MP模型和感知器教育课件
- 格式:ppt
- 大小:5.80 MB
- 文档页数:25
1.具体应用背景的介绍感知器是由美国计算机科学家罗森布拉特(F.Roseblatt)于1957年提出的。
感知器可谓是最早的人工神经网络。
单层感知器是一个具有一层神经元、采用阈值激活函数的前向网络。
通过对网络权值的训练,可以使感知器对一组输人矢量的响应达到元素为0或1的目标输出,从而实现对输人矢量分类的目的。
2.分类器设计方法概述及选择依据分析分类器设计方法概述感知器是由具有可调节的键结值以及阈值的单一个类神经元所组成,它是各种类神经网络中,最简单且最早发展出来的类神经网络模型,通常被用来作为分类器使用。
感知器的基本组成元件为一个具有线性组合功能的累加器,后接一个硬限制器而成,如下图所示:单层感知器是一个具有一层神经元、采用阈值激活函数的前向网络。
通过对网络权值的训练,可以使感知器对一组输入矢量的响应达到元素为0或1的目标输出,从而达到对输入矢量分类的目的。
分类的判断规则是:若感知器的输出为1,则将其归类于C1类;若感知器的输出为0,则将其归类于C2类。
判断规则所划分的只有两个判断区域,我们将作为分类依据的超平面定义如下:感知器分类是通过训练模式的迭代和学习算法,产生线性或非线性可分的模式判别函数。
它不需要对各类训练模式样本的统计性质作任何假设,所以是一种确定性的方法。
比如固定增量逐次调整算法、最小平方误差算法。
要使前向神经网络模型实现某种功能,必须对它进行训练,让他学会要做的事情,并把所学到的知识记忆在网络的权值中。
人工神经网络的权值的确定不是通过计算,而是通过网络自身的训练来完成的。
感知器的训练过程如下:在输入矢量X的作用下,计算网络的实际输出A 与相应的目标矢量T进行比较,检查A是否等于T,然后比较误差T-A,根据学习规则进行权值和偏差的调整;重新计算网络在新权值作用下的输入,重复权值调整过程,知道网络的输出A等于目标矢量T或训练次数达到事先设置的最大值时结束训练。
感知器设计训练的步骤如下:(1)对于所要解决的问题,确定输入矢量X,目标矢量T,并由此确定各矢量的维数以及确定网络结构大小的参数:r(表示输入矢量维数,神经元的权值向量维数),s(表示一个输入矢量所对应的输出矢量的维数,或者表示神经元个数),p(表示输入矢量组数,)。
⼀.单层感知器单层感知器属于单层前向⽹络,即除输⼊层和输出层之外,只拥有⼀层神经元节点。
特点:输⼊数据从输⼊层经过隐藏层向输出层逐层传播,相邻两层的神经元之间相互连接,同⼀层的神经元之间没有连接。
感知器(perception)是由美国学者F.Rosenblatt提出的。
与最早提出的MP模型不同,神经元突触权值可变,因此可以通过⼀定规则进⾏学习。
可以快速、可靠地解决线性可分的问题。
1.单层感知器的结构 单层感知器由⼀个线性组合器和⼀个⼆值阈值元件组成。
输⼊向量的各个分量先与权值相乘,然后在线性组合器中进⾏叠加,得到⼀个标量结果,其输出是线性组合结果经过⼀个⼆值阈值函数。
⼆值阈值元件通常是⼀个上升函数,典型功能是⾮负数映射为1,负数映射为0或负⼀。
输⼊是⼀个N维向量 x=[x1,x2,...,xn],其中每⼀个分量对应⼀个权值wi,隐含层输出叠加为⼀个标量值:随后在⼆值阈值元件中对得到的v值进⾏判断,产⽣⼆值输出:可以将数据分为两类。
实际应⽤中,还加⼊偏置,值恒为1,权值为b。
这时,y输出为:把偏置值当作特殊权值: 单层感知器结构图: 单层感知器进⾏模式识别的超平⾯由下式决定:当维数N=2时,输⼊向量可以表⽰为平⾯直⾓坐标系中的⼀个点。
此时分类超平⾯是⼀条直线:这样就可以将点沿直线划分成两类。
2.单层感知器的学习算法(1)定义变量和参数,这⾥的n是迭代次数。
N是N维输⼊,将其中的偏置也作为输⼊,不过其值恒为1,。
x(n)=N+1维输⼊向量=[+1,x1(n),x2(n),...,xN(n)]T w(n)=N+1维权值向量=[b(n),w1(n),w2(n),...,wN(n)]T b(n)=偏置 y(n)=实际输出 d(n)=期望输出 η(n)=学习率参数,是⼀个⽐1⼩的正常数所以线性组合器的输出为:v(n)=w T(n)x(n)(2)初始化。
n=0,将权值向量w设置为随机值或全零值。
(3)激活。