MP模型和感知器
- 格式:ppt
- 大小:5.55 MB
- 文档页数:24
计算智能与模式识别实验报告感知器与ADALINE 网络一・感知器与ADALINE 网络的工作原理 1. 感知器工作原理感知器是美国心理学家Rrank Rosenblatt 基于MP 模型,利用学习算法的用于分类的对噪声敏感的线性分类器,利用训练样本完成特征空间的决策边界的划感知器的结构:多神经元感知器1i i i = ⎪⎝⎭ ⎪⎪⎭⎝⎛-=∑=n i i i ki k x w f y 1θ, or ()f W =-y x θ 其中,()1, 00, if x f x otherwise≥⎧=⎨⎩ ,()12,,,T n w w w =w ,1112112 ww n m m mn w w W w w ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦两类分类,把n R 空间划分成两个区域 多类分类,把n R 空间划分成多个区域以两类为例:n R Class Class ⊂B A, . (1) 线性可分 Linear Separable称 A Class 和 B Class 是线性可分的,如果存在一个超平面将它们分开。
称超平面1:0ni i i S w x θ=-=∑为决策面(边界);称函数∑=-=n1i )g(θi i x w x 为决策函数(或判别函数);称区域{}g()0n R ∈>x x 和{}g()<0n R ∈x x 为决策区域;决策规则:对于新的模式n R ∈*x ,如果()0g *>x ,则 A Class *∈x ;如果()0g *<x ,则 B Class *∈x . (这里假设了决策面1:0ni i i S w x θ=-=∑的法向量指向 A Class )需要指出的是:对于同一个决策面,决策函数的取法并不是唯一的。
例如,我们可以取决策函数为()1n i i i g f w x θ=⎛⎫=- ⎪⎝⎭∑x ,其中,f 为硬限幅函数,则这时对应的决策规则为:对于新的模式n R ∈*x ,如果()1g *=x ,则 A Class *∈x ;如果()0g *=x ,则 B Class *∈x .(2) 非线性可分 Nonlinear Separable称 A Class 和 B Class 是非线性可分的,如果存在一个非线性曲面将它们分开,g>0 g=0 g<0同线性可分情况一样,称曲面()0g =x 为决策面(边界),称函数()g x 为决策函数,对应的决策规则为:对于新的模式n R ∈*x ,如果()0g *>x ,则*x 属于一类;如果()0g *<x ,则*x 属于另一类。
⼈⼯神经⽹络是什么⽬录⼀、⼈⼯神经⽹络⼈⼯智能的主流研究⽅法是连接主义,通过⼈⼯构建神经⽹络的⽅式模拟⼈类智能。
⼈⼯神经⽹络(Artificial Neural Network,即ANN ),是20世纪80 年代以来⼈⼯智能领域兴起的研究热点。
它从信息处理⾓度对⼈脑神经元⽹络进⾏抽象,建⽴某种简单模型,按不同的连接⽅式组成不同的⽹络。
⼈⼯神经⽹络借鉴了⽣物神经⽹络的思想,是超级简化版的⽣物神经⽹络。
以⼯程技术⼿段模拟⼈脑神经系统的结构和功能,通过⼤量的⾮线性并⾏处理器模拟⼈脑中众多的神经元,⽤处理器复杂的连接关系模拟⼈脑中众多神经元之间的突触⾏为。
⼆、⽣物神经⽹络⼈脑由⼤约千亿个神经细胞及亿亿个神经突触组成,这些神经细胞及其突触共同构成了庞⼤的⽣物神经⽹络每个神经元伸出的突起分为树突和轴突。
树突分⽀⽐较多,每个分⽀还可以再分⽀,长度⼀般⽐较短,作⽤是接受信号。
轴突只有⼀个,长度⼀般⽐较长,作⽤是把从树突和细胞表⾯传⼊细胞体的神经信号传出到其他神经元。
⼤脑中的神经元接受神经树突的兴奋性突触后电位和抑制性突触后电位,产⽣出沿其轴突传递的神经元的动作电位。
⽣物神经⽹络⼤概有以下特点:1. 每个神经元都是⼀个多输⼊单输出的信息处理单元,神经元输⼊分兴奋性输⼊和抑制性输⼊两种类型2. 神经细胞通过突触与其他神经细胞进⾏连接与通信,突触所接收到的信号强度超过某个阈值时,神经细胞会进⼊激活状态,并通过突触向上层神经细胞发送激活细号3. 神经元具有空间整合特性和阈值特性,较⾼层次的神经元加⼯出了较低层次不具备的“新功能”4. 神经元输⼊与输出间有固定的时滞,主要取决于突触延搁外部事物属性⼀般以光波、声波、电波等⽅式作为输⼊,刺激⼈类的⽣物传感器。
三、硅基智能与碳基智能⼈类智能建⽴在有机物基础上的碳基智能,⽽⼈⼯智能建⽴在⽆机物基础上的硅基智能。
碳基智能与硅基智能的本质区别是架构,决定了数据的传输与处理是否能够同时进⾏。
感知器和ADLINE 网络一、感知器和ADLINE 网络的工作原理1.感知器工作原理感知器由MP 模型加上学习算法构成,用于分类,是一个线性分类器。
可以分为单神经元感知器和多神经元感知器,单神经元感知器用于两类分类,多神经元感知器用于多类分类。
图1 单神经元感知器 图2 多神经元感知器 以单神经元感知器为例,设{}11,t x ,{}22,t x ,…,{}Q Q t ,x 是线性可分两类训练样本, 其中,n i R ∈x 为感知器的输入,1i t =或0为对应于i x 的目标输出。
感知器的原理是模拟人的神经元工作原理,先将带有权重的输入n i R ∈x 进行线性加和,接着阈值处理,最后通过一个非线性函数得到对应于i x 的实际输出i y ,公式表示为:实际输出:()1n T i i i y f w x f θθ=⎛⎫=-=- ⎪⎝⎭∑w x ,()1, 00, if x f x otherwise≥⎧=⎨⎩ ,θw 分别为权值和阈值。
运用感知器进行分类,实际上就是求解感知器的权值和阈值,θw ,使()T i i i y f t θ=-=w x ,其中f 为硬限幅函数。
而感知器的学习规则为:(1)()()()(1)()()()()()k k e k k k k e k e k t k y k θθ+=+⎧⎪+=-⎨⎪=-⎩w w x其中()()[]()()()()()()()0(0)1,1T t k k y k f k k k k f θθ⎧⎪⎪=-⎨⎪-⎪⎩x w x x w 是的目标输出为的实际输出,为硬限幅函数初值,取较小的随机数,如在中随机选取, 为了加速算法的收敛,可以使用带步长2)(1 ≤≤αα的感知器学习算法:(1)()()()(1)()()()()()k k e k k k k e k e k t k y k αθθα+=+⎧⎪+=-⎨⎪=-⎩w w x 2.ADLINE 网络工作原理ADALINE 网络,即自适应线性神经元,它与感知器不同之处在于它给出了MP 神经元模型的另一种学习算法:LMS 算法,即极小化均方误差法,又称随机梯度法。
1.具体应用背景的介绍感知器是由美国计算机科学家罗森布拉特(F.Roseblatt)于1957年提出的。
感知器可谓是最早的人工神经网络。
单层感知器是一个具有一层神经元、采用阈值激活函数的前向网络。
通过对网络权值的训练,可以使感知器对一组输人矢量的响应达到元素为0或1的目标输出,从而实现对输人矢量分类的目的。
2.分类器设计方法概述及选择依据分析分类器设计方法概述感知器是由具有可调节的键结值以及阈值的单一个类神经元所组成,它是各种类神经网络中,最简单且最早发展出来的类神经网络模型,通常被用来作为分类器使用。
感知器的基本组成元件为一个具有线性组合功能的累加器,后接一个硬限制器而成,如下图所示:单层感知器是一个具有一层神经元、采用阈值激活函数的前向网络。
通过对网络权值的训练,可以使感知器对一组输入矢量的响应达到元素为0或1的目标输出,从而达到对输入矢量分类的目的。
分类的判断规则是:若感知器的输出为1,则将其归类于C1类;若感知器的输出为0,则将其归类于C2类。
判断规则所划分的只有两个判断区域,我们将作为分类依据的超平面定义如下:感知器分类是通过训练模式的迭代和学习算法,产生线性或非线性可分的模式判别函数。
它不需要对各类训练模式样本的统计性质作任何假设,所以是一种确定性的方法。
比如固定增量逐次调整算法、最小平方误差算法。
要使前向神经网络模型实现某种功能,必须对它进行训练,让他学会要做的事情,并把所学到的知识记忆在网络的权值中。
人工神经网络的权值的确定不是通过计算,而是通过网络自身的训练来完成的。
感知器的训练过程如下:在输入矢量X的作用下,计算网络的实际输出A 与相应的目标矢量T进行比较,检查A是否等于T,然后比较误差T-A,根据学习规则进行权值和偏差的调整;重新计算网络在新权值作用下的输入,重复权值调整过程,知道网络的输出A等于目标矢量T或训练次数达到事先设置的最大值时结束训练。
感知器设计训练的步骤如下:(1)对于所要解决的问题,确定输入矢量X,目标矢量T,并由此确定各矢量的维数以及确定网络结构大小的参数:r(表示输入矢量维数,神经元的权值向量维数),s(表示一个输入矢量所对应的输出矢量的维数,或者表示神经元个数),p(表示输入矢量组数,)。
一、绪论1.1 人工神经元网络的基本概念和特征一、形象思维人的思维主要可概括为逻辑(含联想)和形象思维两种。
以规则为基础的知识系统可被认为是致力于模拟人的逻辑思维(左脑)人工神经元网络则可被认为是探索人的形象思维(右脑)二、人工神经元网络人工神经元网络是生理学上的真实人脑神经网络的结构和功能,以及若干基本特性的某种理论抽象,简化和模拟而构成的一种信息处理系统。
三、神经元是信息处理系统的最小单元。
大脑是由大量的神经细胞或神经元组成的。
每个神经元可以看作为一个小的处理单元,这些神经元按照某种方式互相连接起来,构成了大脑内部的生理神经元网络,他们中各神经元之间连接的强弱,按照外部的激励信号作自适应变化,而每个神经元又随着接收到的多个激励信号的综合大小呈现兴奋或抑制状态。
而大脑的学习过程是神经元之间连接强度随外部激励信息做自适应变化的过程,大脑处理信息的结果确由神经元的状态表现出来。
四、神经元基本结构和作用1。
组成:细胞体、树突、轴突和突触。
2。
树突:负责传入兴奋或抑制信息(多条),较短,分支多,信息的输入端3。
轴突:负责传出兴奋或抑制信息(一条),较长,信息的输出端4。
突触:一个神经元与另一个神经元相联系的特殊结构部位,包括:突触前、突触间隙、突触后三个部分。
突触前:是第一个神经元的轴突末梢部分突触后:是第二个神经元的受体表面突触前通过化学接触或电接触,将信息传往突触后受体表面,实现神经元的信息传输。
5。
神经元网络:树突和轴突一一对接,从而靠突触把众多的神经元连成一个神经元网络。
6。
神经网络对外界的反应兴奋:相对静止变为相对活动抑制:相对活动变为相对静止7。
传递形式神经元之间信息的传递有正负两种连接。
正连接:相互激发负连接:相互抑制8。
各神经元之间的连接强度和极性可以有不同,并且可进行调整。
五简化的神经元数学模型x1x2x3x4s ix1,x2,..,x n:输入信号u i:神经元内部状态θi:与值ωi:ui到 uj连接的权值s i:外部输入信号,可以控制神经元uif(·) :激发函数y i:输出Ơi:= Σw ij x j +s i - θiU i = g(Ơi)y i = h(u i) = f(g(Ơi)) = f(Σw ij x j +s i - θi)f = h x g六、显示出人脑的基本特征1。
第1章1.人工神经网络(Artificial Neural Network,ANN),是由大量处理单元(神经元)互联而成的网络,是对人脑的抽象、简化和模拟,反映人脑的基本特性。
P12.神经元模型应具备三个要素:P7-P8。
3.常用的激励函数有以下三种:(1)阈值函数(阶跃函数、符号函数等);(2)分段线性函数(饱和型函数);(3)Sigmoid函数;(4)对称的Sigmoid函数(双曲型函数);(5)高斯函数。
P8激励函数采用阶跃函数的人工神经元模型即为MP(McCulloch-Pitts)模型。
4.人工神经网络的分类:(1)按网络性能角度可分为连续型与离散型网络、确定性与随机性网络;(2)按网络结构角度可分为前向网络与反馈网络;(3)从学习方式角度可分为有导师学习网络与无导师学习网络。
P105.神经网络的学习也称为训练,指的是通过神经网络所在环境的刺激作用调整神经网络自由参数,使神经网络以一种新的方式对外部环境做出反应的一个过程。
能够从环境中学习和在学习中提高自身性能是神经网络的最有意义的性质。
6.学习方式可分为:有导师学习和无导师学习。
(1)有导师学习,又称为有监督学习,在学习时需要给出导师信号或称为期望输出。
(2)无导师学习,包括强化学习与无监督学习(或称自组织学习)。
P137.神经网络学习规则有:Hebb学习、纠错学习、基于记忆的学习、随机学习、竞争学习等。
P13-P148.人工神经网络的计算能力有三个显著的特点:(1)非线性特性;(2)大量的并行分布结构;(3)学习和归纳能力。
P169.一个人工智能系统有三个关键部分:表示、推理和学习。
P19机器学习包括两种截然不同的信息处理方向:归纳和演绎。
第2章1.感知器是神经网络用来进行模式识别的一种最简单模型,但是由单个神经元组成的单层感知器只能用来实现线性可分的两类模式的识别。
它与MP模型的不同之处是假定神经元的突触权值是可变的,这样就可以进行学习。
神经⽹络模型基本原理⼈⼯神经⽹络是⼀个数学模型,旨在模拟⼈脑的神经系统对复杂信息的处理机制,其⽹络结构是对⼈脑神经元⽹络的抽象,两者有很多相似之处。
当然 ANN 还远没有达到模拟⼈脑的地步,但其效果也让⼈眼前⼀亮。
1. ⼈⼯神经元结构⼈⼯神经元是⼀个多输⼊单输出的信息处理单元,是对⽣物神经元的建模。
建模⽅式可以有很多种,不同的建模⽅式就意味着不同的⼈⼯神经元结构。
⽐较著名的⼈⼯神经元模型是 MP 神经元,直到今天,我们仍然在使⽤这个神经元模型。
MP 神经元是模仿⽣物的神经元设计的: 1)输⼊向量 x 模拟⽣物神经元中其他神经细胞给该细胞的刺激,值越⼤刺激越⼤; 2)w 向量模拟该细胞不同来源的刺激的敏感度;3)⽤阈值 θ 来描述激活该神经元的难易程度,越⼤越难激活; 4)⽤ w 1x 1+w 2x 2+...+w n x n −θ 来计算神经元的兴奋程度;5)y =f (x ) 为激活函数,⽤来计算神经元的输出,因为⽣物神经元的输出是有上下限的,所以激活函数也是能够“饱和”的有界函数; 6)在 MP 神经元中,激活函数为阶梯函数。
兴奋函数⼤于阈值输出 1,⼩于阈值输出 0; 下图是 MP 神经元模型的⽰意图:将激活函数代⼊,将项 −θ 设为 b ,则可以得到 MP 神经元的数学模型:y =sgn n∑i =1(w i x i +b )=sgn w T x +b惊讶得发现它就是⼀个线性分类模型,和的数学模型是完全⼀样的,所以⼀个 MP 神经元的作⽤就是:对输⼊进⾏⼆分类。
这是符合⽣物神经元的特点的,因为⼀个⽣物神经元对输⼊信号所产⽣的作⽤就是:兴奋或这抑制。
所以通俗来讲:⼀条直线把平⾯⼀分为⼆,⼀个平⾯把三维空间⼀分为⼆,⼀个 n −1 维超平⾯把 n 维空间⼀分为⼆,两边分属不同的两类,这种分类器就叫做神经元,⼀个神经元只能分两类,输出是⼀个能体现类别的标量。
⼀个神经元的作⽤就是这么简单,所做的也只能是线性分类,但是当多个神经元互联的时候就会产⽣神奇的效果,下⾯再叙述。
人工神经网络简介本文主要对人工神经网络基础进行了描述,主要包括人工神经网络的概念、发展、特点、结构、模型。
本文是个科普文,来自网络资料的整理。
一、人工神经网络的概念人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。
该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。
它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。
神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。
每个节点代表一种特定的输出函数,称为激活函数(activation function)。
每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。
网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。
而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
神经网络的构筑理念是受到生物的神经网络运作启发而产生的。
人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。
另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。
人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。
网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。
输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。
⼀.单层感知器单层感知器属于单层前向⽹络,即除输⼊层和输出层之外,只拥有⼀层神经元节点。
特点:输⼊数据从输⼊层经过隐藏层向输出层逐层传播,相邻两层的神经元之间相互连接,同⼀层的神经元之间没有连接。
感知器(perception)是由美国学者F.Rosenblatt提出的。
与最早提出的MP模型不同,神经元突触权值可变,因此可以通过⼀定规则进⾏学习。
可以快速、可靠地解决线性可分的问题。
1.单层感知器的结构 单层感知器由⼀个线性组合器和⼀个⼆值阈值元件组成。
输⼊向量的各个分量先与权值相乘,然后在线性组合器中进⾏叠加,得到⼀个标量结果,其输出是线性组合结果经过⼀个⼆值阈值函数。
⼆值阈值元件通常是⼀个上升函数,典型功能是⾮负数映射为1,负数映射为0或负⼀。
输⼊是⼀个N维向量 x=[x1,x2,...,xn],其中每⼀个分量对应⼀个权值wi,隐含层输出叠加为⼀个标量值:随后在⼆值阈值元件中对得到的v值进⾏判断,产⽣⼆值输出:可以将数据分为两类。
实际应⽤中,还加⼊偏置,值恒为1,权值为b。
这时,y输出为:把偏置值当作特殊权值: 单层感知器结构图: 单层感知器进⾏模式识别的超平⾯由下式决定:当维数N=2时,输⼊向量可以表⽰为平⾯直⾓坐标系中的⼀个点。
此时分类超平⾯是⼀条直线:这样就可以将点沿直线划分成两类。
2.单层感知器的学习算法(1)定义变量和参数,这⾥的n是迭代次数。
N是N维输⼊,将其中的偏置也作为输⼊,不过其值恒为1,。
x(n)=N+1维输⼊向量=[+1,x1(n),x2(n),...,xN(n)]T w(n)=N+1维权值向量=[b(n),w1(n),w2(n),...,wN(n)]T b(n)=偏置 y(n)=实际输出 d(n)=期望输出 η(n)=学习率参数,是⼀个⽐1⼩的正常数所以线性组合器的输出为:v(n)=w T(n)x(n)(2)初始化。
n=0,将权值向量w设置为随机值或全零值。
(3)激活。
简述mp神经元结构英文回答:The structure of a MP neuron, also known as a McCulloch-Pitts neuron, is a simplified model of a biological neuron. It consists of multiple inputs, each with an associated weight, and a single output. The inputs are connected to the neuron through synapses, which transmit signals from other neurons or sensory organs. The weights associated with each input determine the strength of the signal received from that input.The MP neuron applies a linear combination of the inputs and their corresponding weights, and then passes the result through an activation function. The activation function determines whether the neuron fires or not based on the weighted sum of the inputs. If the result exceeds a certain threshold, the neuron fires and produces an output signal. Otherwise, it remains inactive.The MP neuron can be represented mathematically as follows:Output = Activation function(∑(input weight))。