考点】一次函数图象上点的坐标特征.【分析】直接把各点代入直线y=﹣3x+2,求出y1,y2的值,再比较出其大小即可.【解答】解:∵点(﹣5,y1),(0,y2)都在直线y=﹣3x+2上,∴y1=﹣3×(﹣5)+2=17,y2=2,∵17>2,∴y1>y2.故答案为:y1>y2.20.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿着直线AD 折叠,使它落在斜边AB上,且与AE重合,则CD的长为 3 cm.【考点】翻折变换(折叠问题).【分析】由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE.【解答】解:由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2即CD2+42=(8﹣CD)2,解得:CD=3cm.三、解答题:(共60分)“看准、想清、写明”21.计算题①(+)2﹣②+6﹣③﹣4④+×.【考点】实数的运算.【分析】①原式利用完全平方公式及立方根定义计算即可得到结果;②原式各项化简后,合并即可得到结果;③原式利用二次根式的性质化简,计算即可得到结果;④原式利用二次根式的乘除法则计算即可得到结果.【解答】解:①原式=5+2﹣4=1+2;②原式=2+6×﹣3=;③原式=+﹣4=5+4﹣4=5;④原式=+=3+4=7.22.解方程(1)(x﹣1)3=27(2)2x2﹣50=0.【考点】立方根;平方根.【分析】(1)可用直接开立方法进行解答;(2)可用直接开平方法进行解答.【解答】解:(1)∵(x﹣1)3=27,∴x﹣1=3∴x=4;(2)∵2x2﹣50=0,∴x2=25,∴x=±5.23.如图,圆柱形玻璃容器,高8cm,底面周长为30cm,在外侧下底的点S处有一只蚂蚁,与蚂蚁相对的圆柱形容器的上口外侧的点F处有食物,求蚂蚁要吃到食物所走的最短路线长度.(画出侧面展开图并计算)【考点】平面展开-最短路径问题.【分析】先将圆柱的侧面展开,再根据勾股定理求解即可.【解答】解:如图所示,∵圆柱形玻璃容器,高8cm,底面周长为30cm,∴SD=15cm,∴SF===17(cm).答:蚂蚁要吃到食物所走的最短路线长度是17cm.24.写出如图格点△ABC各顶点的坐标,求出此三角形的周长.【考点】勾股定理;坐标与图形性质.【分析】根据各点在坐标系中的位置写出各点坐标,再根据勾股定理求出各边的长,进而可得出周长.【解答】解:由图可知,A(2,2),B(﹣2,﹣1),C(3,﹣2).AB==5,AC==,BC==,故周长=5++.25.如图,l A、l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发与A相距10 千米.(2)B出发后 1 小时与A相遇.(3)分别求出A、B行走的路程S与时间t的函数关系式.(4)出发2时,A、B之间的距离是多?(5)通过计说明谁到达30千米处?【考点】一次函数的应用.【分析】(1)利用函数图象直接得出答案;(2)利用函数图象直接得出答案;(3)分别利用待定系数法求一次函数解析式和正比例函数解析式即可;(4)将t=2分别代入函数解析式求出即可;(5)利用S=30进而求出答案.【解答】解:(1)由图象可得:B出发时与A相距10千米.故答案为:10;(2)由图象可得出:B出发后1小时与A相遇.故答案为:1;(3)设S A=kt+b,将(0,10),(1,15)代入得出:,解得:故:S A=5t+10;设S B=at,将(1,15)代入得出:a=15,则 S B=15t;(4)由题意可得:S A=5×2+10=20,S B=15×2=30,故30﹣20=10(km);(5)当30=5t+10,解得:t=4,当30=15t,解得:t=2,故2<4,B先到达30km.26.某单位今年“十一”期间要组团去北京旅游,与旅行社联系时,甲旅行社提出每人次收300元车费和住宿费,不优惠,乙旅社提出每人次收350元车费和住宿费,但有3人可享受免费待遇(1)分别写出甲、乙两旅行社的收费与旅行人数之间函数关系式.(2)在同一坐标系内作出它们的图象;(3)如果组织20人的旅行团,选择哪家旅行社比较合算?当旅行团为多少人时,选甲或乙旅行社所需费用一样多?(4)由于经费紧张,单位领导计划此次旅行费用不超过5000元,选哪一家旅行社去的人多一些?最多去多少人?【考点】一次函数的应用.【分析】(1)设甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,旅行人数为x人,根据单价乘以数量等于总价就可以表示出y与x之间的函数关系式;(2)根据(1)中解析式进行描点连线即可画出图象;(3)将x=20分别代入y甲与y乙的解析式求出y甲与y乙的大小,进行比较就可以求出结论;(4)将y=5000分别代入两个解析式求出x的值即可求出结论【解答】解:(1)设甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,旅行人数为x人,由题意,得y甲=300x,y乙=350(x﹣3)=350x﹣1050.答:y甲=300x,y乙=350x﹣1050;(2)如图所示:(3)当x=20时,y甲=300×20=6000元,y乙=350×20﹣1050=5950元;∵6000>5950,∴y甲>y乙,∴选择乙旅行社比较合算;(4)当y=5000时,5000=300x,x=≈16人;5000=350x﹣1050,x=≈17人.∵16<17.∴选乙旅行社去的人多些,最多去的人数:17﹣16=1人.答:选乙旅行社去的人多一些,最多去1人.。
2015-2016学年安徽省宿州市十三所重点中学联考高一(上)期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x∈N|0≤x≤5},∁A B={1,3,5},则集合B=()A.{2,4} B.{0,2,4} C.{0,1,3} D.{2,3,4}2.下列函数中,既是偶函数又在(﹣∞,0)单调递减的函数是()A.y=x3 B.y=|x|+1 C.y=﹣x2+1 D.y=2﹣|x|3.函数f(x)=的定义域为()A.(2,+∞)B.[2,+∞)C.(2,3]D.(﹣∞,3]4.下列各函数中,图象完全相同的是()A.y=2lgx和y=lgx2B.y=和y=C.y=和y=xD.y=x﹣3和y=5.已知函数,则f[f()]=()A.4 B.C.﹣4 D.﹣6.设a=log43,b=30.4,c=log3,则()A.b>a>c B.a>c>b C.c>a>b D.a>b>c7.已知f(x)=ax3+bx+1(ab≠0),若f(2015)=k,则f(﹣2015)=()A.k﹣2 B.2﹣k C.1﹣k D.﹣k﹣18.函数f(x)=2x﹣1+log2x的零点所在的一个区间是()A.(,)B.(,)C.(,1)D.(1,2)9.若f(x)=x2+bx+c对任意实数x都有f(a+x)=f(a﹣x),则()A.f(a)<f(a﹣1)<f(a+2)B.f(a﹣1)<f(a)<f(a+2)C.f(a)<f(a+2)<f(a﹣1)D.f(a+2)<f(a)<f(a﹣1)10.函数f(x)=,下列结论不正确的()A.此函数为偶函数B.此函数的定义域是RC.此函数既有最大值也有最小值D.方程f(x)=﹣x无解11.集合M={x|x=,k∈Z},N={x|x=,k∈Z},则()A.M=N B.M⊋N C.M⊊N D.M∩N=∅12.若函数f(x)=ka x﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=log a (x+k)的图象是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.已知幂函数y=f(x)的图象过点,则f(2)=.14.若函数y=f(x)的定义域为[﹣3,2],则函数y=f(3﹣2x)的定义域是.15.函数f(x)=4x﹣2x﹣1﹣1取最小值时,自变量x的取值为.16.若函数f(x)=log a(x﹣3)+2(a>0且a≠1)的图象过定点(m,n),则log m n=.三、解答题(共6小题,满分70分)17.计算:(1)(2)﹣()0﹣(3)+1.5﹣2(2)已知log73=alog74=b,求log748.(其值用a,b表示)18.已知集合A={x|a﹣1<x<a+1},B={x|0<x<1}.(1)若a=﹣,求A∪B;(2)若A∩B=∅,求实数a的取值范围.19.已知f(x)=(1)作出函数f(x)的图象,并写出单调区间;(2)若函数y=f(x)﹣m有两个零点,求实数m的取值范用.20.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[3m,m+2]上不单调,求实数m的取值范围;(3)求函数f(x)在区间[t﹣1,t]上的最小值g(t).21.已知f(x)是定义在R上的奇函数,且f(x)=.(1)求m,n的值;(2)用定义证明f(x)在(﹣1,1)上为增函数;(3)若f(x)≤对恒成立,求a的取值范围.22.已知函数f(x)是定义在[﹣1,1]上的偶函数,当x∈[0,1]时,f(x)=()x+log2(﹣x)﹣1.(1)求函数f(x)的解析式,并判断函数f(x)在[0,1]上的单调性(不要求证明);(2)解不等式f(2x﹣1)﹣≥0.2015-2016学年安徽省宿州市十三所重点中学联考高一(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x∈N|0≤x≤5},∁A B={1,3,5},则集合B=()A.{2,4} B.{0,2,4} C.{0,1,3} D.{2,3,4}【考点】补集及其运算.【专题】计算题.【分析】根据题意,先用列举法表示集合A,进而由补集的性质,可得B=∁A(∁A B),计算可得答案.【解答】解:根据题意,集合A={x∈N|0≤x≤5}={0,1,2,3,4,5},若C A B={1,3,5},则B=∁A(∁A B)={0,2,4},故选B.【点评】本题考查补集的定义与运算,关键是理解补集的定义.2.下列函数中,既是偶函数又在(﹣∞,0)单调递减的函数是()A.y=x3 B.y=|x|+1 C.y=﹣x2+1 D.y=2﹣|x|【考点】函数奇偶性的判断;函数单调性的判断与证明.【专题】综合题;定义法;函数的性质及应用.【分析】根据函数奇偶性和单调性的定义结合函数的性质进行判断即可.【解答】解:A.y=x3是奇函数,不满足条件.B.y=|x|+1是偶函数,当x<0时,y=﹣x+1为减函数,满足条件.C.y=﹣x2+1是偶函数,则(﹣∞,0)上为增函数,不满足条件.D.y=2﹣|x|是偶函数,当x<0时,y=2﹣|x|=2x为增函数,不满足条件.故选:B【点评】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.3.函数f(x)=的定义域为()A.(2,+∞)B.[2,+∞)C.(2,3]D.(﹣∞,3]【考点】函数的定义域及其求法.【专题】计算题;函数思想;数学模型法;函数的性质及应用.【分析】由根式内部的代数式大于等于0,然后求解对数不等式得答案.【解答】解:由,得0<x﹣2≤1,即2<x≤3.∴函数f(x)=的定义域为(2,3].故选:C.【点评】本题考查函数的定义域及其求法,考查了对数不等式的解法,是基础题.4.下列各函数中,图象完全相同的是()A.y=2lgx和y=lgx2B.y=和y=C.y=和y=xD.y=x﹣3和y=【考点】判断两个函数是否为同一函数.【专题】函数思想;定义法;函数的性质及应用.【分析】分别判断两个函数的定义域和对应法则是否相同即可.【解答】解:A.y=2lgx的定义域为(0,+∞),y=lgx2的定义域为(﹣∞,0)∪(0,+∞),两个函数的定义域不相同,不是相同函数,B.y==,两个函数的定义域和对应法则相同,是相同函数,C.y==x,函数的定义域为(﹣∞,0)∪(0,+∞),两个函数的定义域不相同,不是相同函数,D.y==|x﹣3|,两个函数的对应法则不相同,不是相同函数,故选:B【点评】本题主要考查函数定义的判断,分别判断函数定义域和对应法则是否相同是解决本题的关键.5.已知函数,则f[f()]=()A.4 B.C.﹣4 D.﹣【考点】分段函数的解析式求法及其图象的作法;函数的值.【分析】将函数由内到外依次代入,即可求解【解答】解:根据分段函数可得:,则,故选B【点评】求嵌套函数的函数值,要遵循由内到外去括号的原则,将对应的值依次代入,即可求解.6.设a=log43,b=30.4,c=log3,则()A.b>a>c B.a>c>b C.c>a>b D.a>b>c【考点】对数值大小的比较.【专题】函数思想;数学模型法;函数的性质及应用.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵0<a=log43<1,b=30.4>1,c=log3<0,∴b>a>c.故选:A.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.7.已知f(x)=ax3+bx+1(ab≠0),若f(2015)=k,则f(﹣2015)=()A.k﹣2 B.2﹣k C.1﹣k D.﹣k﹣1【考点】函数奇偶性的性质.【专题】转化思想;构造法;函数的性质及应用.【分析】根据条件构造函数g(x)=f(x)﹣1,判断函数的奇偶性,进行求解即可.【解答】解:∵f(x)=ax3+bx+1(ab≠0),∴f(x)﹣1=ax3+bx,(ab≠0)是奇函数,设g(x)=f(x)﹣1,则g(﹣x)=﹣g(x),即f(﹣x)﹣1=﹣(f(x)﹣1)=1﹣f(x),即f(﹣x)=2﹣f(x),若f(2015)=k,则f(﹣2015)=2﹣f(2015)=2﹣k,故选:B【点评】本题主要考查函数值的计算,根据条件构造函数,判断函数的奇偶性是解决本题的关键.8.函数f(x)=2x﹣1+log2x的零点所在的一个区间是()A.(,)B.(,)C.(,1)D.(1,2)【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】根据函数f(x)=2x﹣1+log2x,在(0,+∞)单调递增,f(1)=1,f()=﹣1,可判断分析.【解答】解:∵函数f(x)=2x﹣1+log2x,在(0,+∞)单调递增.∴f(1)=1,f()=﹣1,∴根据函数的零点的判断方法得出:零点所在的一个区间是(),故选:C.【点评】本题考查了函数的性质,函数的零点的判断方法,属于容易题.9.若f(x)=x2+bx+c对任意实数x都有f(a+x)=f(a﹣x),则()A.f(a)<f(a﹣1)<f(a+2)B.f(a﹣1)<f(a)<f(a+2)C.f(a)<f(a+2)<f(a﹣1)D.f(a+2)<f(a)<f(a﹣1)【考点】二次函数的性质.【专题】转化思想;数学模型法;函数的性质及应用.【分析】根据已知分析出函数的图象和性质,进而可得三个函数值的大小.【解答】解:∵f(x)=x2+bx+c对任意实数x都有f(a+x)=f(a﹣x),故函数f(x)的图象是开口朝上,且以直线x=a为对称轴的抛物线,∴距离对称轴越近,函数值越小,故f(a)<f(a﹣1)<f(a+2),故选:A.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.10.函数f(x)=,下列结论不正确的()A.此函数为偶函数B.此函数的定义域是RC.此函数既有最大值也有最小值D.方程f(x)=﹣x无解【考点】分段函数的应用.【专题】函数思想;分析法;函数的性质及应用.【分析】由奇偶性的定义,即可判断A;由分段函数的定义域的求法,可判断B;由最值的概念,即可判断C;由函数方程的思想,解方程即可判断D.【解答】解:对于A,若x为有理数,则﹣x为有理数,即有f(﹣x)=f(x)=1;若x为无理数,则﹣x为无理数,f(﹣x)=f(x)=π,故f(x)为偶函数,故正确;对于B,由x为有理数或无理数,即定义域为R,故正确;对于C,当x为有理数,f(x)有最小值1;当x为无理数,f(x)有最大值π,故正确;对于D,令f(x)=﹣x,若x为有理数,解得x=﹣1;若x为无理数,解得x=﹣π,故D不正确.故选:D.【点评】本题考查函数的性质和运用,考查函数的奇偶性和最值,及定义域的求法,考查函数方程思想,属于基础题.11.集合M={x|x=,k∈Z},N={x|x=,k∈Z},则()A.M=N B.M⊋N C.M⊊N D.M∩N=∅【考点】集合的包含关系判断及应用.【专题】计算题;分类讨论;综合法;集合.【分析】从元素满足的公共属性的结构入手,对集合N中的k分奇数和偶数讨论,从而可得两集合的关系.【解答】解:对于集合N,当k=2n﹣1,n∈Z,时,N={x|x=,n∈Z}=M,当k=2n,n∈Z,时N={x|x=,n∈Z},∴集合M、N的关系为M⊊N.故选:C.【点评】本题的考点是集合的包含关系判断及应用,解题的关键是对集合M中的k分奇数和偶数讨论.12.若函数f(x)=ka x﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=log a (x+k)的图象是()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】由函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则由复合函数的性质,我们可得k=1,a>1,由此不难判断函数的图象.【解答】解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f(﹣x)+f(x)=0,若函数在其定义域为为偶函数,则f(﹣x)﹣f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.二、填空题(共4小题,每小题5分,满分20分)13.已知幂函数y=f(x)的图象过点,则f(2)=.【考点】幂函数的概念、解析式、定义域、值域.【专题】函数的性质及应用.【分析】利用幂函数的定义设幂函数f(x)=xα,再将点的坐标代入,即可求出.【解答】解:设幂函数f(x)=xα,∵幂函数y=f(x)的图象过点,∴=()α,解得α=.∴f(x)=x.则f(2)=故答案为:.【点评】本题主要考查了幂函数的概念、解析式、定义域、值域.熟练掌握幂函数的定义是解题的关键.14.若函数y=f(x)的定义域为[﹣3,2],则函数y=f(3﹣2x)的定义域是[,3].【考点】函数的定义域及其求法.【专题】计算题;函数思想;数学模型法;函数的性质及应用.【分析】函数y=f(x)的定义域为[﹣3,2],直接由﹣3≤3﹣2x≤2求得x的范围得答案.【解答】解:∵函数y=f(x)的定义域为[﹣3,2],∴由﹣3≤3﹣2x≤2,解得.故函数y=f(3﹣2x)的定义域是:[,3].故答案为:[,3].【点评】本题考查函数的定义域及其求法,关键是掌握该类问题的解决方法,是基础题.15.函数f(x)=4x﹣2x﹣1﹣1取最小值时,自变量x的取值为﹣2.【考点】函数的最值及其几何意义.【专题】函数思想;换元法;函数的性质及应用.【分析】设2x=t(t>0),则y=t2﹣t﹣1,由配方,可得函数的最小值及对应的自变量x的值.【解答】解:函数f(x)=4x﹣2x﹣1﹣1,设2x=t(t>0),则y=t2﹣t﹣1=(t﹣)2﹣,当t=,即x=﹣2时,取得最小值,且为﹣.故答案为:﹣2.【点评】本题考查函数的最值的求法,注意运用换元法和指数函数的值域,以及二次函数的最值求法,属于中档题.16.若函数f(x)=log a(x﹣3)+2(a>0且a≠1)的图象过定点(m,n),则log m n=.【考点】对数函数的图像与性质.【专题】计算题;转化思想;数学模型法;函数的性质及应用.【分析】令x﹣3=1,可得函数f(x)=log a(x﹣3)+2(a>0且a≠1)的图象过定点坐标,进而得到答案.【解答】解:令x﹣3=1,则x=4,则f(4)=2恒成立,即函数f(x)=log a(x﹣3)+2(a>0且a≠1)的图象过定点(4,2),即m=4,n=2,∴log m n=log42=,故答案为:.【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.三、解答题(共6小题,满分70分)17.计算:(1)(2)﹣()0﹣(3)+1.5﹣2(2)已知log73=alog74=b,求log748.(其值用a,b表示)【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】(1)利用有理指数幂的运算法则化简求解即可.(2)直接利用对数运算法则化简求解即可.【解答】(本题满分10分)解:(1)(2)﹣()0﹣(3)+1.5﹣2=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)log73=a,log74=b,log748=log7(3×16)=log73+log716=log73+2log74=a+2b.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查对数的运算法则以及有理指数幂的运算法则的应用,考查计算能力.18.已知集合A={x|a﹣1<x<a+1},B={x|0<x<1}.(1)若a=﹣,求A∪B;(2)若A∩B=∅,求实数a的取值范围.【考点】集合的包含关系判断及应用.【专题】计算题;转化思想;综合法;集合.【分析】(1)化简集合A,再求A∪B;(2)若A∩B=∅,则a﹣1≥1或a+1≤0,即可求实数a的取值范围.【解答】解:(1)当a=﹣时,A={x|﹣<x<},﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以A∪B={x|﹣<x<1}﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)因为A∩B=∅,所以a﹣1≥1或a+1≤0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得a≤﹣1或a≥2,所以a的取值范围是(﹣∞,﹣1]∪[2,+∞).﹣﹣﹣﹣﹣﹣【点评】本题考查集合的运算,考查学生的计算能力,比较基础.19.已知f(x)=(1)作出函数f(x)的图象,并写出单调区间;(2)若函数y=f(x)﹣m有两个零点,求实数m的取值范用.【考点】函数单调性的判断与证明;函数零点的判定定理.【专题】函数的性质及应用.【分析】(1)根据函数f(x)的表达式,求出函数的图象即可;(2)问题转化为求函数的交点问题,结合函数的图象读出即可.【解答】解:(1)画出函数f(x)的图象,如图示:,由图象得:f(x)在(﹣∞,0],(0,+∞)单调递增;(2)若函数y=f(x)﹣m有两个零点,则f(x)和y=m有2个交点,结合图象得:1<m≤2.【点评】本题考查了指数函数、对数函数的图象及性质,考查函数的零点问题,是一道基础题.20.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[3m,m+2]上不单调,求实数m的取值范围;(3)求函数f(x)在区间[t﹣1,t]上的最小值g(t).【考点】二次函数的性质;函数解析式的求解及常用方法;函数单调性的性质;二次函数在闭区间上的最值.【专题】综合题;分类讨论;转化思想;数学模型法;函数的性质及应用.【分析】(1)由已知可得函数图象的顶点为(1,1),将f(0)=3代入,可得f(x)的解析式;(2)若f(x)在区间[3m,m+2]上不单调,则1∈(3m,m+2),解得实数m的取值范围;(3)结合二次函数的图象和性质,分析各种情况下,函数f(x)在区间[t﹣1,t]上的最小值g(t),综合讨论结果,可得答案.【解答】解:(1)∵f(0)=f(2)=3,∴函数图象关于直线x=1对称,又∵二次函数f(x)的最小值为1,∴设f(x)=a(x﹣1)2+1,由f(0)=3得:a=2,故f(x)=2(x﹣1)2+1=2x2﹣4x+3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)要使函数在区间[3m,m+2]上不单调,则1∈(3m,m+2),解得:m∈(﹣1,).﹣﹣﹣﹣﹣﹣﹣﹣(3)由(1)知f(x)=2(x﹣1)2+1,所以函数f(x)图象开口向上,对称轴方程为x=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①当t﹣1≥1即t≥2时,函数f(x)在区间[t﹣1,t]上单调递增当x=t﹣1时,f(x)的最小值g(t)=2t2﹣4t+9﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当t﹣1<1<t.即1<t<2时,函数f(x)在区间[t﹣1,1]上单调递减,在区间[1,t]上单调递增,当x=1时,f(x)的最小值g(t)=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣③当t≤1时,函数f(x)在区间[t﹣1,t]上单调递减当x=t时,f(x)的最小值g(t)=2t2﹣4t+3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综上所述,g(t)=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.21.已知f(x)是定义在R上的奇函数,且f(x)=.(1)求m,n的值;(2)用定义证明f(x)在(﹣1,1)上为增函数;(3)若f(x)≤对恒成立,求a的取值范围.【考点】函数恒成立问题;函数奇偶性的性质.【专题】函数的性质及应用.【分析】(1)根据函数是奇函数,得f(0)=0,f(﹣1)=﹣f(1);(2)根据增函数的定义进行证明;(3)求函数f(x)的最大值即可.【解答】解:∵x∈R,f(x)是定义在R上的奇函数,∴f(0)=0,得m=0(1)因f(x)是定义在R上的奇函数,且f(x)=.所以f(﹣1)=﹣f(1),解得n=0,∴m=n=0(2)任取﹣1<x1<x2<1,===∵﹣1<x1<1,﹣1<x2<1∴﹣1<x1x2<1∴1﹣x1x2>0又x1<x2,∴x1﹣x2<0∴f(x1)﹣f(x2)<0∴f(x1)<f(x2)∴f(x)在(﹣1,1)上单调递增(3)∵∴f(x)在[﹣上的最大值为f()=,∴,∴.【点评】本题主要考查函数的奇偶性和单调性,已经利用函数的单调性求函数的最值.22.已知函数f(x)是定义在[﹣1,1]上的偶函数,当x∈[0,1]时,f(x)=()x+log2(﹣x)﹣1.(1)求函数f(x)的解析式,并判断函数f(x)在[0,1]上的单调性(不要求证明);(2)解不等式f(2x﹣1)﹣≥0.【考点】函数单调性的判断与证明;函数解析式的求解及常用方法;函数奇偶性的性质.【专题】函数的性质及应用.【分析】(1)根据函数奇偶性的定义求出f(x)在x∈[﹣1,0]上的x的范围即可;(2)求出f()的值,问题掌握解不等式f(2x﹣1)≥f(),结合函数的单调性求出不等式的解集即可.【解答】解:(1)∵函数f(x)是定义在[﹣1,1]上的偶函数,∴f(﹣x)=f(x),当x∈[0,1]时,f(x)=()x+log2(﹣x)﹣1,设﹣x∈[0,1],则x∈[﹣1,0],∴f(﹣x)=+log2(+x)﹣1=4x+log2(+x)﹣1=f(x),∴x∈[﹣1,0]时:f(x)=4x+log2(+x)﹣1;f(x)在[﹣1,0)递增,在(0,1]递减;(2)x∈[0,1]时:f(x)递减,而f()=,∴解不等式f(2x﹣1)﹣≥0,即解不等式f(2x﹣1)≥f(),∴0≤2x﹣1≤,解得:≤x≤,根据函数f(x)是偶函数,x∈[﹣1,0]时:﹣≤x≤﹣.【点评】本题考查了求函数的解析式问题,考查函数的奇偶性、单调性的应用,是一道中档题.。
安徽省宿州市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列图形中,既是轴对称图形又是中心对称图形的有()A . 4个B . 3个C . 2个D . 1个2. (2分)已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A . 16B . 20或16C . 20D . 123. (2分)下列命题是真命题的是()A . 内错角相等B . 同位角相等,两直线平行C . 互补的两个角必有一条公共边D . 相等的角是对顶角4. (2分) (2016高一下·石门期末) 下列说法正确的是()A . 若a2>0,则a>0B . 若a2>a,则a>0C . 若a<0,则a2>aD . 若a<1,则a2<a5. (2分) (2018八上·江北期末) 如图,点D是正△ABC内的一点,DB=3,DC=4,DA=5,则∠BDC的度数是()A . 120°B . 135°C . 140°D . 150°6. (2分) (2018九上·滨州期中) 如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当DPMN周长取最小值时,则∠MPN的度数为()A . 140°B . 100°C . 50°D . 40°7. (2分)下列条件能判断两个三角形全等的是()①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等A . ①③B . ②④C . ①②④D . ②③④8. (2分)(2016·杭州) 已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A . m2+2mn+n2=0B . m2﹣2mn+n2=0C . m2+2mn﹣n2=0D . m2﹣2mn﹣n2=09. (2分) (2018八上·桥东期中) 如图,在△ABC中,∠ABC=45°,AD,BE分别为BC,AC边上的高,AD,BE相交于点F,连接CF,则下列结论:①BF=AC;②∠FCD=45°;③若BF=2EC,则△FDC周长等于AB的长;其中正确的有()A . 0个B . 1个C . 2个D . 3个10. (2分)(2016·陕西) 如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A . 2对B . 3对C . 4对D . 5对二、填空题 (共10题;共11分)11. (1分) (2019九上·台安月考) 如图已知等边,顶点在双曲线上,点的坐标为.过作交双曲线于点,过作交x轴于点得到第二个等边;过作交双曲线于点,过作交x轴于点,得到第三个等边;以此类推,…,则点的坐标为________.12. (1分) (2017八下·莒县期中) 如图所示,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则EF长为________cm.13. (1分) (2017八下·北海期末) 如图,D是Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于点E,若AE=5cm,DC=12 cm,则CE的长为________ cm.14. (2分) (2015九上·宁波月考) 如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A在量角器上对应读数分别为45°,70°,160°,则∠AOB的度数为________;∠A的度数为________.15. (1分) (2020九下·汉中月考) 不等式-2x+1>-5的最大整数解是________。
2016-2017学年安徽省宿州市埇桥区八年级(上)期中数学试卷一、选择题(共10小题,每小题4分,满分40分)1.下列各组数,能构成直角三角形边的是()A.4,5,6 B.8,15,17 C.5,8,10 D.8,39,402.点(3,2)关于y轴对称点为()A.(﹣3,2)B.(3,﹣2)C.(2,﹣3)D.(3,﹣2)3.函数y=x+6的图象经过点P(0,3),则b的值为()A.3 B.﹣3 C.D.﹣4.的平方根是()A.±4 B.4 C.±2 D.25.若点A(2,n)在x 轴上,则点B(n﹣2,n+l)在()A.第一象限B.第三象限C.第四象限D.第二象限6.若直线y=kx+b经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是()A.y=2x+3 B.y=3x+2 C.y=﹣x+2 D.y=x﹣17.的立方根是()A.1 B.﹣1 C.10 D.﹣108.已知一直角三角形的木板,三边的平方和为1800,则斜边长为()A.10 B.20 C.30 D.409.下列说法正确的是()A.﹣81的平方根是±9B.任何数的平方是非负数,因而任何数的平方根也是非负C.任何一个非负数的平方根都不大于这个数D.2是4的平方根10.横坐标和纵坐标都是正数的点在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共4小题,每小题5分,满分20分)11.若点(1,﹣3 )在正比例函数y=kx的图象上,则此函数的解析式为.12.已知点P在第四象限,且到x轴的距离是5,到y轴的距离是4,则P点坐标为.13.已知点A1(a1,a2),A2(a2,a3),A3(a3,a4)…,A n(a n,a n)(n为正整+1数)都在一次函数y=x+3的图象上.若a1=2,则a2014=.14.在直角坐标系中,如图有△ABC,现另有一点D满足以A、B、D为顶点的三角形与△ABC全等,则D点坐标为.三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2)2+|﹣1|﹣.16.已知(m﹣1)2+=0,那么mn的值为.四、解答题(共2小题,满分16分)17.如图,在平面直角坐标系中点A(2,m)在第﹣象限,若点A关于x轴的对称点B在直线y=﹣x+1上,求m的值.18.写出如图中△ABC各顶点的坐标且求出此三角形的面积.五、解答题(共2小题,满分20分)19.小强到某海岛上去探宝,登陆后先往东走10千米,又往北走2千米,遇到障碍后又往西走3千米,再折向北走到4千米处往东拐,仅走1千米便找到宝藏,问登陆点到宝藏埋藏点的直线距离是多少千米?20.已知y﹣2与x+1成正比例函数关系,且x=﹣2时,y=6.(1)写出y与x之间的函数关系式;(2)求当x=﹣3时,y的值;(3)求当y=4时,x的值.六、解答题(共3小题,满分38分)21.平面直角坐标系中,点A的坐标是(4,0),点P在直线y=﹣x+m上,且AP=OP=4.求m的值.22.某工厂要把一批产品从A地运往B地,若通过铁路运输,则每千米需交运费15元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费25元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设A地到B地的路程为x km,通过铁路运输和公路运输需交总运费y1元和y2元(1)求y1和y2关于x的表达式;(2)若A地到B地的路程为120 km,哪种运输可以节省总运费?23.先填表,通过观察后再回答问题(1)被汗方数a 的小数点位置移动和它的算术平方根的小数点位置移动有无规律?若有规律,请写出它的移动规律;(2)已知:=1800,﹣=﹣1.8,你能求出a 的值吗?(3)试比较与a 的大小.2016-2017学年安徽省宿州市埇桥区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.下列各组数,能构成直角三角形边的是()A.4,5,6 B.8,15,17 C.5,8,10 D.8,39,40【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故本选项错误;B、∵82+152=172,∴能构成直角三角形,故本选项正确;C、∵52+82≠102,∴不能构成直角三角形,故本选项错误;D、∵82+392≠402,∴不能构成直角三角形,故本选项错误.故选B.2.点(3,2)关于y轴对称点为()A.(﹣3,2)B.(3,﹣2)C.(2,﹣3)D.(3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【解答】解:点(3,2)关于y轴对称点为:(﹣3,2).故选:A.3.函数y=x+6的图象经过点P(0,3),则b的值为()A.3 B.﹣3 C.D.﹣【考点】一次函数图象上点的坐标特征.【分析】直接把点P(0,3)代入函数y=x+b,即可求出b的值.【解答】解:∵函数y=x+b的图象经过点P(0,3),∴3=0+b,解得b=3.故选A.4.的平方根是()A.±4 B.4 C.±2 D.2【考点】平方根;算术平方根.【分析】根据算术平方根的意义,可得16的算术平方根,再根据平方根的意义,可得答案.【解答】解:=4,±=±2,故选:C.5.若点A(2,n)在x 轴上,则点B(n﹣2,n+l)在()A.第一象限B.第三象限C.第四象限D.第二象限【考点】点的坐标.【分析】根据点A在x轴上求得n的值,则B的坐标即可求得,然后确定所在象限.【解答】解:根据题意得n=0,则B的坐标是(﹣2,1),在第二象限.故选D.6.若直线y=kx+b经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是()A.y=2x+3 B.y=3x+2 C.y=﹣x+2 D.y=x﹣1【考点】待定系数法求一次函数解析式.【分析】直线y=kx+b经过A(0,2)和B(3,0)两点,代入可求出函数关系式.【解答】解:将A(0,2)和B(3,0)两点代入直线y=kx+b,可得出方程组,解得,那么这个一次函数关系式是y=﹣x+2.故选C.7.的立方根是()A.1 B.﹣1 C.10 D.﹣10【考点】立方根.【分析】先求出,再利用立方根定义即可求解.【解答】解:=1,1的立方根是1.故选:A.8.已知一直角三角形的木板,三边的平方和为1800,则斜边长为()A.10 B.20 C.30 D.40【考点】勾股定理.【分析】设出直角三角形的两直角边分别为a,b,斜边为c,利用勾股定理列出关系式,再由三边的平方和为1800,列出关系式,联立两关系式,即可求出斜边的长.【解答】解:设直角三角形的两直角边分别为a,b,斜边为c,根据勾股定理得:a2+b2=c2,∵a2+b2+c2=1800,∴2c2=1800,即c2=900,则c=30;故选:C.9.下列说法正确的是()A.﹣81的平方根是±9B.任何数的平方是非负数,因而任何数的平方根也是非负C.任何一个非负数的平方根都不大于这个数D.2是4的平方根【考点】平方根.【分析】A、根据平方根的定义即可判定;B、根据平方、平方根的定义即可判定;C、可以利用反例,如:当0<a<1时结合平方根的定义即可判定;D、根据平方根的定义即可判定.【解答】解:A:由于负数没有平方根,故A选项错误;B:任何数的平方为非负数,正确;但只有非负数才有平方根,且平方根有正负之分(0的平方根为0).故选项B错误;C:任何一个非负数的平方根都不大于这个数,不一定正确,如:当0<a<1时,a>a2,故选项错误;D:2的平方是4,所以2是4的平方根,故选项正确.故选D.10.横坐标和纵坐标都是正数的点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据平面直角坐标系中各个象限内点的坐标符号解答.【解答】解:横坐标和纵坐标都是正数的点符合第一象限内点的坐标符号,故点在第一象限.故选A.二、填空题(共4小题,每小题5分,满分20分)11.若点(1,﹣3 )在正比例函数y=kx的图象上,则此函数的解析式为y=﹣3x.【考点】待定系数法求正比例函数解析式.【分析】把点(1,﹣3)代入正比例函数y=kx得关于k的方程,计算出k的值,进而可得答案.【解答】解:把点(1,﹣3)代入正比例函数y=kx得:﹣3=k,k=﹣3,则此函数的解析式为y=﹣3x,故答案为:y=﹣3x.12.已知点P在第四象限,且到x轴的距离是5,到y轴的距离是4,则P点坐标为(4,﹣5).【考点】点的坐标.【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,点到x轴的距离是纵坐标的绝对值,点到y轴的距离是横坐标的绝对值,可得答案.【解答】解:由到x轴的距离是5,到y轴的距离是4,得|x|=4,|y|=5.由点位于第四象限,得则P点坐标为(4,﹣5),故答案为:(4,﹣5).13.已知点A1(a1,a2),A2(a2,a3),A3(a3,a4)…,A n(a n,a n)(n为正整+1数)都在一次函数y=x+3的图象上.若a1=2,则a2014=6041.【考点】一次函数图象上点的坐标特征.【分析】将a1=2代入a2=x+3,依次求出a1、a2、a3、a4、a5、a6…的值,找到规律然后解答.【解答】解:将a1=2代入a2=x+3,得a2=5,同理可求得,a3=8,a4=11,a5=14,a6=17,a n=2+3(n﹣1),a2014=2+3×=2+3×2013=2+6039=6041,故答案为:6041.14.在直角坐标系中,如图有△ABC,现另有一点D满足以A、B、D为顶点的三角形与△ABC全等,则D点坐标为(﹣2,﹣3)、(4,3)、(4,﹣3).【考点】全等三角形的判定;坐标与图形性质.【分析】在图形中画出点D的可能位置,结合直角坐标系,可得点D的坐标.【解答】解:点D的可能位置如下图所示:,则可得点D的坐标为:(﹣2,﹣3)、(4,3)、(4,﹣3).故答案为:(﹣2,﹣3)、(4,3)、(4,﹣3).三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2)2+|﹣1|﹣.【考点】实数的运算.【分析】原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用立方根定义计算即可得到结果.【解答】解:原式=4+﹣1﹣3=.16.已知(m﹣1)2+=0,那么mn的值为﹣2.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列出算式,求出m、n的值,计算即可.【解答】解:由题意得,m﹣1=0,n+2=0,解得,m=1,n=﹣2,则mn=﹣2,故答案为:﹣2.四、解答题(共2小题,满分16分)17.如图,在平面直角坐标系中点A(2,m)在第﹣象限,若点A关于x轴的对称点B在直线y=﹣x+1上,求m的值.【考点】一次函数图象上点的坐标特征.【分析】根据关于x轴的对称点的坐标特点可得B(2,﹣m),然后再把B点坐标代入y=﹣x+1可得m的值.【解答】解:∵点A(2,m),∴点A关于x轴的对称点B(2,﹣m),∵B在直线y=﹣x+1上,∴﹣m=﹣2+1=﹣1,∴m=1.18.写出如图中△ABC各顶点的坐标且求出此三角形的面积.【考点】三角形的面积;坐标与图形性质.【分析】首先根据坐标的定义正确写出三个顶点的坐标,再根据矩形的面积减去三个直角三角形的面积进行计算.【解答】解:根据图形得:A(2,2)、B(﹣2,﹣1)、C(3,﹣2),三角形的面积是5×4﹣6﹣2.5﹣2=9.5.五、解答题(共2小题,满分20分)19.小强到某海岛上去探宝,登陆后先往东走10千米,又往北走2千米,遇到障碍后又往西走3千米,再折向北走到4千米处往东拐,仅走1千米便找到宝藏,问登陆点到宝藏埋藏点的直线距离是多少千米?【考点】勾股定理的应用.【分析】要求AB的长,通过行走的方向和距离得出对应的线段的长度,构造直角三角形利用勾股定理求解.【解答】解:过点B作BD⊥AC于点D,根据题意可知,AD=8﹣3+1=6千米,BD=2+6=8千米,在Rt△ADB中,由勾股定理得AB=10千米.即登陆点到宝藏处的距离为10千米.20.已知y﹣2与x+1成正比例函数关系,且x=﹣2时,y=6.(1)写出y与x之间的函数关系式;(2)求当x=﹣3时,y的值;(3)求当y=4时,x的值.【考点】待定系数法求一次函数解析式;函数值.【分析】(1)根据y﹣2与x+1成正比例关系设出函数的解析式,再把当x=﹣2时,y=6代入函数解析式即可求出k的值,进而求出y与x之间的函数解析式.(2)根据(1)中所求函数解析式,将x=﹣3代入其中,求得y值;(3)利用(1)中所求函数解析式,将y=4代入其中,求得x值.【解答】解:(1)依题意得:设y﹣2=k(x+1).将x=﹣2,y=6代入:得k=﹣4所以,y=﹣4x﹣2.(2)由(1)知,y=﹣4x﹣2,∴当x=﹣3时,y=(﹣4)×(﹣3)﹣2=10,即y=10;(3)由(1)知,y=﹣4x﹣2,∴当y=4时,4=(﹣4)×x﹣2,解得,x=﹣.六、解答题(共3小题,满分38分)21.平面直角坐标系中,点A的坐标是(4,0),点P在直线y=﹣x+m上,且AP=OP=4.求m的值.【考点】待定系数法求一次函数解析式.【分析】易知点P在线段OA的垂直平分线上,那么就能求得△AOP是等边三角形,就能求得点P的横坐标,根据勾股定理可求得点P的纵坐标.把这点代入一次函数解析式即可,同理可得到在第四象限的点.【解答】解:由已知AP=OP,点P在线段OA的垂直平分线PM上.∴OA=AP=OP=4,∴△AOP是等边三角形.如图,当点P在第一象限时,OM=2,OP=4.在Rt△OPM中,PM=,∴P(2,).∵点P在y=﹣x+m上,∴m=2+.当点P在第四象限时,根据对称性,P′(2,﹣).∵点P′在y=﹣x+m上,∴m=2﹣.则m的值为2+或2﹣.22.某工厂要把一批产品从A地运往B地,若通过铁路运输,则每千米需交运费15元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费25元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设A地到B地的路程为x km,通过铁路运输和公路运输需交总运费y1元和y2元(1)求y1和y2关于x的表达式;(2)若A地到B地的路程为120 km,哪种运输可以节省总运费?【考点】一次函数的应用.【分析】(1)可根据总运费=每千米的运费×路程+装卸费和手续费,来表示出y1、y2关于x的函数关系式;(2)把路程为120km代入,分别计算y1和y2,比较其大小,然后可判断出哪种运输可以节省总运费.【解答】解:(1)根据题意得,y1=15x+400+200=15x+600;y2=25x+100(x>0);(2)当x=120时,y1=15×120+600=2400,y 2=25×120+100=3100,∵y 1<y 2∴铁路运输节省总运费.23.先填表,通过观察后再回答问题(1)被汗方数a 的小数点位置移动和它的算术平方根的小数点位置移动有无规律?若有规律,请写出它的移动规律;(2)已知:=1800,﹣=﹣1.8,你能求出a 的值吗?(3)试比较与a 的大小. 【考点】实数大小比较.【分析】先根据题意填好表格,然后找出规律即可.【解答】解:依次填写:0.001,0.01,0.1,1,10,100,1000,(1)有规律当被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点先左(或向右)移动1位;(2)观察1.8和1800,小数点向右移动了3位,则a 的值为3.24的小数点向右移动6位,即a=3240000,(3)当0<a <1时,>a ,当a=1或0时, =a ;当a >1时,<a ,2017年1月18日。
4题2015—2016学年度上学期期中检测八年级数学试卷一、选择题(每小题3分,10题共30分) 1、下列图形是轴对称图形的有( )A.4个B.3个C.1个D.1个2、在△ABC 中,∠A ∶∠B ∶∠C =1∶1∶2,则此三角形的形状为( ) A 、等腰三角形 B 、直角三角形 C 、钝角三角形 D 、等腰直角三角形3、等腰三角形的一边长是6,另一边长是12,则周长为( ) A.30 B.24 C.24或30 D.184、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA =2, 则PQ 的最小值为( )A 、1B 、 2C 、 3D 、 4 5、等腰三角形的一个角是80°,则它的底角是( ) A. 50° B. 80° C. 50°或80° D. 20°或80° 6、一个多边形的每个内角为108°,则这个多边形是( ) A 、四边形 B 、五边形 C 、六边形 D 、七边形7、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个8、将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后//A B E B 与与在同一条直线上,则∠CBD 的度数 ( )A. 大于90°B. 等于90°C. 小于90°D. 不能确定9、如图, 已知△ABC 中, AB=AC, ∠BAC =90°, 直角∠EPF 的顶点P 是BC 中点, 两边PE 、PF 分别交AB 、AC 于点E 、F, 给出以下四个结论: ①AE=CF; ②△EPF 是等腰直角三角形; ③S 四边形AEPF =21S △ABC ; ④BE+CF =EF. 当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合). 上述结论中始终正确的有( )A. 1个B. 2个C. 3个D. 4个10、如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD =BE ;② PQ ∥AE ;③ AP =BQ ;④ DE =DP ;⑤ ∠AOB =60°.恒成立的有( )个. A .1 B .2C .3D .4二、填空题(每题3分,6题共18分)11、已知点P (-3,4),关于x 轴对称的点的坐标为 。
八年级上册宿州数学期中精选试卷测试卷(含答案解析)一、八年级数学全等三角形解答题压轴题(难)1.已知,如图A 在x 轴负半轴上,B (0,-4),点E (-6,4)在射线BA 上,(1) 求证:点A 为BE 的中点(2) 在y 轴正半轴上有一点F, 使 ∠FEA=45°,求点F 的坐标.(3) 如图,点M 、N 分别在x 轴正半轴、y 轴正半轴上,MN=NB=MA ,点I 为△MON 的内角平分线的交点,AI 、BI 分别交y 轴正半轴、x 轴正半轴于P 、Q 两点, IH⊥ON 于H, 记△POQ 的周长为C△POQ.求证:C△POQ =2 HI.【答案】(1)证明见解析;(2)22(0,)7F ;(3)证明见解析. 【解析】 试题分析:(1)过E 点作EG ⊥x 轴于G ,根据B 、E 点的坐标,可证明△AEG ≌△ABO ,从而根据全等三角形的性质得证;(2)过A 作AD⊥AE 交EF 延长线于D ,过D 作DK ⊥x 轴于K ,然后根据全等三角形的判定得到△AEG ≌△DAK ,进而求出D 点的坐标,然后设F 坐标为(0,y ),根据S 梯形EGKD =S 梯形EGOF +S 梯形FOKD 可求出F 的坐标;(3)连接MI 、NI ,根据全等三角形的判定SAS 证得△MIN ≌△MIA ,从而得到∠MIN=∠MIA 和∠MIN=∠NIB ,由角平分线的性质,求得∠AIB=135°×3-360°=45°再连接OI ,作IS⊥OM 于S, 再次证明△HIP ≌△SIC 和△QIP ≌△QIC ,得到C △POQ 周长.试题解析:(1)过E 点作EG⊥x 轴于G ,∵B (0,-4),E (-6,4),∴OB=EG=4,在△AEG 和△ABO 中,∵90EGA BOAEAG BAOEG BO∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AEG≌△ABO(AAS),∴AE=AB∴A为BE中点(2)过A作AD⊥AE交EF延长线于D,过D作DK⊥x轴于K,∵∠FEA=45°,∴AE=AD,∴可证△AEG≌△DAK,∴D(1,3),设F(0,y),∵S梯形EGKD=S梯形EGOF+S梯形FOKD,∴()()() 111347463222y y +⨯=+⨯++∴227y=∴220,7F⎛⎫⎪⎝⎭(3)连接MI、NI∵I 为△MON 内角平分线交点,∴NI 平分∠MNO,MI 平分∠OMN,在△MIN 和△MIA 中,∵MN MA NMI AMI MI MI =⎧⎪∠=∠⎨⎪=⎩∴△MIN ≌△MIA (SAS ),∴∠MIN=∠MIA ,同理可得∠MIN=∠NIB,∵NI 平分∠MNO,MI 平分∠OMN,∠MON=90°,∴∠MIN=135°∴∠MIN=∠MIA =∠NIB=135°,∴∠AIB=135°×3-360°=45°,连接OI ,作IS⊥OM 于S, ∵IH⊥ON,OI 平分∠MON,∴IH=IS=OH=OS ,∠HIS=90°,∠HIP+∠QIS=45°,在SM 上截取SC=HP ,可证△HIP≌△SIC,∴IP=IC,∠HIP=∠SIC ,∴∠QIC=45°,可证△QIP≌△QIC,∴PQ=QC=QS+HP ,∴C △POQ =OP+PQ+OQ=OP+PH+OQ+OS=OH+OS=2HI.2.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E与点A重合时,请说明线段BF DC=;②如图2,若点E不与点A重合,请说明BF DC AE=+;()2当点E在线段DA的延长线上()DE DB>时,用等式表示线段,,AE BF CD之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF=AE-CD【解析】【分析】(1)①根据等边对等角,求到B C∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC∠=∠=︒,推出ABF ACD∆∆≌,根据全等三角形的性质即可得出结论;②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG ,再推出AE=GF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC=B C∴∠=∠,60DF DE ADB=∠=︒,且E与A重合,ADF∴∆是等边三角形60ADF AFD∴∠=∠=︒120AFB ADC∴∠=∠=︒在ABF∆和ACD∆中AFB ADCB CAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD∴∆∆≌BF DC∴=②如图2,过点A做AG∥EF交BC于点G,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF,DC=BG,∴+=+==BF CD BF BG GF AE=-.故BF AE CD【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.3.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。
安徽省宿州市十三所重点中学2015-2016学年八年级(下)期中数学试卷(解析版)一、选择题(共10小题,每小题3分,满分30分)1.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A. B.C.D.2.以下各组数为三角形的三条边长,其中能作成直角三角形的是()A.2,,4 B.4,5,6 C.2,3,4 D.1,,3.若a<b,则下列各式中一定成立的是()A.a﹣1<b﹣1 B.>C.﹣a<﹣b D.ac<bc4.如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.40°B.45°C.50°D.55°5.要使代数式有意义,则x的取值范围是()A.x≥2 B.x≥﹣2 C.x≤﹣2 D.x≤26.如图,△ABC中,∠C=90°,AC=2.5,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3 B.3.5 C.4.8 D.5.27.已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是70cm和48cm,则△ABC的腰和底边长分别为()A.24cm和22cm B.26cm和18cm C.22cm和26cm D.23cm和24cm8.轮船从B处以每小时25海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行1小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处于灯塔A的距离是()海里.A.25B.25C.25 D.509.如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1 B.2 C.3 D.410.如图所示,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a为常数,且a≠0)相交于点P,则不等式kx+b>ax的解集是()A.x>1 B.x<1 C.x>2 D.x<2二、填空题(本大题共有6小题,每小题3分,共18分)11.如图,△ABC沿BC方向平移到△DEF的位置,若BE=2cm,则CF=.12.若点P(m﹣3,m+1)在第二象限,则m的取值范围是.13.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB 于M,交AC于N,若BM+CN=10,则线段MN的长为.14.如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为.15.我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记﹣5分.小明参加本次竞赛得分要超过100分,他至少要答对道题.16.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n 的解集为.三、解答题(共52分)17.解不等式(组):(1)5x﹣6≤2(x+3);(2).18.在边长为1个单位长度的小正方形组成的网格中,点A、B、C、O都是格点.(1)将△ABC向左平移6个单位得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.19.已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC 的平分线上.20.把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.21.(10分)(2013•东营)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.22.(10分)(2013•沈阳)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.2015-2016学年安徽省宿州市十三所重点中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解.【解答】解:A、是轴对称图形,不是中心对称图形,故A选项不符合题意;B、是轴对称图形,也是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不符合题意;D、是轴对称图形,不是中心对称图形,故D选项不符合题意.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.2.以下各组数为三角形的三条边长,其中能作成直角三角形的是()A.2,,4 B.4,5,6 C.2,3,4 D.1,,【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、∵22+()2=6≠42,故此选项错误;B、∵42+52=41≠62,故此选项错误;C、∵22+32=13≠42,故此选项错误;D、∵12+()2=3=()2,故此选项正确.故选D.【点评】本题考查直角三角形的判定,利用勾股定理的逆定理是解答此题的关键.3.若a<b,则下列各式中一定成立的是()A.a﹣1<b﹣1 B.>C.﹣a<﹣b D.ac<bc【考点】不等式的性质.【分析】根据不等式的性质分析判断.【解答】解:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方向不变.A、a﹣1<b﹣1,故A选项是正确的;B、a>b,不成立,故B选项是错误的;C、a>﹣b,不一定成立,故C选项是错误的;D、c的值不确定,故D选项是错误的.故选A.【点评】主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.40°B.45°C.50°D.55°【考点】旋转的性质.【分析】根据旋转的性质可知,旋转角等于60°,从而可以得到∠BOB′的度数,由∠AOB=15°可以得到∠AOB′的度数.【解答】解:∵△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,∴∠BOB′=60°.∵∠AOB=15°,∴∠AOB′=∠BOB′﹣∠AOB=60°﹣15°=45°.故选B.【点评】本题考查旋转的性质,解题的关键明确旋转角是什么,对应边旋转前后的夹角是旋转角.5.要使代数式有意义,则x的取值范围是()A.x≥2 B.x≥﹣2 C.x≤﹣2 D.x≤2【考点】二次根式有意义的条件.【分析】二次根式的被开方数x﹣2是非负数.【解答】解:根据题意,得x﹣2≥0,解得,x≥2;故选:A.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.6.如图,△ABC中,∠C=90°,AC=2.5,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3 B.3.5 C.4.8 D.5.2【考点】含30度角的直角三角形.【分析】利用垂线段最短分析AP最小不能小于2.5;利用含30度角的直角三角形的性质得出AB=5,可知AP最大不能大于5.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=2.5,∠B=30°,∴AB=5,∴AP的长不能大于5,故选D.【点评】本题主要考查了垂线段最短和的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=5.7.已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是70cm和48cm,则△ABC的腰和底边长分别为()A.24cm和22cm B.26cm和18cm C.22cm和26cm D.23cm和24cm【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,然后求出△DBC的周长=AC+BC,再根据两个三角形的周长求出AB,然后BC的值即可.【解答】解:∵AB的垂直平分线交AC于D,∴AD=BD,∴△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵△ABC和△DBC的周长分别是70cm和48cm,∴AB=70﹣48=22cm,∴BC=48﹣22=26cm,即△ABC的腰和底边长分别为22cm和26cm.故选:C.【点评】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等、三角形的周长公式,熟记性质并准确识图是解题的关键.8.轮船从B处以每小时25海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行1小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处于灯塔A的距离是()海里.A.25B.25C.25 D.50【考点】解直角三角形的应用-方向角问题.【分析】根据题意求出BC的长和∠ABC=45°,根据等腰直角三角形的性质解答即可.【解答】解:由题意得,BC=25×1=25海里,∠DBC=30°,∠DBA=75°,则∠ABC=45°,∠BCE=30°,∴∠ACB=90°,∴CA=CB=25海里.故选:B.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确标注方向角、掌握等腰直角三角形的性质是解题的关键.9.如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1 B.2 C.3 D.4【考点】直角三角形全等的判定;全等三角形的性质.【分析】本题可先根据AAS判定△AEH≌△CEB,可得出AE=CE,从而得出CH=CE﹣EH=4﹣3=1.【解答】解:在△ABC中,AD⊥BC,CE⊥AB,∴∠AEH=∠ADB=90°;∵∠EAH+∠AHE=90°,∠DHC+∠BCH=90°,∵∠EHA=∠DHC(对顶角相等),∴∠EAH=∠DCH(等量代换);∵在△BCE和△HAE中,∴△AEH≌△CEB(AAS);∴AE=CE;∵EH=EB=3,AE=4,∴CH=CE﹣EH=AE﹣EH=4﹣3=1.故选A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA,AAS、HL,要熟练掌握并灵活应用这些方法.10.如图所示,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a为常数,且a≠0)相交于点P,则不等式kx+b>ax的解集是()A.x>1 B.x<1 C.x>2 D.x<2【考点】一次函数与一元一次不等式.【分析】根据图象求出P的坐标,根据图象可以看出当x<2时,一次函数y=kx+b的图象在y=ax的上方,即可得出答案.【解答】解:由图象可知:P的坐标是(2,1),当x<2时,一次函数y=kx+b的图象在y=ax的上方,即kx+b>ax,故选D.【点评】本题主要考查对一次函数与一元一次不等式的理解和掌握,能根据图象得出当x<2时kx+b>ax是解此题的关键.二、填空题(本大题共有6小题,每小题3分,共18分)11.如图,△ABC沿BC方向平移到△DEF的位置,若BE=2cm,则CF=2cm.【考点】平移的性质.【分析】根据平移的性质可得BC=EF,然后求出BE=CF.【解答】解:∵△ABC沿BC方向平移得到△DEF,∴BC=EF,∴BC﹣EC=EF﹣EC,即BE=CF,∵BE=2cm,∴CF=2cm.故答案为:2.【点评】本题考查了平移的性质,主要利用了平移对应点所连的线段平行且相等.12.若点P(m﹣3,m+1)在第二象限,则m的取值范围是﹣1<m<3.【考点】点的坐标.【分析】让点P的横坐标小于0,纵坐标大于0列式求值即可.【解答】解:∵点P(m﹣3,m+1)在第二象限,∴m﹣3<0,m+1>0,解得:﹣1<m<3.故填:﹣1<m<3.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).13.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB 于M,交AC于N,若BM+CN=10,则线段MN的长为10.【考点】等腰三角形的判定与性质;平行线的性质.【分析】先根据平行线的性质,得出∠MEB=∠CBE,∠NEC=∠BCE,再根据∠ABC和∠ACB的平分线交于点E,得出∠MBE=∠EBC,∠NCE=∠BCE,最后根据ME=MB,NE=NC,求得MN的长即可.【解答】解:∵MN∥BC∴∠MEB=∠CBE,∠NEC=∠BCE∵在△ABC中,∠ABC和∠ACB的平分线交于点E,∴∠MBE=∠EBC,∠NCE=∠BCE∴∠MEB=∠MBE,∠NEC=∠NCE∴ME=MB,NE=NC∴MN=ME+NE=BM+CN=10故答案为:10【点评】本题主要考查了平行线的性质以及等腰三角形的判定,解题时注意:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.14.如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为3.【考点】旋转的性质;等边三角形的判定与性质.【分析】首先,利用等边三角形的性质求得AD=3;然后根据旋转的性质、等边三角形的性质推知△ADE为等边三角形,则DE=AD.【解答】解:如图,∵在等边△ABC中,∠B=60°,AB=6,D是BC的中点,∴AD⊥BD,∠BAD=∠CAD=30°,∴AD=ABcos30°=6×=3.根据旋转的性质知,∠EAC=∠DAB=30°,AD=AE,∴∠DAE=∠EAC+∠CAD=60°,∴△ADE的等边三角形,∴DE=AD=3,即线段DE的长度为3.故答案为:3.【点评】本题考查了旋转的性质、等边三角形的性质.旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.15.我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记﹣5分.小明参加本次竞赛得分要超过100分,他至少要答对14道题.【考点】一元一次不等式的应用.【分析】竞赛得分=10×答对的题数+(﹣5)×未答对(不答)的题数,根据本次竞赛得分要超过100分,列出不等式求解即可.【解答】解:设要答对x道.10x+(﹣5)×(20﹣x)>100,10x﹣100+5x>100,15x>200,解得x>.故答案为:14.【点评】考查一元一次不等式的应用,得到得分的关系式是解决本题的关键.16.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n 的解集为x≥1.【考点】一次函数与一元一次不等式.【分析】首先把P(a,2)坐标代入直线y=x+1,求出a的值,从而得到P点坐标,再根据函数图象可得答案.【解答】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,当x≥1时,x+1≥mx+n,故答案为:x≥1.【点评】此题主要考查了一次函数与一元一次不等式,关键是求出两函数图象的交点坐标,根据函数图象可得答案.三、解答题(共52分)17.解不等式(组):(1)5x﹣6≤2(x+3);(2).【考点】解一元一次不等式组;解一元一次不等式.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)去括号得:5x﹣6≤2x+6,移项,得:5x﹣2x≤6+6,合并同类项,得:3x≤12,系数化为1,得:x≤4;(2)解不等式3+x≤2(x﹣2)+7,得:x≥0,解不等式5x﹣1<3(x+1),得:x<2,故不等式组的解集为:0≤x<2.【点评】本题考查的是解一元一次不等式、不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.在边长为1个单位长度的小正方形组成的网格中,点A、B、C、O都是格点.(1)将△ABC向左平移6个单位得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.【考点】作图-旋转变换;作图-平移变换.【分析】(1)把A、B、C三点分别向左平移6个单位长度,即可得到三个顶点的对应点,然后顺次连接三点即可;(2)连接AO并延长,然后截取OA2=OA,则A2就是A的对应点,同样可以作出B、C的对应点,然后顺次连接即可.【解答】解:(1)所作图形如图所示;(2)所作图形如图所示.【点评】本题考查了利用平移变换和旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.19.已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC 的平分线上.【考点】角平分线的性质;全等三角形的判定与性质.【分析】首先根据已知条件易证△BDE≌△CDF(AAS),则DE=DF,再由角平分线性质的逆定理可得D在∠BAC的平分线上.【解答】证明:在△BDE和△CDF中,∵,∴△BDE≌△CDF(AAS),∴DE=DF,又∵CE⊥AB,BF⊥AC,∴D在∠BAC的平分线上.【点评】此题主要考查角平分线性质的逆定理,首先证明Rt△BDE≌Rt△CDF,是关键.20.把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.【考点】正方形的性质;全等三角形的判定与性质.【分析】要证明HG与HB是否相等,可以把线段放在两个三角形中证明这两个三角形全等,或放在一个三角形中证明这个三角形是等腰三角形,而图中没有这样的三角形,因此需要作辅助线,构造三角形.【解答】证明:HG=HB,证法1:连接AH,∵四边形ABCD,AEFG都是正方形,∴∠B=∠G=90°,由题意知AG=AB,又AH=AH,∴Rt△AGH≌Rt△ABH(HL),∴HG=HB.证法2:连接GB,∵四边形ABCD,AEFG都是正方形,∴∠ABC=∠AGF=90°,由题意知AB=AG,∴∠AGB=∠ABG,∴∠HGB=∠HBG,∴HG=HB.【点评】解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.21.(10分)(2013•东营)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)先设每台电脑x万元,每台电子白板y万元,根据购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元列出方程组,求出x,y的值即可;(2)先设需购进电脑a台,则购进电子白板(30﹣a)台,根据需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元列出不等式组,求出a的取值范围,再根据a只能取整数,得出购买方案,再根据每台电脑的价格和每台电子白板的价格,算出总费用,再进行比较,即可得出最省钱的方案.【解答】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得:,答:每台电脑0.5万元,每台电子白板1.5万元;(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,解得:15≤a≤17,∵a只能取整数,∴a=15,16,17,∴有三种购买方案,方案1:需购进电脑15台,则购进电子白板15台,方案2:需购进电脑16台,则购进电子白板14台,方案3:需购进电脑17台,则购进电子白板13台,方案1:15×0.5+1.5×15=30(万元),方案2:16×0.5+1.5×14=29(万元),方案3:17×0.5+1.5×13=28(万元),∵28<29<30,∴选择方案3最省钱,即购买电脑17台,电子白板13台最省钱.【点评】本题考查了二元一次方程组和一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组和一元一次不等式组,注意a只能取整数.22.(10分)(2013•沈阳)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.【考点】全等三角形的判定与性质;勾股定理.【分析】(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AE,从而得证;(2)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.【解答】(1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,,∴△ADC≌△BDF(ASA),∴BF=AC,∵AB=BC,BE⊥AC,∴AC=2AE,∴BF=2AE;(2)解:∵△ADC≌△BDF,∴DF=CD=,在Rt△CDF中,CF===2,∵BE⊥AC,AE=EC,∴AF=CF=2,∴AD=AF+DF=2+.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质,勾股定理的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.。
安徽省宿州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共8分)1. (1分)(2017·重庆) 下列图形中是轴对称图形的是()A .B .C .D .2. (1分) (2019八下·呼兰期末) 下列各组数据中,能做为直角三角形三边长的是()。
A . 1、2、3B . 3、5、7C . 32 , 42 , 52D . 5、12、133. (1分) (2020七下·莲湖期末) 如图,是的角平分线,,垂足为,,,,则的面积为()A . 4B . 6C . 8D . 104. (1分)估计×+的运算结果应在()A . 6到7之间B . 7到8之间C . 8到9之间D . 9到10之间5. (1分) (2019八上·遵义月考) 下列判断正确的个数是()①两个正三角形一定是全等图形;②三角形的一个外角一定大于与它不相邻的一个内角;③三角形的三条高一定交于同一点;④两边和一角对应相等的两个三角形全等.A . 3个B . 2个C . 1个D . 0个6. (1分) (2019八上·牡丹期中) 下列运算中错误的有()个① =4 ② =﹣5 ③﹣=﹣3 ④ =±7⑤ =﹣5A . 4B . 3C . 2D . 17. (1分)(2017·深圳模拟) 如图,在已知的∆ABC中,按以下步骤作图:①分别以B,C为圆心,以大于 BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A . 90°B . 95°C . 100°D . 105°8. (1分) (2018八上·卫辉期末) 如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是()A . 30B . 50C . 60D . 65二、填空题 (共8题;共8分)9. (1分) (2018八上·合浦期末) 如图①是的小方格构成的正方形,若将其中的两个小方格涂黑,使得涂黑后的整个图案(含阴影)是轴对称图形,且规定沿正方形对称轴翻折能重合的图案都视为同一种,比如图②中四幅图就视为同一种,则得到不同的图案共有________种.10. (1分)(2020·北京模拟) 在中,将、按如图所示方式折叠,点、均落于边上一点处,线段、为折痕.若,则 ________ .11. (1分)(2019·临海模拟) 如图,在一张直径为20cm的半圆形纸片上,剪去一个最大的等腰直角三角形,剩余部分恰好组成一片树叶图案,则这片树叶的面积是________cm2.12. (1分) (2019八下·郑州期末) 如图,口ABCD中,对角线AC、BD交于点O,OE⊥AC交AB于点E,已知△BCE 的周长为14,则口ABCD的周长为________.13. (1分)(2017·郑州模拟) 计算:(π﹣1)0+ =________.14. (1分) (2019八上·保山期中) 如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为________.15. (1分)(2017·河南模拟) 如图,△ABC中,AB= ,AC=5,tanA=2,D是BC中点,点P是AC上一个动点,将△BPD沿PD折叠,折叠后的三角形与△PBC的重合部分面积恰好等于△BPD面积的一半,则AP的长为________.16. (1分) (2018九上·长宁期末) 如图,在Rt ABC中,∠BAC=90°,点G是重心,联结AG,过点G作DG//BC,DG交AB于点D,若AB=6,BC=9,则 ADG的周长等于________.三、解答题 (共9题;共19分)17. (2分) (2019八上·东台期中) 求出下列x的值(1) x2=4(2) 2(x+1)3= -1618. (3分)(2020·安徽) 如图1,在由边长为个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段,线段在网格线上,(1)画出线段关于线段所在直线对称的线段 (点分别为的对应点);(2)将线段,绕点,顺时针旋转得到线段,画出线段.19. (2分)(2014·盐城) 【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC 中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.(1) .小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.(2) .【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;(3) .【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF 上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;(4) .【迁移拓展】图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2 dm,AD=3dm,BD= dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.20. (1分) (2017八下·弥勒期末) 如图所示,在四边形ABCD中,∠A=90°,AB=3,AD=4,BC=13,CD=12,求四边形ABCD的面积.21. (2分) (2019八上·柘城月考) 如图,在△ABC中,∠BAC是钝角,完成下列画图.(不写作法保留作图痕迹)①△ABC的角平分线AD;②AC边上的中线BE;③AC边上的高BF.22. (2分) (2018八上·慈溪期中) 葛藤是一种刁钻的植物,它自己腰杆不硬,为了争夺雨露阳光,常常饶着树干盘旋而上,它还有一手绝招,就是它绕树盘上升的路线,总是沿着最短路线——盘旋前进的。
安徽省宿州市十三所重点中学2015-2016学年八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A. B.C.D.2.以下各组数为三角形的三条边长,其中能作成直角三角形的是()A.2,,4 B.4,5,6 C.2,3,4 D.1,,3.若a<b,则下列各式中一定成立的是()A.a﹣1<b﹣1 B.>C.﹣a<﹣b D.ac<bc4.如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.40° B.45° C.50° D.55°5.要使代数式有意义,则x的取值范围是()A.x≥2 B.x≥﹣2 C.x≤﹣2 D.x≤26.如图,△ABC中,∠C=90°,AC=2.5,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3 B.3.5 C.4.8 D.5.27.已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是70cm 和48cm,则△ABC的腰和底边长分别为()A.24cm和22cm B.26cm和18cm C.22cm和26cm D.23cm和24cm8.轮船从B处以每小时25海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行1小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处于灯塔A的距离是()海里.A.25B.25C.25 D.509.如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1 B.2 C.3 D.410.如图所示,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a为常数,且a≠0)相交于点P,则不等式kx+b>ax的解集是()A.x>1 B.x<1 C.x>2 D.x<2二、填空题(本大题共有6小题,每小题3分,共18分)11.如图,△ABC沿BC方向平移到△DEF的位置,若BE=2cm,则CF= .12.若点P(m﹣3,m+1)在第二象限,则m的取值范围是.13.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=10,则线段MN的长为.14.如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为.15.我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记﹣5分.小明参加本次竞赛得分要超过100分,他至少要答对道题.16.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n 的解集为.三、解答题(共52分)17.解不等式(组):(1)5x﹣6≤2(x+3);(2).18.在边长为1个单位长度的小正方形组成的网格中,点A、B、C、O都是格点.(1)将△ABC向左平移6个单位得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.19.已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC的平分线上.20.把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.21.(10分)(2013•东营)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.22.(10分)(2013•沈阳)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.2015-2016学年安徽省宿州市十三所重点中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解.【解答】解:A、是轴对称图形,不是中心对称图形,故A选项不符合题意;B、是轴对称图形,也是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不符合题意;D、是轴对称图形,不是中心对称图形,故D选项不符合题意.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.2.以下各组数为三角形的三条边长,其中能作成直角三角形的是()A.2,,4 B.4,5,6 C.2,3,4 D.1,,【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、∵22+()2=6≠42,故此选项错误;B、∵42+52=41≠62,故此选项错误;C、∵22+32=13≠42,故此选项错误;D、∵12+()2=3=()2,故此选项正确.故选D.【点评】本题考查直角三角形的判定,利用勾股定理的逆定理是解答此题的关键.3.若a<b,则下列各式中一定成立的是()A.a﹣1<b﹣1 B.>C.﹣a<﹣b D.ac<bc【考点】不等式的性质.【分析】根据不等式的性质分析判断.【解答】解:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方向不变.A、a﹣1<b﹣1,故A选项是正确的;B、a>b,不成立,故B选项是错误的;C、a>﹣b,不一定成立,故C选项是错误的;D、c的值不确定,故D选项是错误的.故选A.【点评】主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.40° B.45° C.50° D.55°【考点】旋转的性质.【分析】根据旋转的性质可知,旋转角等于60°,从而可以得到∠BOB′的度数,由∠AOB=15°可以得到∠AOB′的度数.【解答】解:∵△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,∴∠BOB′=60°.∵∠AOB=15°,∴∠AOB′=∠BOB′﹣∠AOB=60°﹣15°=45°.故选B.【点评】本题考查旋转的性质,解题的关键明确旋转角是什么,对应边旋转前后的夹角是旋转角.5.要使代数式有意义,则x的取值范围是()A.x≥2 B.x≥﹣2 C.x≤﹣2 D.x≤2【考点】二次根式有意义的条件.【分析】二次根式的被开方数x﹣2是非负数.【解答】解:根据题意,得x﹣2≥0,解得,x≥2;故选:A.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.6.如图,△ABC中,∠C=90°,AC=2.5,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3 B.3.5 C.4.8 D.5.2【考点】含30度角的直角三角形.【分析】利用垂线段最短分析AP最小不能小于2.5;利用含30度角的直角三角形的性质得出AB=5,可知AP最大不能大于5.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=2.5,∠B=30°,∴AB=5,∴AP的长不能大于5,故选D.【点评】本题主要考查了垂线段最短和的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=5.7.已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是70cm 和48cm,则△ABC的腰和底边长分别为()A.24cm和22cm B.26cm和18cm C.22cm和26cm D.23cm和24cm【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,然后求出△DBC 的周长=AC+BC,再根据两个三角形的周长求出AB,然后BC的值即可.【解答】解:∵AB的垂直平分线交AC于D,∴AD=BD,∴△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵△ABC和△DBC的周长分别是70cm和48cm,∴AB=70﹣48=22cm,∴BC=48﹣22=26cm,即△ABC的腰和底边长分别为22cm和26cm.故选:C.【点评】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等、三角形的周长公式,熟记性质并准确识图是解题的关键.8.轮船从B处以每小时25海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行1小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处于灯塔A的距离是()海里.A.25B.25C.25 D.50【考点】解直角三角形的应用-方向角问题.【分析】根据题意求出BC的长和∠ABC=45°,根据等腰直角三角形的性质解答即可.【解答】解:由题意得,BC=25×1=25海里,∠DBC=30°,∠DBA=75°,则∠ABC=45°,∠BCE=30°,∴∠ACB=90°,∴CA=CB=25海里.故选:B.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确标注方向角、掌握等腰直角三角形的性质是解题的关键.9.如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1 B.2 C.3 D.4【考点】直角三角形全等的判定;全等三角形的性质.【分析】本题可先根据AAS判定△AEH≌△CEB,可得出AE=CE,从而得出CH=CE﹣EH=4﹣3=1.【解答】解:在△ABC中,AD⊥BC,CE⊥AB,∴∠AEH=∠ADB=90°;∵∠EAH+∠AHE=90°,∠DHC+∠BCH=90°,∵∠EHA=∠DHC(对顶角相等),∴∠EAH=∠DCH(等量代换);∵在△BCE和△HAE中,∴△AEH≌△CEB(AAS);∴AE=CE;∵EH=EB=3,AE=4,∴CH=CE﹣EH=AE﹣EH=4﹣3=1.故选A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA,AAS、HL,要熟练掌握并灵活应用这些方法.10.如图所示,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a为常数,且a≠0)相交于点P,则不等式kx+b>ax的解集是()A.x>1 B.x<1 C.x>2 D.x<2【考点】一次函数与一元一次不等式.【分析】根据图象求出P的坐标,根据图象可以看出当x<2时,一次函数y=kx+b的图象在y=ax的上方,即可得出答案.【解答】解:由图象可知:P的坐标是(2,1),当x<2时,一次函数y=kx+b的图象在y=ax的上方,即kx+b>ax,故选D.【点评】本题主要考查对一次函数与一元一次不等式的理解和掌握,能根据图象得出当x<2时kx+b>ax是解此题的关键.二、填空题(本大题共有6小题,每小题3分,共18分)11.如图,△ABC沿BC方向平移到△DEF的位置,若BE=2cm,则CF= 2cm .【考点】平移的性质.【分析】根据平移的性质可得BC=EF,然后求出BE=CF.【解答】解:∵△ABC沿BC方向平移得到△DEF,∴BC=EF,∴BC﹣EC=EF﹣EC,即BE=CF,∵BE=2cm,∴CF=2cm.故答案为:2.【点评】本题考查了平移的性质,主要利用了平移对应点所连的线段平行且相等.12.若点P(m﹣3,m+1)在第二象限,则m的取值范围是﹣1<m<3 .【考点】点的坐标.【分析】让点P的横坐标小于0,纵坐标大于0列式求值即可.【解答】解:∵点P(m﹣3,m+1)在第二象限,∴m﹣3<0,m+1>0,解得:﹣1<m<3.故填:﹣1<m<3.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).13.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=10,则线段MN的长为10 .【考点】等腰三角形的判定与性质;平行线的性质.【分析】先根据平行线的性质,得出∠MEB=∠CBE,∠NEC=∠BCE,再根据∠ABC和∠ACB的平分线交于点E,得出∠MBE=∠EBC,∠NCE=∠BCE,最后根据ME=MB,NE=NC,求得MN的长即可.【解答】解:∵MN∥BC∴∠MEB=∠CBE,∠NEC=∠BCE∵在△ABC中,∠ABC和∠ACB的平分线交于点E,∴∠MBE=∠EBC,∠NCE=∠BCE∴∠MEB=∠MBE,∠NEC=∠NCE∴ME=MB,NE=NC∴MN=ME+NE=BM+CN=10故答案为:10【点评】本题主要考查了平行线的性质以及等腰三角形的判定,解题时注意:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.14.如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为3.【考点】旋转的性质;等边三角形的判定与性质.【分析】首先,利用等边三角形的性质求得AD=3;然后根据旋转的性质、等边三角形的性质推知△ADE为等边三角形,则DE=AD.【解答】解:如图,∵在等边△ABC中,∠B=60°,AB=6,D是BC的中点,∴AD⊥BD,∠BAD=∠CAD=30°,∴AD=ABcos30°=6×=3.根据旋转的性质知,∠EAC=∠DAB=30°,AD=AE,∴∠DAE=∠EAC+∠CAD=60°,∴△ADE的等边三角形,∴DE=AD=3,即线段DE的长度为3.故答案为:3.【点评】本题考查了旋转的性质、等边三角形的性质.旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.15.我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记﹣5分.小明参加本次竞赛得分要超过100分,他至少要答对14 道题.【考点】一元一次不等式的应用.【分析】竞赛得分=10×答对的题数+(﹣5)×未答对(不答)的题数,根据本次竞赛得分要超过100分,列出不等式求解即可.【解答】解:设要答对x道.10x+(﹣5)×(20﹣x)>100,10x﹣100+5x>100,15x>200,解得x>.故答案为:14.【点评】考查一元一次不等式的应用,得到得分的关系式是解决本题的关键.16.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n 的解集为x≥1 .【考点】一次函数与一元一次不等式.【分析】首先把P(a,2)坐标代入直线y=x+1,求出a的值,从而得到P点坐标,再根据函数图象可得答案.【解答】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,当x≥1时,x+1≥mx+n,故答案为:x≥1.【点评】此题主要考查了一次函数与一元一次不等式,关键是求出两函数图象的交点坐标,根据函数图象可得答案.三、解答题(共52分)17.解不等式(组):(1)5x﹣6≤2(x+3);(2).【考点】解一元一次不等式组;解一元一次不等式.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)去括号得:5x﹣6≤2x+6,移项,得:5x﹣2x≤6+6,合并同类项,得:3x≤12,系数化为1,得:x≤4;(2)解不等式3+x≤2(x﹣2)+7,得:x≥0,解不等式5x﹣1<3(x+1),得:x<2,故不等式组的解集为:0≤x<2.【点评】本题考查的是解一元一次不等式、不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.在边长为1个单位长度的小正方形组成的网格中,点A、B、C、O都是格点.(1)将△ABC向左平移6个单位得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.【考点】作图-旋转变换;作图-平移变换.【分析】(1)把A、B、C三点分别向左平移6个单位长度,即可得到三个顶点的对应点,然后顺次连接三点即可;(2)连接AO并延长,然后截取OA2=OA,则A2就是A的对应点,同样可以作出B、C的对应点,然后顺次连接即可.【解答】解:(1)所作图形如图所示;(2)所作图形如图所示.【点评】本题考查了利用平移变换和旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.19.已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC的平分线上.【考点】角平分线的性质;全等三角形的判定与性质.【分析】首先根据已知条件易证△BDE≌△CDF(AAS),则DE=DF,再由角平分线性质的逆定理可得D在∠BAC的平分线上.【解答】证明:在△BDE和△CDF中,∵,∴△BDE≌△CDF(AAS),∴DE=DF,又∵CE⊥AB,BF⊥AC,∴D在∠BAC的平分线上.【点评】此题主要考查角平分线性质的逆定理,首先证明Rt△BDE≌Rt△CDF,是关键.20.把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.【考点】正方形的性质;全等三角形的判定与性质.【分析】要证明HG与HB是否相等,可以把线段放在两个三角形中证明这两个三角形全等,或放在一个三角形中证明这个三角形是等腰三角形,而图中没有这样的三角形,因此需要作辅助线,构造三角形.【解答】证明:HG=HB,证法1:连接AH,∵四边形ABCD,AEFG都是正方形,∴∠B=∠G=90°,由题意知AG=AB,又AH=AH,∴Rt△AGH≌Rt△ABH(HL),∴HG=HB.证法2:连接GB,∵四边形ABCD,AEFG都是正方形,∴∠ABC=∠AGF=90°,由题意知AB=AG,∴∠AGB=∠ABG,∴∠HGB=∠HBG,∴HG=HB.【点评】解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.21.(10分)(2013•东营)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)先设每台电脑x万元,每台电子白板y万元,根据购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元列出方程组,求出x,y的值即可;(2)先设需购进电脑a台,则购进电子白板(30﹣a)台,根据需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元列出不等式组,求出a的取值范围,再根据a只能取整数,得出购买方案,再根据每台电脑的价格和每台电子白板的价格,算出总费用,再进行比较,即可得出最省钱的方案.【解答】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得:,答:每台电脑0.5万元,每台电子白板1.5万元;(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,解得:15≤a≤17,∵a只能取整数,∴a=15,16,17,∴有三种购买方案,方案1:需购进电脑15台,则购进电子白板15台,方案2:需购进电脑16台,则购进电子白板14台,方案3:需购进电脑17台,则购进电子白板13台,方案1:15×0.5+1.5×15=30(万元),方案2:16×0.5+1.5×14=29(万元),方案3:17×0.5+1.5×13=28(万元),∵28<29<30,∴选择方案3最省钱,即购买电脑17台,电子白板13台最省钱.【点评】本题考查了二元一次方程组和一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组和一元一次不等式组,注意a只能取整数.22.(10分)(2013•沈阳)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.【考点】全等三角形的判定与性质;勾股定理.【分析】(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AE,从而得证;(2)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.【解答】(1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,,∴△ADC≌△BDF(ASA),∴BF=AC,∵AB=BC,BE⊥AC,∴AC=2AE,∴BF=2AE;(2)解:∵△ADC≌△BDF,∴DF=CD=,在Rt△CDF中,CF===2,∵BE⊥AC,AE=EC,∴AF=CF=2,∴AD=AF+DF=2+.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质,勾股定理的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.。
安徽省宿州市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020八上·河南月考) 如图,数轴上点A所表示的实数是().A .B .C .D . 22. (2分)下列等式正确的是()A .B .C .D .3. (2分)下列说法,正确的是()A . 在△ABC中,,则有b2=3a2B . 0.125的立方根是±0.5C . 无限小数是无理数,无理数也是无限小数D . 一个无理数和一个有理数之积为无理数4. (2分)下列说法中,正确的有()①长方体、直六棱柱、圆锥都是多面体;②腰相等的两个等腰三角形全等;③有一边及一锐角对应相等的两个直角三角形全等;④两直角边长为8和15的直角三角形,斜边上的中线长9;⑤三角之比为3:4:5的三角形是直角三角形A . 0个B . 1个C . 2个D . 3个5. (2分)若,且a、b是两个连续整数,则a+b的值是()A . 1B . 2C . 3D . 46. (2分) (2017八下·林州期末) 在△ABC中,∠A、∠B、∠C所对的边分别是a、b、c,在下列关系中,不属于直角三角形的是()A . b2=a2﹣c2B . a:b:c=3:4:5C . ∠A﹣∠B=∠CD . ∠A:∠B:∠C=3:4:57. (2分) (2019八上·保定期中) 下列式子:① ;②;③ ;④ .其中y是x的函数的个数是()A . 1B . 2C . 3D . 48. (2分) (2017八上·丛台期末) 若点P(1,a)与Q(b,2)关于x轴对称,则代数式(a+b)2017的值为()A . ﹣1B . 1C . ﹣2D . 29. (2分)(2020·临沂) 如图,数轴上点A对应的数是,将点A沿数轴向左移动2个单位至点B,则点B对应的数是()A .B . -2C .D .10. (2分) (2020八上·临泽期中) 已知点(x1 , y1),(x2 , y2)都在直线上,且,则、大小关系是()A .B .C .D . 不能比较二、填空题 (共5题;共5分)11. (1分) (2019八上·临泽期中) 如图,有一个棱长为2cm的正方体,点P为中点,在A点的一只蚂蚁想吃到P点的食物,则它爬行的最短路程为________cm.12. (1分)已知函数y=(k+2)x+k2﹣4,当k________时,它是一次函数.13. (1分) (2017八上·临洮期中) 小刚画的一张脸,他对妹妹说:“如果我用(1,3)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成________.14. (1分) (2016八上·淮阴期末) 小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是________米/分钟.15. (1分) (2019八下·潍城期末) 如图,在平面直角坐标系中,已知,,是轴上的一条动线段,且,当取最小值时,点坐标为________.三、解答题 (共6题;共60分)16. (10分) (2015八下·金平期中) 阅读下面材料,回答问题:(1)在化简的过程中,小张和小李的化简结果不同;小张的化简如下: = = = ﹣小李的化简如下: = = = ﹣请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简.17. (5分)已知x2+y2+2x﹣6y+10=0,求x+y的值.18. (15分)已知直线AB分别交x、y轴于A(a,0)、B两点,C(c,4)为直线AB上且在第二象限内一点,若(1)如图1,求A、C点的坐标;(2)如图2,直线OM经过O点,过C作CM⊥OM于M,CN⊥y轴于点N,连MN,求式子的值;(3)如图3,过C作CN⊥y轴于点N,G为第一象限内一点,且∠NGO=45°,试探究GC、GN、GO之间的数量关系并说明理由.19. (5分)一艘轮船以20千米/时的速度离开港口向东北方向航行,另一艘轮船同时离开港口以15千米/时的速度向东南方向航行,它们离开港口2小时后相距多少千米?20. (10分) (2019八下·朝阳期中) 为迎接六·一儿童节的到来,某玩具厂每天生产A、B两种玩具共60件,这两种玩具每件的成本和售价如下表:成本(元/件)售价(元/件)A种玩具5070B种玩具3550设每天生产A种玩具件,每天获得的利润为元:(1)求与之间的函数关系式;(2)如果该玩具厂每天最多投入成本为2640元,那么每天生产多少件A种玩具时,所获得利润最大,并求出这个最大利润.21. (15分)(2017·郑州模拟) 近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A、B两种型号的空气净化器,两种净化器的销售相关信息见下表:A型销售数量(台)B型销售数量(台)总利润(元)51020001052500(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该公司销售完这100台空气净化器后的总利润最大,请你设计相应的进货方案;(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时,某长方体室内活动场地的总面积为200m2 ,室内墙高3m,该场地负责人计划购买5台空气净化器每天花费30分钟将室内就欧诺个气净化一新,若不考虑空气对流等因素,至少要购买A型空气净化器多少台?参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共5分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共6题;共60分)答案:16-1、答案:16-2、考点:解析:答案:17-1、考点:解析:答案:18-1、答案:18-2、答案:18-3、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:。
2015-2016学年安徽省宿州市十三校联考八年级(上)期中数学试卷一、选择题(本题共10小题,每小题3分,共30分,每小题有四个选项.其中有且只有一个是正确的,请将正确选项的字母代号填在下面的表格中)1.(3分)以下列各组数为边长,能够组成直角三角形的是()A.,,B.10,8,4 C.7,12,15 D.7,25,242.(3分)下列各数中是无理数的是()A.B.3.14 C.D.3.(3分)下列说法正确的是()A.8的平方根是±2B.﹣7是49的平方根C.立方根等于它本身的数只有0和1D.的算术平方根是94.(3分)估计的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间5.(3分)已知点P在第四象限,且P到x轴的距离为3,到y轴的距离为4,则P点的坐标为()A.(3,﹣4)B.(﹣3,4)C.(4,﹣3)D.(﹣4,3)6.(3分)在下列函数中,y随x增大而减小的是()A.y=2x+8 B.y=﹣2+8x C.y=﹣2x+8 D.y=2x﹣87.(3分)若等腰三角形中相等的两边的长为10cm,第三边长为16cm,则第三边的高为()A.12cm B.10cm C.8cm D.6cm8.(3分)在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,﹣1)、B(1,1),将线段AB平移后得到线段A′B′.若点A′的坐标为(﹣2,﹣2),则点B′的坐标是()A.(﹣5,0)B.(4,3) C.(﹣1,﹣2)D.(﹣2,﹣1)9.(3分)一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2 B.y=2 C.x=﹣1 D.y=﹣110.(3分)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.二、填空题(本题共5小题,每小题3分,共15分)11.(3分)的相反数是.12.(3分)在数轴上A、B两点表示的数分别是﹣、,则A、B两点间表示整数的点有个.13.(3分)若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为.14.(3分)已知Rt△两边的长分别是6、8,则第三边的长是.15.(3分)已知实数m,n满足(m+2)2+=0,则点P(m,n)和点Q(2m+2,n﹣2)关于轴对称.三、解答题(本题共小题,共75分)16.(15分)化简:(1)×﹣÷;(2)﹣++2;(3)(2+3)(2﹣3)﹣(﹣1)2.17.(8分)求下列各题中的x.(1)4x2=1;(2)(3x﹣1)2=4.18.(10分)如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.19.(10分)已知直线y=kx+b经过点M(0,2),N(1,3)两点.(1)试判断直线y=kx+b是否经过点(﹣1,1);(2)求直线y=kx+b与两坐标轴围成的三角形的面积;(3)x取何值时,y<0?20.(10分)在平面直角坐标系中,(1)描出点A(﹣3.4)、B(﹣6,﹣2)、C(6,﹣2);(2)若AD∥BC,CD∥AB,写出D点的坐标,并说明点D可以由点A如何平移得到?(3)求出这个平行四边形ABCD的面积.21.(10分)在一条笔直的公路上有A、B两地,甲乙两人同时出发,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地的距离;(2)求出点M的坐标,并解释该点坐标所表示的意义.22.(12分)观察下列各式及验证过程:,验证;=,验证=,验证(1)按照上述三个等式及其验证过程中的基本思想,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n(n为任意的自然数,且n≥2)表示的等式,并给出证明.2015-2016学年安徽省宿州市十三校联考八年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,每小题有四个选项.其中有且只有一个是正确的,请将正确选项的字母代号填在下面的表格中)1.(3分)以下列各组数为边长,能够组成直角三角形的是()A.,,B.10,8,4 C.7,12,15 D.7,25,24【解答】解:∵()2+()2=7,()2=5,∴,,不能组成直角三角形,A不正确;∵42+82=80,102=100,∴10,8,4不能组成直角三角形,B不正确;∵72+122=193,152=225,∴7,12,15不能组成直角三角形,C不正确;∵72+242=625,152=625,∴7,24,25能组成直角三角形,D正确;故选:D.2.(3分)下列各数中是无理数的是()A.B.3.14 C.D.【解答】解:A、是无理数,故本选项正确;B、不是无理数,故本选项错误;C、不是无理数,故本选项错误;D、不是无理数,故本选项错误;故选:A.3.(3分)下列说法正确的是()A.8的平方根是±2B.﹣7是49的平方根C.立方根等于它本身的数只有0和1D.的算术平方根是9【解答】解:A、8的平方根为±2,错误;B、﹣7是49的平方根,正确;C、立方根等于它本身的数有﹣1,0,1,错误;D、=9,9的算术平方根为3,错误,故选:B.4.(3分)估计的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间【解答】解:∵<<,∴3<<4,故选:C.5.(3分)已知点P在第四象限,且P到x轴的距离为3,到y轴的距离为4,则P点的坐标为()A.(3,﹣4)B.(﹣3,4)C.(4,﹣3)D.(﹣4,3)【解答】解:∵第四象限内的点横坐标大于0,纵坐标小于0;点P到x轴的距离是3,到y轴的距离为4,∴点P的纵坐标为﹣3,横坐标为4,∴点P的坐标是(4,﹣3).故选:C.6.(3分)在下列函数中,y随x增大而减小的是()A.y=2x+8 B.y=﹣2+8x C.y=﹣2x+8 D.y=2x﹣8【解答】解:A、∵y=2x+8中k=2>0,∴y随x的增大而增大,故本选项错误;B、∵y=﹣2+8x中k=8>0,∴y随x的增大而增大,故本选项错误;C、∵y=﹣2x+8中k=﹣2<0,∴y随x的增大而减小,故本选项正确;D、∵y=2x﹣8中k=2>0,∴y随x的增大而增大,故本选项错误.故选:C.7.(3分)若等腰三角形中相等的两边的长为10cm,第三边长为16cm,则第三边的高为()A.12cm B.10cm C.8cm D.6cm【解答】解:如图,过点A作AD⊥BC于点D,∵AB=AC=10cm,∴BD=CD=BC=×16=8(cm),∴AD==6(cm).故选:D.8.(3分)在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,﹣1)、B(1,1),将线段AB平移后得到线段A′B′.若点A′的坐标为(﹣2,﹣2),则点B′的坐标是()A.(﹣5,0)B.(4,3) C.(﹣1,﹣2)D.(﹣2,﹣1)【解答】解:∵A(4,﹣1)平移后得到点A′的坐标为(﹣2,﹣2),∴向左平移6个单位,向下平移了1个单位,∴B(1,1)的对应点坐标为(1﹣6,1﹣1),即(﹣5,0).故选:A.9.(3分)一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2 B.y=2 C.x=﹣1 D.y=﹣1【解答】解:∵一次函数y=kx+b的图象与x轴的交点为(﹣1,0),∴当kx+b=0时,x=﹣1.故选:C.10.(3分)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.【解答】解:因为x+y=k(矩形的面积是一定值),整理得y=﹣x+k,由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x>0,y>0,图象位于第一象限,所以只有A符合要求.故选:A.二、填空题(本题共5小题,每小题3分,共15分)11.(3分)的相反数是.【解答】解:的相反数是﹣(﹣2)=﹣+2.故答案为:﹣+2.12.(3分)在数轴上A、B两点表示的数分别是﹣、,则A、B两点间表示整数的点有4个.【解答】解:∵1<<2,2<3,∴﹣2<﹣<﹣1,∵在数轴上A、B两点表示的数分别是﹣、,∴A、B两点间表示整数的点有﹣1,0,1,2,共4个.故答案为:4.13.(3分)若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为1.【解答】解:∵y﹦(m+1)x+m2﹣1是正比例函数,∴m+1≠0,m2﹣1=0,∴m=1.故答案为:1.14.(3分)已知Rt△两边的长分别是6、8,则第三边的长是10或2.【解答】解:分两种情况:①当6和8为两条直角边长时,第三边长=斜边长==10;②当8为斜边长时,第三边的长==2;综上所述:第三边的长为10或2;故答案为:10或2.15.(3分)已知实数m,n满足(m+2)2+=0,则点P(m,n)和点Q(2m+2,n﹣2)关于x轴对称.【解答】解:∵(m+2)2+=0,∴m+2=0,n﹣1=0,解得:m=﹣2,n=1,∴点P(m,n)为:(﹣2,1),点Q(2m+2,n﹣2)为:(﹣2,﹣1),∴点P(m,n)和点Q(2m+2,n﹣2)关于x轴对称.故答案为:x.三、解答题(本题共小题,共75分)16.(15分)化简:(1)×﹣÷;(2)﹣++2;(3)(2+3)(2﹣3)﹣(﹣1)2.【解答】解:(1)原式=﹣=3﹣4=﹣1;(2)原式=2﹣2++=﹣;(3)原式=(2)2﹣32﹣(3﹣2+1)=12﹣9﹣4+2=2﹣1.17.(8分)求下列各题中的x.(1)4x2=1;(2)(3x﹣1)2=4.【解答】解:(1)4x2=1,,x=.(2)(3x﹣1)2=4,3x﹣1=2或3x﹣1=﹣2,x=1或﹣.18.(10分)如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.【解答】解:连接BD,如图所示:∵∠DAB=90°,AB=3,AD=4,∴BD==5,∵52+122=132,即BD2+CD2=BC2,∴△BCD是直角三角形,∠BDC=90°,∴四边形ABCD的面积=△BCD的面积﹣△ABD的面积=×5×12﹣×3×4=24.19.(10分)已知直线y=kx+b经过点M(0,2),N(1,3)两点.(1)试判断直线y=kx+b是否经过点(﹣1,1);(2)求直线y=kx+b与两坐标轴围成的三角形的面积;(3)x取何值时,y<0?【解答】解:(1)∵直线y=kx+b经过点(0,2)和点(1,3),∴,解得:,则解析式为y=x+2,把x=﹣1代入点y=﹣1+2=1∴直线y=kx+b经过点(﹣1,1);(2)由直线y=x+2可知直线与x轴的交点为(﹣2,0),∴直线y=kx+b与两坐标轴围成的三角形的面积为:×2×2=2.(3)由图象可知:当x<﹣2时,y<0.20.(10分)在平面直角坐标系中,(1)描出点A(﹣3.4)、B(﹣6,﹣2)、C(6,﹣2);(2)若AD∥BC,CD∥AB,写出D点的坐标,并说明点D可以由点A如何平移得到?(3)求出这个平行四边形ABCD的面积.【解答】解:(1)如图所示;(2)∵B(﹣6,﹣2)、C(6,﹣2),∴BC=12.∵AD∥BC,CD∥AB,∴四边形ABCD是平行四边形,∴AD=BC,∴D(﹣9,4),∴点D可以由点A向右平移2个单位得到;(3)S=12×6=72.平行四边形ABCD21.(10分)在一条笔直的公路上有A、B两地,甲乙两人同时出发,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地的距离;(2)求出点M的坐标,并解释该点坐标所表示的意义.【解答】解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=,×30=20千米,所以,点M的坐标为(,20),表示小时后两车相遇,此时距离B地20千米.22.(12分)观察下列各式及验证过程:,验证;=,验证=,验证(1)按照上述三个等式及其验证过程中的基本思想,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n(n为任意的自然数,且n≥2)表示的等式,并给出证明.【解答】解:(1)验证:;(2)=.验证:==.。
赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
DBC2015-2016学年安徽省宿州市十三校联考八年级(上)期中数学试卷一、选择题(本题共10小题,每小题3分,共30分,每小题有四个选项.其中有且只有一个是正确的,请将正确选项的字母代号填在下面的表格中)1.(3分)以下列各组数为边长,能够组成直角三角形的是()A.,,B.10,8,4 C.7,12,15 D.7,25,242.(3分)下列各数中是无理数的是()A.B.3.14 C.D.3.(3分)下列说法正确的是()A.8的平方根是±2B.﹣7是49的平方根C.立方根等于它本身的数只有0和1D.的算术平方根是94.(3分)估计的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间5.(3分)已知点P在第四象限,且P到x轴的距离为3,到y轴的距离为4,则P点的坐标为()A.(3,﹣4)B.(﹣3,4)C.(4,﹣3)D.(﹣4,3)6.(3分)在下列函数中,y随x增大而减小的是()A.y=2x+8 B.y=﹣2+8x C.y=﹣2x+8 D.y=2x﹣87.(3分)若等腰三角形中相等的两边的长为10cm,第三边长为16cm,则第三边的高为()A.12cm B.10cm C.8cm D.6cm8.(3分)在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,﹣1)、B(1,1),将线段AB平移后得到线段A′B′.若点A′的坐标为(﹣2,﹣2),则点B′的坐标是()A.(﹣5,0)B.(4,3) C.(﹣1,﹣2)D.(﹣2,﹣1)9.(3分)一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2 B.y=2 C.x=﹣1 D.y=﹣110.(3分)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.二、填空题(本题共5小题,每小题3分,共15分)11.(3分)的相反数是.12.(3分)在数轴上A、B两点表示的数分别是﹣、,则A、B两点间表示整数的点有个.13.(3分)若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为.14.(3分)已知Rt△两边的长分别是6、8,则第三边的长是.15.(3分)已知实数m,n满足(m+2)2+=0,则点P(m,n)和点Q(2m+2,n﹣2)关于轴对称.三、解答题(本题共小题,共75分)16.(15分)化简:(1)×﹣÷;(2)﹣++2;(3)(2+3)(2﹣3)﹣(﹣1)2.17.(8分)求下列各题中的x.(1)4x2=1;(2)(3x﹣1)2=4.18.(10分)如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.19.(10分)已知直线y=kx+b经过点M(0,2),N(1,3)两点.(1)试判断直线y=kx+b是否经过点(﹣1,1);(2)求直线y=kx+b与两坐标轴围成的三角形的面积;(3)x取何值时,y<0?20.(10分)在平面直角坐标系中,(1)描出点A(﹣3.4)、B(﹣6,﹣2)、C(6,﹣2);(2)若AD∥BC,CD∥AB,写出D点的坐标,并说明点D可以由点A如何平移得到?(3)求出这个平行四边形ABCD的面积.21.(10分)在一条笔直的公路上有A、B两地,甲乙两人同时出发,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地的距离;(2)求出点M的坐标,并解释该点坐标所表示的意义.22.(12分)观察下列各式及验证过程:,验证;=,验证=,验证(1)按照上述三个等式及其验证过程中的基本思想,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n(n为任意的自然数,且n≥2)表示的等式,并给出证明.2015-2016学年安徽省宿州市十三校联考八年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,每小题有四个选项.其中有且只有一个是正确的,请将正确选项的字母代号填在下面的表格中)1.(3分)以下列各组数为边长,能够组成直角三角形的是()A.,,B.10,8,4 C.7,12,15 D.7,25,24【解答】解:∵()2+()2=7,()2=5,∴,,不能组成直角三角形,A不正确;∵42+82=80,102=100,∴10,8,4不能组成直角三角形,B不正确;∵72+122=193,152=225,∴7,12,15不能组成直角三角形,C不正确;∵72+242=625,152=625,∴7,24,25能组成直角三角形,D正确;故选:D.2.(3分)下列各数中是无理数的是()A.B.3.14 C.D.【解答】解:A、是无理数,故本选项正确;B、不是无理数,故本选项错误;C、不是无理数,故本选项错误;D、不是无理数,故本选项错误;故选:A.3.(3分)下列说法正确的是()A.8的平方根是±2B.﹣7是49的平方根C.立方根等于它本身的数只有0和1D.的算术平方根是9【解答】解:A、8的平方根为±2,错误;B、﹣7是49的平方根,正确;C、立方根等于它本身的数有﹣1,0,1,错误;D、=9,9的算术平方根为3,错误,故选:B.4.(3分)估计的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间【解答】解:∵<<,∴3<<4,故选:C.5.(3分)已知点P在第四象限,且P到x轴的距离为3,到y轴的距离为4,则P点的坐标为()A.(3,﹣4)B.(﹣3,4)C.(4,﹣3)D.(﹣4,3)【解答】解:∵第四象限内的点横坐标大于0,纵坐标小于0;点P到x轴的距离是3,到y轴的距离为4,∴点P的纵坐标为﹣3,横坐标为4,∴点P的坐标是(4,﹣3).故选:C.6.(3分)在下列函数中,y随x增大而减小的是()A.y=2x+8 B.y=﹣2+8x C.y=﹣2x+8 D.y=2x﹣8【解答】解:A、∵y=2x+8中k=2>0,∴y随x的增大而增大,故本选项错误;B、∵y=﹣2+8x中k=8>0,∴y随x的增大而增大,故本选项错误;C、∵y=﹣2x+8中k=﹣2<0,∴y随x的增大而减小,故本选项正确;D、∵y=2x﹣8中k=2>0,∴y随x的增大而增大,故本选项错误.故选:C.7.(3分)若等腰三角形中相等的两边的长为10cm,第三边长为16cm,则第三边的高为()A.12cm B.10cm C.8cm D.6cm【解答】解:如图,过点A作AD⊥BC于点D,∵AB=AC=10cm,∴BD=CD=BC=×16=8(cm),∴AD==6(cm).故选:D.8.(3分)在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,﹣1)、B(1,1),将线段AB平移后得到线段A′B′.若点A′的坐标为(﹣2,﹣2),则点B′的坐标是()A.(﹣5,0)B.(4,3) C.(﹣1,﹣2)D.(﹣2,﹣1)【解答】解:∵A(4,﹣1)平移后得到点A′的坐标为(﹣2,﹣2),∴向左平移6个单位,向下平移了1个单位,∴B(1,1)的对应点坐标为(1﹣6,1﹣1),即(﹣5,0).故选:A.9.(3分)一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2 B.y=2 C.x=﹣1 D.y=﹣1【解答】解:∵一次函数y=kx+b的图象与x轴的交点为(﹣1,0),∴当kx+b=0时,x=﹣1.故选:C.10.(3分)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.【解答】解:因为x+y=k(矩形的面积是一定值),整理得y=﹣x+k,由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x>0,y>0,图象位于第一象限,所以只有A符合要求.故选:A.二、填空题(本题共5小题,每小题3分,共15分)11.(3分)的相反数是.【解答】解:的相反数是﹣(﹣2)=﹣+2.故答案为:﹣+2.12.(3分)在数轴上A、B两点表示的数分别是﹣、,则A、B两点间表示整数的点有4个.【解答】解:∵1<<2,2<3,∴﹣2<﹣<﹣1,∵在数轴上A、B两点表示的数分别是﹣、,∴A、B两点间表示整数的点有﹣1,0,1,2,共4个.故答案为:4.13.(3分)若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为1.【解答】解:∵y﹦(m+1)x+m2﹣1是正比例函数,∴m+1≠0,m2﹣1=0,∴m=1.故答案为:1.14.(3分)已知Rt△两边的长分别是6、8,则第三边的长是10或2.【解答】解:分两种情况:①当6和8为两条直角边长时,第三边长=斜边长==10;②当8为斜边长时,第三边的长==2;综上所述:第三边的长为10或2;故答案为:10或2.15.(3分)已知实数m,n满足(m+2)2+=0,则点P(m,n)和点Q(2m+2,n﹣2)关于x轴对称.【解答】解:∵(m+2)2+=0,∴m+2=0,n﹣1=0,解得:m=﹣2,n=1,∴点P(m,n)为:(﹣2,1),点Q(2m+2,n﹣2)为:(﹣2,﹣1),∴点P(m,n)和点Q(2m+2,n﹣2)关于x轴对称.故答案为:x.三、解答题(本题共小题,共75分)16.(15分)化简:(1)×﹣÷;(2)﹣++2;(3)(2+3)(2﹣3)﹣(﹣1)2.【解答】解:(1)原式=﹣=3﹣4=﹣1;(2)原式=2﹣2++=﹣;(3)原式=(2)2﹣32﹣(3﹣2+1)=12﹣9﹣4+2=2﹣1.17.(8分)求下列各题中的x.(1)4x2=1;(2)(3x﹣1)2=4.【解答】解:(1)4x2=1,,x=.(2)(3x﹣1)2=4,3x﹣1=2或3x﹣1=﹣2,x=1或﹣.18.(10分)如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.【解答】解:连接BD,如图所示:∵∠DAB=90°,AB=3,AD=4,∴BD==5,∵52+122=132,即BD2+CD2=BC2,∴△BCD是直角三角形,∠BDC=90°,∴四边形ABCD的面积=△BCD的面积﹣△ABD的面积=×5×12﹣×3×4=24.19.(10分)已知直线y=kx+b经过点M(0,2),N(1,3)两点.(1)试判断直线y=kx+b是否经过点(﹣1,1);(2)求直线y=kx+b与两坐标轴围成的三角形的面积;(3)x取何值时,y<0?【解答】解:(1)∵直线y=kx+b经过点(0,2)和点(1,3),∴,解得:,则解析式为y=x+2,把x=﹣1代入点y=﹣1+2=1∴直线y=kx+b经过点(﹣1,1);(2)由直线y=x+2可知直线与x轴的交点为(﹣2,0),∴直线y=kx+b与两坐标轴围成的三角形的面积为:×2×2=2.(3)由图象可知:当x<﹣2时,y<0.20.(10分)在平面直角坐标系中,(1)描出点A(﹣3.4)、B(﹣6,﹣2)、C(6,﹣2);(2)若AD∥BC,CD∥AB,写出D点的坐标,并说明点D可以由点A如何平移得到?(3)求出这个平行四边形ABCD的面积.【解答】解:(1)如图所示;(2)∵B(﹣6,﹣2)、C(6,﹣2),∴BC=12.∵AD∥BC,CD∥AB,∴四边形ABCD是平行四边形,∴AD=BC,∴D(﹣9,4),∴点D可以由点A向右平移2个单位得到;(3)S=12×6=72.平行四边形ABCD21.(10分)在一条笔直的公路上有A、B两地,甲乙两人同时出发,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地的距离;(2)求出点M的坐标,并解释该点坐标所表示的意义.【解答】解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=,×30=20千米,所以,点M的坐标为(,20),表示小时后两车相遇,此时距离B地20千米.22.(12分)观察下列各式及验证过程:,验证;=,验证=,验证(1)按照上述三个等式及其验证过程中的基本思想,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n(n为任意的自然数,且n≥2)表示的等式,并给出证明.【解答】解:(1)验证:;(2)=.验证:==.。