线性代数讲义2
- 格式:doc
- 大小:830.00 KB
- 文档页数:32
第六章 二次型本章主要包括二次型的矩阵及其矩阵,化二次型为标准型和规范形,二次型及实对称矩阵的正定性问题,学习本章内容需要结合矩阵的特征值与特征向量的相关知识.§1 二次型及其矩阵一、二次型及其矩阵定义1 关于n 个变量n x x x ,,,21 的二次齐次函数+++= 2222211121),,,(x a x a x x x f n n n n n n nn x x a x x a x x a x a 1,1313121122222--++++ (1)若取ji ij a a =,则i j ji j i ij j i ij x x a x x a x x a +=2于是(1)式可写成j i nj i ij n x x a x x x f ∑==1,21),,,( (2)称为n 元二次型,所有系数均为实数的二次型称为实二次型.记,212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A ⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x x21 则二次型),,,(21n x x x f 又表示为Ax x x x x f T n =),,,(21 ,其中A 为对称矩阵,叫做二次型 ),,,(21n x x x f 的矩阵,也把),,,(21n x x x f 叫做对称矩阵A 的二次型.对称矩阵A 的秩,叫做二次型Ax x x x x f T n =),,,(21 的秩. 例1 写出二次型32312123222132184422),,(x x x x x x x x x x x x f ++---=的矩阵,并求出二次型的秩.解 写出二次型所对应的对称矩阵为A ,⎪⎪⎪⎭⎫ ⎝⎛----=242422221A因为二次型的秩就是对称矩阵A 的秩.⎪⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎪⎭⎫ ⎝⎛----+⎪⎪⎪⎭⎫ ⎝⎛----=14002202214~6808602212~224242222123321312r r r r r r r r A ∴二次型的秩为3.§2 化二次型为标准型一、二次型合同矩阵二次型),,,(21n x x x f 经过可逆的线性变换⎪⎩⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (3) 即用(3)代入(1),还是变成二次型. 那么新二次型的矩阵与原二次型的矩阵A 的关系是什么?可逆线性变换 (3),记作Cy x =,其中矩阵)(ij c C =,把可逆的线性变换Cy x =代入二次型Ax x x x x f T n =),,,(21 ,得二次型ACy C y Cy A Cy Ax x x x x f T T T T n ===)()(),,,(21定义 1 两个同阶方阵A B 、,若存在可逆矩阵C ,使B AC C T=,则称矩阵A B 、合同.若A 为对称矩阵,C 为可逆矩阵,且B AC C T=.则B 亦为对称矩阵,且).()(A r B r =证 因为A 是对称矩阵, 即A A T=,所以B AC C C A C AC C B T T T T T T T T ====)()(即B 为对称矩阵. 因为AC C B T =,所以)()()(A r AC r B r ≤≤.因为11)(--=BC C A T ,所以)()()(1B r BC r A r ≤≤-, 故得).()(B r A r = 主要问题:求可逆的线性变换⎪⎩⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (3) 将二次型(1)化为只含平方项,即用(3)代入(1),能使222221121),,,(nn n y k y k y k x x x f +++= (4) 称(4)为二次型的标准形.也就是说,已知对称矩阵A ,求一个可逆矩阵C 使Λ=AC C T为对角矩阵.定理2 任意二次型j inj i ij x x af ∑==1,)(ji ij a a =,总有正交变换Py x =,使f 化为标准形2222211nn y y y f λλλ+++= ,其中n λλλ,,,21 是f 的矩阵)(ij a A =的特征值.推论 任给n 元二次型Ax x x f T=)(,总有可逆变换Cz x =使)(Cz f 为规范形.二、二次型的合同标准形1、拉格朗日配方法化二次型成标准型(1) 对有完全平方的二次型,每一次配方都应将某个变量的平方项以及涉及这一变量的所有混合项配成完全平方,而使得这个完全平方式的外面不再出现这个变量.然后对剩下的不是完全平方的部分再按照此处理,直到全部配成完全平方为止,这样做,是为了保证所得的线性变换是非异的.如果不这样做,最后就需要检验所得的线性变换是否非异.例2 用配方法化二此型32312123222132182292),,(x x x x x x x x x x x x f +++++=为标准形.解 由于f 中含变量型1x 的平方项,故把含1x 的项归并起来,配方可得32312123222182292x x x x x x x x x f +++++=322322232168)(x x x x x x x +++++=上式右端除第一项外已不再含1x .继续配方,可得232322321)3()(x x x x x x f -++++= 令⎪⎩⎪⎨⎧=+=++=3332232113x y x x y x x x y 即⎪⎩⎪⎨⎧=-=+-=33322321132y x y y x y y y x 就把f 化成标准形(规范形),232221y y y f -+=所用的变换矩阵为).0(100310211≠⎪⎪⎪⎭⎫⎝⎛--=C C(2) 如果所给的二次型全由混合项组成,而没有平方项,例如133221321),,(x x x x x x x x x f ++=,则需要先做类似于⎪⎩⎪⎨⎧=-=+=33212211y x y y x y y x 之类的非异线性变换,使变换后的二次型由平方项,再按(1)处理.二次型经非异线性变换化为标准型后,还可以再作非异线性变换,化为标准形.例3化二次型3231212x x x x x x f -+=成标准型,并求所用的变换矩阵.解 由于所给二次型中无平方项,所以令 ⎪⎩⎪⎨⎧=+=-=33212211yx y y x y y x 即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛321321100011011y y y x x x 代入3231212x x x x x x f -+=得323122213y y y y y y f ++-=在配方,得.2)23()21(23232231y y y y y f +--+= 令⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+=333223113332231123212321z y z z y z z y y z y y z y y z即.10023102101321321⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛z z z y y y得2322212z z z f +-= 所用变换矩阵为.10011121110023102101100011011⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=C )02(≠=C2、正交变换化二次型成标准型寻求正交变换,化二次型为标准型,其步骤如下: (1) 写出二次型的矩阵A ,求0-=A E λ的所有相异的根n λλλ,,,21 (n s ≤,n 为A 的阶数);(2) 对每个i λ(s ,,2,1 =i )求齐次线性方程组0)(=-x A E i λ的基础解系.如果i λ,基础解系只含1个解向量,则单位化.如果i λ,基础解系含有多于1个的解向量,则规范化,这样,总共得到n 个两两正交的单位向量.(3) 以所得的n 个两两正交的列向量得到矩阵P ,则P 为正交矩阵,正交变换Py x =化二次型Ax x T为标准形y y TΛ为对角阵,主对角线上第i ),,2,1(n i =个元素是P 的第i 个列向量所对应的特征值(k 重特征值出现k 次).经正交变换得到的标准形后,还可以再作非异的线性变换将标准后,还可以再作非异的线性变换将标准形化为规范形.但这一变换已不再是正交变换了.换言之,经正交变换,二次型一定可以化为标准型,但未必能化规范形.例4求一个正交变换Py x =,化二次型32312123222132184422),,(x x x x x x x x x x x x f ++---=为标准形.解 (1)写出二次型f 矩阵⎪⎪⎪⎭⎫ ⎝⎛----=242422221A (2) 求矩阵A 的特征值,写出特征多项式λλλλλλλλλλ------=-------=-------204622412204222212424222212)2)(7(6241)2(λλλλλ-+-=------=故特征值为2,7321==-=λλλ(3) 求矩阵A 的特征值所对应的特征向量 ①当71-=λ时, 解方程0)7(=+x E A ,由⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=+0001102101~5424522287r E A 得基础解系⎪⎪⎪⎭⎫ ⎝⎛-=2211ξ.②当232==λλ时, 解方程0)2(=-x E A ,由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-----=-000000221~4424422212r E A得基础解系⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=102,01232ξξ.(4) 将32,ξξ正交化:取22ξη=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=-=5425101254102],[],[2223233ηηηξηξη(5) 将321,,ηηξ单位化,得,22131111⎪⎪⎪⎭⎫ ⎝⎛-==ξξp ,01251222⎪⎪⎪⎭⎫ ⎝⎛-==ηηp .542531333⎪⎪⎪⎭⎫ ⎝⎛==ηηp(5) 可得正交矩阵P.53503253451325325231),,(321⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--==p p p P 若令Py x =则Ax x x x x x x x x x x x x x f T =++---=32312123222132184422),,(233222211y y y APy P y T T λλλ++== 2322212271y y y ++-= 注 用正交变换法化二次型成标准型后,其平方项的系数就是矩阵A的特征值.而变换矩阵的各列,分别是这些特征值对应的规范正交的特征向量.例 5 已知,1001110101⎪⎪⎪⎭⎫⎝⎛--=a a A 二次型x A A x x x x f T T )(),,(321=的秩为2.(1) 求实数a 的值.(2) 求正交变换Qy x =将f 化为标准型. 解(1),3111101021001110101111010010122⎪⎪⎪⎭⎫⎝⎛+---+-=⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=a a a a a a a a a a A A T x A A x T T )( 秩为22)()(==∴A r A A r T可得 1-=a .(2) 令⎪⎪⎪⎭⎫⎝⎛==422220202B A A T由0)6)(2(422220202=--=-------=-λλλλλλλE B解之得.6,2,0321===λλλ① 当01=λ时,由0)0(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=11-1-1ξ.②当22=λ时,由0)2(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=011-2ξ.③当63=λ时,由0)6(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=2113ξ.将321,,ξξξ单位化,得⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫ ⎝⎛==211613,011-212,11-1-313322111ξξξξξξr r r令⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--==6203161210612131),,(321r r r Q . 则Qy x =时,可得标准型232262y y Bx x f T +==. 例6 设二次型2221231231323(,,)(1)22f x x x ax ax a x x x x x =++-+-,若二次型f 的规范形为2212y y +,求a 的值. 解 若二次型f 的规范形为2212y y +,说明f 两个特征值为正,一个为0.当2=a 时,三个特征值为 0,2,3,这时,二次型的规范形为2212y y +.§3 二次型及实对称矩阵的正定性二次型的标准形不是唯一的.标准形中所含项数是确定的(即是二次型的秩).限定变换为实变换时,标准形中正系数的个数是不变的.一、惯性定理定理3(惯性定理) 设有实二次型Ax x f T =它的秩是r ,有两个实的可逆变换Cy x =与Pz x =.使)0(,2222211≠+++i r r k y k y k y k 及,2222211r r y z z z +++ λλ)0(≠i λ则r k k k ,,,21 中正数的个数与r λλλ,,,21 中正数的个数相等. 正数的个数称为正惯性指数,负数的个数称为负惯性指数.例7 二次型,2223),,(323121232221321x x x x x x x x x x x x f +++++=求f 的正惯性指数.解:方法一:3231212322213212223),,(x x x x x x x x x x x x f +++++= 2223212)(x x x x +++= 令⎪⎩⎪⎨⎧==++=33223211xy x y x x x y , 则22212y y f +=.故f 的正惯性指数为2.方法二:f 的正惯性指数为所对应矩阵特征值正数的个数,由于二次型f 对应矩阵.111131111⎪⎪⎪⎭⎫ ⎝⎛=A所以λλλλλλλλλλλ---=---=---=-211231001111310111131111E A λλλ---=2112310)4)(1(2123---=---=λλλλλλ=0 故4,1,0321===λλλ.故f 的正惯性指数为2. 二、正定性的判别定义10 设有实二次型Ax x f T=如果对于任何0≠x ,都有0)(>x f ,(显然0)0(=f ),则称f 为正定二次型,并称对称阵A 是正定的.记作0>A ;如果对任何0≠x ,都有0)(<x f ,则称f 为负定二次型,并称对称阵A 是负定的,记作0<A .定理4 实二次型Ax x f T=为正定的充分必要条件是:它的标准形的n 个系数全为正,即f 的正惯性指数为n .证 设可逆变换Cy x =使21)()(ini i yk Cy f x f ∑===.先证充分性:设0>i k ),,2,1(n i =,任给0≠x ,故.0)(21>=∑=i ni i y k x f再证必要性: 用反证法,假设有0≤s k ,则当s e y =(单位坐标向量)时,0)(≤=s s k Ce f ,显然0≠s Ce 这与假设f 正定矛盾,故.0>i k推论 对称阵A 为正定的充分必要条件是: A 的特征值全为正.定理5 对称阵A 为正定的充分必要条件是:A 的各阶主子式都为正.即011>a ,022211211>a a a a,01111>nnn na a a a ; 对称阵A 为负定的充分必要条件是:奇数阶主子式为负,而偶数阶主子式为正.即,0)1(1111>-nrn rra a a a ),,2,1(n r =.这个定理称为霍尔维兹定理.注:对于二次型,除了有正定和负定以外,还有半正定和半负定及不定二次型等概念.例8设实二次型312322212x cx ax bx ax f +++=,当该二次型为正定二次型,c b a ,,应满足的条件?解 写出f 的矩阵 ⎪⎪⎪⎭⎫⎝⎛=a c b c a A 0000因为该二次型为正定二次型,所以0)(,0,022>-=>>∴b c a A ab ac b a ,,∴应满足0,>>b c a .定理6实二次型Ax x f T =为正定的充分必要条件是:存在可逆矩阵C ,使C C A T =,即矩阵A 与单位矩阵合同.证明 先证充分性:若存在可逆矩阵C ,使C C A T=,任取非零向量x ,则0≠Cx (如果0=Cx ,由C 可逆,则0=x 矛盾),对任取的0≠x ,有0)()()(T >====Cx Cx Cx Cx C x Ax x x f T T T,从而矩阵A 正定.再证必要性:设对称矩阵A 为正定矩阵,因为A 为对称矩阵,则存在正交矩阵Q ,使A 对角化,即),,,(21n T diag AQ Q λλλ =Λ=,其中n λλλ,,,21 为A 的特征值,而A 是正定矩阵,所以0>i λ,记),,,(211n diag λλλ =Λ.则Λ=Λ21,从而T T T Q Q Q Q Q Q A ))((1111ΛΛ=ΛΛ=Λ=令T Q C )(1Λ=,则C 可逆,而且得到C C A T=. 所以可得EC C A T=,故矩阵A 与单位矩阵合同.定理7实二次型Ax x f T =为正定的充分必要条件是:存在正定矩阵B ,使2B A =.证明 因为A 是正定矩阵,所以矩阵A 可以正交相似对角化。
[线性代数]第一章行列式1 二阶与三阶行列式的引入2n阶行列式的定义3行列式的性质4余子式与代数余子式5行列式的展开定理6线性方程组的Gramer 法则7典型例题回顾[说明]●不证明这些性质, 重点是熟练使用●行列地位平等: 对行成立的性质对列也成立[符号说明])(row i r i 行第)(column j c j列第两行交换j i r r ji ,↔ki kr i 行提公因子第/行倍加到第行第i k j kr r ji +3. 行列式的性质行列式称为行列式D 的转置行列式.TD nna a a 2211nn a a a 2112 2121n n a a a =D 2121n n a a an n a a a 2112=TD nna a a 2211[性质1]转置相等.说明这表明行与列地位平等.[定义1].825825=361567567361,571571=266853266853推论两行(列)相同,则行列式为零.--[性质2]换行反号.nn n n in i i n a a a ka ka ka a a a 212111211nnn n ini i n a a a a a a a a a k 212111211 推论两行(列)元素成比例, 则行列式为零.[性质3]按行提公因子.[性质2]换行反号.nnni ni n n n i i n i i a a a a a a a a a a a a a a a D )()()(2122222211111211'+'+'+=nn nin n i n i nn ni n n i n i a a a a a a a a a a a a a a a a a a'''+=122211111122211111[性质4]按行拆和.[性质3]按行提公因子.[性质2]换行反号.njnj nin jj i nji a a a a a a a a a a a a 12222111111njnjnj ni n j j j i nj j i kr r a a ka a a a a ka a a a a ka a a ji )()()(1222221111111++++=⨯k [性质5]倍加不变.[性质4]按行拆和.[性质3]按行提公因子.[性质2]换行反号.[例1].2,d xz z y y x p r r q q p ac c b b a D z y x r q p c b ad =+++++++++==证明设证xz z y y x pr r q q p a c c b b a D +++++++++=x z z y x p r r q p a c c b a ++++++=,xz z y y p r r q q a c c b b +++++++x z z y x p r r q p a c c b a ++++++=,x z z y y p r r q q a c c b b +++++++xz z y x p r r q p ac c b a ++++++z z y x r r q p c c b a c c +++=-13zy x r q p cb ac c 32-=,d =x z z y y p r r q q a c c b b ++++++xz z y p r r q ac c b c c +++=-12xz y p r q ac b c c 23-=zx y rp q c a b c c -=↔23zy x r q p cb ac c 21↔=,d =.2d D =从而,[例2]计算行列式2101044614753132115973312402----------=D 2101044614753132115973312402----------=D 解210104461475312402597331321131-----------=↔r r3⨯2101044614753124022010013211123----------=+r r 210104461475312402597331321131-----------=↔r r )2(-⨯2101044614753140202010013211132----------=-r r )3(-⨯210104435120140202010013211143----------=-rr )4(-⨯2220035120140202010013211154---------=-r r 222002110020100140201321124-------=+r r 222003512020100140201321132--------=↔r r 210104435120140202010013211143----------=-rr )4(-⨯222000100020100140201321134-------=+r r 2⨯6200001000201001402013211352-------=+r r 2⨯6000001000201001402013211452-------=+r r )6()1()1(21-⋅-⋅-⋅⋅=.12-=222002110020100140201321124-------=+r r[例2的简化表达]2101044614753132115973312402----------=D 2101044614753132115973312402----------=D 解210104461475312402597331321131-----------=↔r r2220035120140202010013211---------222003512020100140201321132--------=↔r r =-+--131215142343r r r r r r r r 2101044614753132115973312402----------=D 210104461475312402597331321131-----------=↔r r222002110020100140201321124-------=+r r 6200001000201001402013211-------=++34352r r rr 2220035120140202010013211---------222003512020100140201321132--------=↔r r =-+--131215142343r r r r r r r r6000001000201001402013211452-------=+r r )6()1()1(21-⋅-⋅-⋅⋅=.12-=222002110020100140201321124-------=+r r 6200001000201001402013211-------=++34352r r rr[定理1]行倍加运算化成上三角任何行列式都可以只用.行列式够实现换行只需证明行倍加运算能j i r rj j i r r r r r ji+=+i j i r r r r r ij-+=-证i j r r r r j i-=+i j r r -=[例3]计算n 阶行列式.)(n abb bb a b bb b a b b b b a D=解abb b n a b ab b n a b b a b n a b b b b n a D )1()1()1()1(-+-+-+-+=列得列加到第将第1,,3,2n[]abb b a b b b a b b b b n a1111)1(-+=ab b b n a b ab b n a b b a b n a b b b b n a D )1()1()1()1(-+-+-+-+=[]ba ba b a bb b b n a ----+= 0000000001)1([]abb b a b b b a b b b b n a1111)1(-+=[].)()1(1---+=n b a b n a[例4]nnn nnk n k kkk kb b b bc c c c a a a a D 1111111111110=,)det(11111kkk kij a a a a a D ==,)det(11112nnn nij b b b b b D ==.21D D D =:证明[以后作为定理使用]设证明;0111111kk kkk p p p p p D ==:,11化为下三角形行列式把作运算对D kr r D j i +:,22化为下三角形行列式把作运算对D kc c D j i +.0111112nn nkn q q p q q D ==将列作运算后行作运算的前对,,j i j i kc c n kr r k D ++:化为下三角形行列式D ,11111kkk ka a a a D=,11112nnn nb b b b D=nnn nnk n k kkk kb b b bc c c c a a a a D 1111111111110=,01111111111nnn nk n k kkk q q q c c c c p p p D =nnkk q q p p 1111=.21D D =下三角)()(1111nn kk q q p p ⋅=将列作运算后行作运算的前对,,j i j i kc c n kr r k D ++:化为下三角形行列式Dnnn nnk n k kkk kb b b bc c c c a a a a 1111111111110kk k k a a a a 1111=nnn nb b b b1111[以后作为定理使用]nnn nknk nkk k k b b b b c c c c a a a a1111111111110kk k k a a a a 1111=nnn nb b b b1111。
178第二章 矩阵矩阵本质上就是一个数表,它是线性代数中一个非常重要而且应用十分广泛的概念,贯穿了线性代数的始终,复习时要高度重视,概念要清晰,符号要习惯,运算要准确、迅速、简捷。
1. 理解矩阵的概念,熟练几种特殊的矩阵;2. 了解单位矩阵, 对角矩阵, 三角矩阵, 对称矩阵以及它们的基本性质;3. 掌握矩阵的线性运算, 乘法, 转置及其运算规则;4. 理解逆矩阵的概念; 掌握可逆矩阵的性质; 会用伴随矩阵求矩阵的逆;5. 了解分块矩阵的概念, 了解分块矩阵的运算法则。
一、 考试内容 2.1 矩阵的定义由n m ⨯个数),,2,1;,,2,1(n j m i a ij ==排成如下m 行n 列的形式⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n mna a a a a a a a a A (2)12222111211称为一个n m ⨯矩阵,当n m =时,矩阵A 称为n 阶矩阵或者叫n 阶方阵。
只有一行的矩阵)(21n a a a A =称为行矩阵,又称为行向量;反之,只有一列的矩阵称为列矩阵,又称为列向量。
两个矩阵的行数和列数都相等时,就称它们为同型矩阵。
如果是同型矩阵,而且对应元素都相等,则称两矩阵为相等矩阵。
元素都是零的矩阵称为零矩阵,记作O 。
注意不同型的零矩阵是不同的。
2.2 矩阵的加法设有两个n m ⨯阶矩阵)(ij a A =和)(ij b B =,那么矩阵A 与B 的和记作B A +,规定为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=+mn mn m m m m n n n n b a b a b a b a b a ba b a b a b a B A (2)21122222221211112121111 运算法则:(1)A B B A +=+ (2))()(C B A C B A ++=++ (3)A O A =+ (4))(B A B A -+=- 注意:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算。
目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲基本概念1.线性方程组的基本概念线性方程组的一般形式为:a11x1+a12x2+…+a1n x n=b1,a21x1+a22x2+…+a2n x n=b2,…………a m1x1+a m2x2+…+a mn x n=b m,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2, …,k n)(称为解向量),它满足:当每个方程中的未知数x i都用k i 替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b1=b2=…=b m=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由m⨯n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m⨯n型矩阵.例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个4⨯5矩阵.对于上面的线性方程组,称矩阵a11 a12… a1n a11 a12… a1n b1A= a21 a22… a2n 和(A|β)= a21 a22… a2n b2…………………a m1 a m2… a mn a m1 a m2… a mnb m为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n个数构成的有序数组称为一个n维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2,⋯ ,a n的向量可表示成a1(a1,a2,⋯ ,a n)或 a2 ,┆a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n矩阵,右边是n⨯1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个m⨯n的矩阵的每一行是一个n维向量,称为它的行向量; 每一列是一个m维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A的列向量组为α1, α2,⋯ ,αn时(它们都是表示为列的形式!)可记A=(α1, α2,⋯ ,αn).矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量α和β相等(记作α=β),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个m⨯n的矩阵A和B可以相加(减),得到的和(差)仍是m⨯n矩阵,记作A+B (A-B),法则为对应元素相加(减).数乘: 一个m⨯n的矩阵A与一个数c可以相乘,乘积仍为m⨯n的矩阵,记作c A,法则为A的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:①加法交换律:A+B=B+A.②加法结合律:(A+B)+C=A+(B+C).③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A.④数乘结合律: c(d)A=(cd)A.⑤ c A=0⇔ c=0 或A=0.转置:把一个m⨯n的矩阵A行和列互换,得到的n⨯m的矩阵称为A的转置,记作A T(或A').有以下规律:① (A T)T=A.② (A+B)T=A T+B T.③ (c A)T=c A T.转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当α是列向量时, α T表示行向量, 当α是行向量时,α T表示列向量.向量组的线性组合:设α1, α2,…,αs是一组n维向量, c1,c2,…,c s是一组数,则称c1α1+c2α2+…+c sαs为α1, α2,…,αs的(以c1,c2,…,c s为系数的)线性组合.n维向量组的线性组合也是n维向量.(3) n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵.把n阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法. 对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|β),用初等行变换把它化为阶梯形矩阵(B|γ).(2)用(B|γ)判别解的情况:如果最下面的非零行为(0,0, ⋯,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|γ)的零行,得到一个n×(n+1)矩阵(B0|γ0),并用初等行变换把它化为简单阶梯形矩阵(E|η),则η就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵⇒A是阶梯形矩阵.(B) A是上三角矩阵⇐A是阶梯形矩阵.(C) A是上三角矩阵⇔A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立?(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲行列式一.概念复习1. 形式和意义形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式:a11 a12 (1)a21 a22 (2)……… .a n1 a n2… a nn如果行列式的列向量组为α1, α2, … ,αn,则此行列式可表示为|α1, α2, … ,αn|.意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n阶矩阵A对应一个n阶行列式,记作|A|.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)2阶和3阶行列式的计算公式:a11 a12a21 a22 = a11a22-a12a21 .a11 a12 a13a21 a22 a23 = a11a22a33+ a12a23a31+ a13a21a32-a13a22a31- a11a23a32-a12a21a33.a31 a32 a33一般地,一个n阶行列式a11 a12 (1)a21 a22 (2)………a n1 a n2… a nn的值是许多项的代数和,每一项都是取自不同行,不同列的n个元素的乘积,其一般形式为:,这里把相乘的n个元素按照行标的大小顺序排列,它们的列标j1j2…j n构成1,2, …,n的一个全排列(称为一个n元排列),共有n!个n元排列,每个n元排列对应一项,因此共有n!个项.所谓代数和是在求总和时每项先要乘+1或-1.规定τ(j1j2…j n)为全排列j1j2…j n的逆序数(意义见下面),则项所乘的是全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:, τ(436512)=3+2+3+2+0+0=10.至此我们可以写出n阶行列式的值:a11 a12 (1)a21 a22… a2n =………a n1 a n2… a nn这里表示对所有n元排列求和.称此式为n阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n阶行列式的第i行和第j列划去后所得到的n-1阶行列式称为(i,j)位元素a ij的余子式,记作M ij.称A ij=(-1)i+j M ij为元素a ij的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题第三类初等变换(倍加变换)不改变行列式的值.化零降阶法用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:①把行列式转置值不变,即|A T|=|A| .②某一行(列)的公因子可提出.于是, |c A|=c n|A|.③对一行或一列可分解,即如果某个行(列)向量α=β+γ ,则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量α换为β或γ 所得到的行列式.例如|α,β1+β2,γ |=|α,β1,γ |+|α,β2,γ |.④把两个行(列)向量交换, 行列式的值变号.⑤如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0.⑥某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0.⑦如果A与B都是方阵(不必同阶),则A * = A O =|A||B|.O B * B范德蒙行列式:形如1 1 1 (1)a1 a2 a3 … a na12 a22 a32… a n2…………a1n-i a2n-i a3n-i… a n n-i的行列式(或其转置).它由a1,a2 ,a3,…,a n所决定,它的值等于因此范德蒙行列式不等于0⇔ a1,a2 ,a3,…,a n两两不同.对于元素有规律的行列式(包括n阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D1/D, D2/D,⋯,D n/D),这里D是系数行列式的值, D i是把系数行列式的第i个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A|β)作初等行变换,使得A变为单位矩阵:(A|β)→(E|η),η就是解.用在齐次方程组上 :如果齐次方程组的系数矩阵A是方阵,则它只有零解的充分必要条件是|A|≠0.二. 典型例题1.利用性质计算元素有规律的行列式例1① 2 a a a a ② 1+x 1 1 1 ③ 1+a 1 1 1a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a 3 .a a a 2 a 1 1 1 1+x 4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例3 1+x1 1 1 11 1+x2 1 1 .1 1 1+x3 11 1 1 1+x4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 33x2-29 x3 6 -6例7求 x-3 a -1 4f(x)= 5 x-8 0 –2 的x4和x3的系数.0 b x+1 12 2 1 x例8 设4阶矩阵A=(α, γ1, γ2 ,γ3),B=(β, γ1, γ2 ,γ3),|A|=2, |B|=3 ,求|A+B| .例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A11=-9,A12=3,A13=-1,A14=3,求x,y,z.1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01)2 2 2 20 -7 0 05 3 -2 23.几个n阶行列式两类爪形行列式及其值:例11 a1 a2 a3… a n-1 a nb1 c2 0 … 0 0证明 0 b2 c3 0 0 =.…………0 0 0 …b n-1 c n提示: 只用对第1行展开(M1i都可直接求出).例12 a0 a1 a2… a n-1 a nb1 c1 0 … 0 0证明 b2 0 c2… 0 0 =.…………b n 0 0 …0c n提示: 只用对第1行展开(M1i都可直接求出).另一个常见的n阶行列式:例13 证明a+b b 0 … 0 0a a+b b … 0 0………… = (当a≠b时).0 0 0 … a+b b0 0 0 a a+b提示:把第j列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题例14设有方程组x1+x2+x3=a+b+c,ax1+bx2+cx3=a2+b2+c2,bcx1+acx2+abx3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c两两不等.(2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.② x3(x+4). ③ a3(a+10).例2 1875.例3 x1x2x3x4+x2x3x4+x1x3x4+x1x2x4+x1x2x3.例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a2-a3+a4-a5.例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1.例10 -28.例14 x1=a,x2=b,x3=c..第三讲矩阵一.概念复习1. 矩阵乘法的定义和性质定义2.1 当矩阵A的列数和B的行数相等时,和A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和. 设 a11 a12... a1n b11 b12... b1s c11 c12 (1)A= a21 a22... a2n B= b21 b22... b2s C=AB=c21 c22 (2)………………………a m1 a m2… a mn ,b n1 b n2… b ns ,c m1 c m2… c ms ,则c ij=a i1b1j+a i2b2j+…+a in b nj.矩阵的乘法在规则上与数的乘法有不同:①矩阵乘法有条件.②矩阵乘法无交换律.③矩阵乘法无消去律,即一般地由AB=0推不出A=0或B=0.由AB=AC和A≠0推不出B=C.(无左消去律)由BA=CA和A≠0推不出B=C. (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:①加乘分配律 A(B+C)= AB+AC,(A+B)C=AC+BC.②数乘性质 (c A)B=c(AB).③结合律 (AB)C= A(BC).④ (AB)T=B T A T.2. n阶矩阵的方幂和多项式任何两个n阶矩阵A和B都可以相乘,乘积AB仍是n阶矩阵.并且有行列式性质:|AB|=|A||B|.如果AB=BA,则说A和B可交换.方幂设k是正整数, n阶矩阵A的k次方幂A k即k个A的连乘积.规定A 0=E.显然A的任何两个方幂都是可交换的,并且方幂运算符合指数法则:①A k A h= A k+h.② (A k)h= A kh.但是一般地(AB)k和A k B k不一定相等!n阶矩阵的多项式设f(x)=a m x m+a m-1x m-1+…+a1x+a0,对n阶矩阵A规定f(A)=a m A m+a m-1A m-1+…+ a1A+a0E.称为A的一个多项式.请特别注意在常数项上加单位矩阵E.乘法公式一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n阶矩阵的不再成立.但是如果公式中所出现的n阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A和B可交换时,有:(A±B)2=A2±2AB+B2;A2-B2=(A+B)(A-B)=(A+B)(A-B).二项展开式成立: 等等.前面两式成立还是A和B可交换的充分必要条件.同一个n阶矩阵的两个多项式总是可交换的. 一个n阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A和B,可以先用纵横线把它们切割成小矩阵(一切A的纵向切割和B的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A11 A12 B11 B12 = A11B11+A12B21 A11B12+A12B22A21 A22 B21 B22 A21B11+A22B21 A21B12+A22B22要求A ij的列数B jk和的行数相等.准对角矩阵的乘法:形如A1 0 0A= 0 A2 0………0 0 …A n的矩阵称为准对角矩阵,其中A1,A2,…,A k都是方阵.两个准对角矩阵A1 0 ... 0 B1 0 0A= 0 A2 ... 0 , B= 0 B2 0………………0 0 …A k 0 0 …B k如果类型相同,即A i和B i阶数相等,则A1B1 0 0AB = 0 A2B2 … 0 .………00 …A k B k(2)乘积矩阵的列向量组和行向量组设A是m⨯n矩阵B是n⨯s矩阵. A的列向量组为α1,α2,…,αn,B的列向量组为β1, β2,…,βs, AB的列向量组为γ1, γ2,…,γs,则根据矩阵乘法的定义容易看出(也是分块法则的特殊情形):①AB的每个列向量为:γi=Aβi,i=1,2,…,s.即A(β1, β2,…,βs)=(Aβ1,Aβ2,…,Aβs).②β=(b1,b2,…,b n)T,则Aβ= b1α1+b2α2+…+b nαn.应用这两个性质可以得到:如果βi=(b1i,b2i,…,b ni)T,则γi=AβI=b1iα1+b2iα2+…+b niαn.即:乘积矩阵AB的第i个列向量γi是A的列向量组α1, α2,…,αn的线性组合,组合系数就是B的第i个列向量βi的各分量.类似地, 乘积矩阵AB的第i个行向量是B的行向量组的线性组合,组合系数就是A的第i个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵Λ从左侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵Λ从右侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(α,β,γ), C=(α+2β-γ,3α-β+γ,α+2γ),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i个元素改为c.E(i,j(c))(i≠j):把E的第j行的c倍加到第i行上(或把第i列的c倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设B=(β1, β2,…,βs),则 X也应该有s列,记X=(X1,X2,…,X s),则有AX i=βi,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:线性代数讲义将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)→(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)→(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0⇒B=0;AB=AC⇒B=C.(左消去律);BA=0⇒B=0;BA=CA⇒B=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C⇔B=A-1C. BA=C⇔B=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理 n阶矩阵A可逆⇔|A|≠0.证明“⇒”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|≠0. (并且|A-1|=|A|-1.)“⇐”因为|A|≠0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E, CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=E⇔BA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.1 / 1。
线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录一内积正交矩阵施密特正交化实对称矩阵的对角化附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲基本概念1.线性方程组的基本概念线性方程组的一般形式为:a11x1+a12x2+…+a1nxn=b1,a21x1+a22x2+…+a2nxn=b2,…………am1x1+am2x2+…+amnxn=bm,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2, …,kn)(称为解向量),它满足:当每个方程中的未知数xi 都用ki替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b 1=b2=…=bm=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由m⨯n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m⨯n 型矩阵.例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个4⨯5矩阵.对于上面的线性方程组,称矩阵a11 a12… a1na11a12… a1nb1A= a21 a22… a2n 和(A|β)= a21 a22… a2n b2…………………am1 am2… amnam1am2… amnbm为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n个数构成的有序数组称为一个n维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2,⋯ ,an的向量可表示成a 1(a 1,a 2,⋯ ,a n )或 a 2 , ┆ a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n 矩阵,右边是n ⨯1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个m ⨯n 的矩阵的每一行是一个n 维向量,称为它的行向量; 每一列是一个m 维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为α1, α2,⋯ ,αn 时(它们都是表示为列的形式!)可记A =(α1, α2,⋯ ,αn ).矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量α和β相等(记作α=β),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个m ⨯n 的矩阵A 和B 可以相加(减),得到的和(差)仍是m ⨯n 矩阵,记作 A +B (A -B ),法则为对应元素相加(减).数乘: 一个m ⨯n 的矩阵A 与一个数c 可以相乘,乘积仍为m ⨯n 的矩阵,记作c A ,法则为A 的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:① 加法交换律: A +B =B +A .② 加法结合律: (A +B )+C =A +(B +C ).③ 加乘分配律: c(A +B )=c A +c B .(c+d)A =c A +d A . ④ 数乘结合律: c(d)A =(cd)A . ⑤ c A =0⇔ c=0 或A =0.转置:把一个m ⨯n 的矩阵A 行和列互换,得到的n ⨯m 的矩阵称为A 的转置,记作A T (或A '). 有以下规律: ① (A T )T = A . ② (A +B )T=A T+B T. ③ (c A )T =c A T .转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当α是列向量时, α T 表示行向量, 当α是行向量时,α T 表示列向量.向量组的线性组合:设α1, α2,…,αs 是一组n 维向量, c 1,c 2,…,c s 是一组数,则称 c 1α1+c 2α2+…+c s αs为α1, α2,…,αs 的(以c 1,c 2,…,c s 为系数的)线性组合.n 维向量组的线性组合也是n 维向量.(3) n 阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n 的矩阵也常常叫做n 阶矩阵.把n 阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法.对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|β),用初等行变换把它化为阶梯形矩阵(B|γ).(2)用(B|γ)判别解的情况:如果最下面的非零行为(0,0, ⋯,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|γ)的零行,得到一个n×(n+1)矩阵(B0|γ0),并用初等行变换把它化为简单阶梯形矩阵(E|η),则η就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵⇒A是阶梯形矩阵.(B) A是上三角矩阵⇐A是阶梯形矩阵.(C) A是上三角矩阵⇔A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立?(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲行列式一.概念复习1. 形式和意义形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式:a11 a12… a1na 21 a22… a2n……… .a n1 an2… ann如果行列式的列向量组为α1, α2, … ,αn,则此行列式可表示为|α1, α2, … ,αn|.意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n阶矩阵A对应一个n阶行列式,记作|A|.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0. 2. 定义(完全展开式)2阶和3阶行列式的计算公式: a 11 a 12a 21 a 22 = a 11a 22-a 12a 21 . a 11 a 12 a 13a 21 a 22 a 23 = a 11a 22a 33+ a 12a 23a 31+ a 13a 21a 32-a 13a 22a 31- a 11a 23a 32-a 12a 21a 33. a 31 a 32 a 33一般地,一个n 阶行列式 a 11 a 12 … a 1na 21 a 22 … a 2n… … …a n1 a n2 … a nn的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项.所谓代数和是在求总和时每项先要乘+1或-1.规定τ(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项nnj j j a a a 2121所乘的是.)1()(21n j j jτ-全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:023********, τ(436512)=3+2+3+2+0+0=10. 至此我们可以写出n 阶行列式的值: a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(n n nnj j j j j j j j j a a a τ-∑… … … a n1 a n2 … a nn这里∑nj j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的n-1阶行列式称为(i,j)位元素a ij 的余子式,记作M ij .称A ij =(-1)i+j M ij 为元素a ij 的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题 第三类初等变换(倍加变换)不改变行列式的值.化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握. 3.其它性质行列式还有以下性质:① 把行列式转置值不变,即|A T |=|A | . ② 某一行(列)的公因子可提出.于是, |c A |=c n|A |.③ 对一行或一列可分解,即如果某个行(列)向量α=β+γ ,则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量α换为β或γ 所得到的行列式.例如|α,β1+β2,γ |=|α,β1,γ |+|α,β2,γ |.④ 把两个行(列)向量交换, 行列式的值变号.⑤ 如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0. ⑥ 某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0. ⑦ 如果A 与B 都是方阵(不必同阶),则 A * = A O =|A ||B |. O B * B 范德蒙行列式:形如1 1 1 … 1 a 1 a2 a3 … a na 12a 22a 32… a n 2… … … … a 1n-i a 2n-i a 3n-i … a n n-i的行列式(或其转置).它由a 1,a 2 ,a 3,…,a n 所决定,它的值等于).(i j ji a a -∏<因此范德蒙行列式不等于0⇔ a 1,a 2 ,a 3,…,a n 两两不同.对于元素有规律的行列式(包括n 阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则 应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n 阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为 (D 1/D, D 2/D,⋯,D n /D), 这里D 是系数行列式的值, D i 是把系数行列式的第i 个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A |β)作初等行变换,使得A 变为单位矩阵: (A |β)→(E |η), η就是解.用在齐次方程组上 :如果齐次方程组的系数矩阵A 是方阵,则它只有零解的充分必要条件是|A|≠0.二. 典型例题1.利用性质计算元素有规律的行列式例1① 2 a a a a ② 1+x 1 1 1 ③ 1+a 1 1 1a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a 3 .a a a 2 a 1 1 1 1+x 4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例3 1+x11 1 11 1+x21 1 .1 1 1+x311 1 1 1+x4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 33x2-29 x3 6 -6例7求 x-3 a -1 4f(x)= 5 x-8 0 –2 的x4和x3的系数.0 b x+1 12 2 1 x例8 设4阶矩阵A=(α, γ1, γ2 ,γ3),B=(β, γ1, γ2 ,γ3),|A|=2, |B|=3 ,求|A+B| .例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A11=-9,A12=3,A13=-1,A14=3,求x,y,z.1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01) 2 2 2 20 -7 0 05 3 -2 23.几个n 阶行列式两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a n b 1 c 2 0 … 0 0证明 0 b 2 c 3 0 0 =11111(1)ni i i i n i b b a c c --+=-∑ .… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出). 例12 a 0 a 1 a 2 … a n-1 a nb 1c 1 0 … 0 0证明 b 2 0 c 2 … 0 0 =011111nni i i i i n i i a c c c a b c c -+==-∑∏ .… … … … b n 0 0 … 0 c n提示: 只用对第1行展开(M 1i 都可直接求出). 另一个常见的n 阶行列式: 例13 证明a+b b 0 … 0 0 a a+b b … 0 0… … … … = 11n n nn iii abab a b++-=-=-∑(当a ≠b 时).0 0 0 … a+b b 0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题 例14设有方程组x 1+x 2+x 3=a+b+c, ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等. (2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.② x 3(x+4). ③ a 3(a+10). 例2 1875.例3 x 1x 2x 3x 4+x 2x 3x 4+x 1x 3x 4+x 1x 2x 4+x 1x 2x 3. 例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a2-a3+a4-a5. 例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1. 例10 -28.例14 x1=a,x2=b,x3=c..第三讲矩阵一.概念复习1. 矩阵乘法的定义和性质定义2.1 当矩阵A的列数和B的行数相等时,和A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和.设 a11 a12… a1nb11b12… b1sc11c12… c1sA= a21 a22... a2n B= b21 b22... b2s C=AB=c21 c22 (2)………………………a m1 am2… amn, bn1bn2… bns, cm1cm2… cms,则c ij =ai1b1j+ai2b2j+…+ainbnj.矩阵的乘法在规则上与数的乘法有不同:①矩阵乘法有条件.②矩阵乘法无交换律.③矩阵乘法无消去律,即一般地由AB=0推不出A=0或B=0.由AB=AC和A≠0推不出B=C.(无左消去律)由BA=CA和A≠0推不出B=C. (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:①加乘分配律 A(B+C)= AB+AC,(A+B)C=AC+BC.②数乘性质 (c A)B=c(AB).③结合律 (AB)C= A(BC).④ (AB)T=B T A T.2. n阶矩阵的方幂和多项式任何两个n阶矩阵A和B都可以相乘,乘积AB仍是n阶矩阵.并且有行列式性质: |AB|=|A||B|.如果AB=BA,则说A和B可交换.方幂设k是正整数, n阶矩阵A的k次方幂A k即k个A的连乘积.规定A 0=E. 显然A的任何两个方幂都是可交换的,并且方幂运算符合指数法则:①A k A h= A k+h.② (A k)h= A kh.但是一般地(AB )k 和A k B k不一定相等!n 阶矩阵的多项式设f(x)=a m x m +a m-1x m-1+…+a 1x+a 0,对n 阶矩阵A 规定f(A )=a m A m +a m-1A m-1+…+ a 1A+a 0E .称为A 的一个多项式.请特别注意在常数项上加单位矩阵E .乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n 阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有: (A ±B )2=A 2±2AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ).二项展开式成立: B ACB A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A 的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A 11 A 12B 11 B 12 = A 11B 11+A 12B 21 A 11B 12+A 12B 22 A 21 A 22 B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22 要求A ij 的列数B jk 和的行数相等. 准对角矩阵的乘法: 形如A 1 0 ... 0 A = 0 A 2 0… … … 0 0 … A n的矩阵称为准对角矩阵,其中A 1,A 2,…,A k 都是方阵.两个准对角矩阵A 1 0 ... 0 B 1 0 0A = 0 A 2 ... 0 , B = 0 B 2 0… … … … … …0 0 ... A k 0 0 ... B k 即A i 和B i , A 1B 1 0 0AB = 0 A 2B 2 … 0 .… … …0 0 … A k B k(2)乘积矩阵的列向量组和行向量组设A是m⨯n矩阵B是n⨯s矩阵.A的列向量组为α1,α2,…,αn,B的列向量组为β1, β2,…,βs, AB的列向量组为γ1, γ2,…,γs,则根据矩阵乘法的定义容易看出(也是分块法则的特殊情形):①AB的每个列向量为:γi=Aβi,i=1,2,…,s.即A(β1, β2,…,βs)=(Aβ1,Aβ2,…,Aβs).②β=(b1,b2,…,b n)T,则Aβ= b1α1+b2α2+…+b nαn.应用这两个性质可以得到:如果βi=(b1i,b2i,…,b ni)T,则γi=AβI=b1iα1+b2iα2+…+b niαn.即:乘积矩阵AB的第i个列向量γi是A的列向量组α1, α2,…,αn的线性组合,组合系数就是B的第i个列向量βi的各分量.类似地, 乘积矩阵AB的第i个行向量是B的行向量组的线性组合,组合系数就是A的第i个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵Λ从左侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵Λ从右侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(α,β,γ), C=(α+2β-γ,3α-β+γ,α+2γ),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i 个元素改为c.E(i,j(c))(i≠j):把E的第j行的c倍加到第i行上(或把第i列的c倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设 B=(β1, β2,…,βs),则 X也应该有s列,记X=(X1,X2,…,X s),则有AX i=βi,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)→(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)→(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0⇒B=0;AB=AC⇒B=C.(左消去律);BA=0⇒B=0;BA=CA⇒B=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C⇔B=A-1C. BA=C⇔B=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理 n阶矩阵A可逆⇔|A|≠0.证明“⇒”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|≠0. (并且|A-1|=|A|-1.) “⇐”因为|A|≠0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E, CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=E⇔BA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c≠0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)②如果A和B都可逆,则AB也可逆,并且(AB)-1=B-1A-1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c)).(4) 逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1是矩阵方程AX=E的解,于是可用初等行变换求A-1:(A|E)→(E|A-1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.②伴随矩阵若A是n阶矩阵,记A ij是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵为A11 A21… An1A*= A12 A22… A n2 =(A ij)T.………A 1n A2n… Amn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但是在A可逆时, A*和A-1有密切关系.基本公式: AA*=A*A=|A|E.于是对于可逆矩阵A,有A-1=A*/|A|, 即A*=|A|A-1.因此可通过求A*来计算A-1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc≠0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A; n=2时,(A*)*=A.二典型例题1.计算题例1 α=(1,-2,3) T,β=(1,-1/2,1/3)T, A=αβ T,求A6.讨论:(1)一般地,如果n阶矩阵A=αβ T,则A k=(βTα)k-1A=(tr(A ))k-1A .(2)乘法结合律的应用:遇到形如βTα的地方可把它当作数处理.① 1 -1 1ααT= -1 1 -1 ,求αTα.(2003一)1 -1 1②设α=(1,0,-1)T, A=ααT,求|a E-A n|.③ n维向量α=(a,0,⋯,0,a)T, a<0, A=E-ααT, A-1=E+a-1αα T,求a. (03三,四)④ n维向量α=(1/2,0,⋯,0,1/2)T, A=E-αα T, B=E+2αα T,求AB. (95四)⑤ A=E-αβ T,其中α,β都是n维非零列向量,已知A2=3E-2A,求αTβ.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)1 0 1例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n=A n-2+A2-E. (2) 求A n.0 1 0例4 设A为3阶矩阵, α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3, Aα2=2α2+ α3, Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2005年数学四)例5设3阶矩阵A=(α1,α2,α3),|A|=1,B=(α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3),求|B|.(05)例6 3维向量α1, α2, α3, β1, β2, β3满足α1+α3+2β1-β2=0, 3α1-α2+β1-β3=0, -α2+α3-β2+β3=0,已知|α1, α2, α3|=a,求| β1, β2, β3|.例7设A是3阶矩阵, α是3维列向量,使得P=(α,Aα,A2α)可逆,并且A3α=3Aα-2A2α.又3阶矩阵B满足A=PBP-1.(1)求B.(2)求|A+E|.(01一)2 1 0例8 3阶矩阵A,B满足ABA*=2BA*+E,其中A= 1 2 0 ,求|B|.(04一)0 0 1例9 3 -5 1设3阶矩阵A= 1 -1 0 , A-1XA=XA+2A,求X.-1 0 2例10 1 1 -1设3阶矩阵A= -1 1 1 , A*X=A-1+2X,求X.1 -1 1例11 4阶矩阵A,B满足ABA-1=BA-1+3E,已知1 0 0 0A*= 0 1 0 0 ,求B. (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A= 2 1 0 , B= 0 0 0 , XA+2B=AB+2X,求X11.2 13 0 0 -1例13设α1=(5,1,-5)T, α2=(1,-3,2)T, α3=(1,-2,1)T,矩阵A满足Aα1=(4,3) T, Aα2=(7,-8) T, Aα3=(5,-5) T,求A.2.概念和证明题例14 设A是n阶非零实矩阵,满足A*=A T.证明:(1)|A|>0.(2)如果n>2,则 |A|=1.例15 设矩阵A=(a ij)3⨯3满足A*=A T,a11,a12,a13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A 0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) |A|B* 0 . (D ) |B|A* 0 .0 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆.讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)≠0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设α是n维非零列向量,记A=E-ααT.证明(1) A2=A⇔αTα =1.(2) αTα =1⇒ A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆⇔ E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab≠0,证明(1) A-b E和B-a E都可逆.(2) A可逆⇔ B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵, E+AB可逆,证明(E+AB)-1A也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果A.B都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例135A=35 -2 1 –2/3 .3 -3/2 1① 3.② a2(a-2n). ③ -1. ④ E. ⑤ 4.例2 O.例3 (1)提示: A n=A n-2+A2-E⇔A n-2(A2-E)=A2-E ⇔ A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例 4 1 0 0B= 1 2 2 .1 1 3例5 2.例 6 –4a.例 7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例 9 -6 10 4X= -2 4 2 .-4 10 0例 10 1 1 0(1/4) 0 1 1 .1 0 1例 11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例 12 1 0 02 0 0 .6 -1 -1例 13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例 17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19 E(i,j).例22 提示:用克莱姆法则.例如证明 ,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例 24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲向量组的线性关系与秩一.概念复习1. 线性表示关系设α1,α2,…,αs 是一个n 维向量组.如果n 维向量β等于α1,α2,…,αs 的一个线性组合,就说β可以用α1,α2,…,αs 线性表示.如果n 维向量组β1, β2,…,βt 中的每一个都可以可以用α1,α2,…,αs 线性表示,就说向量 β1,β2,…,βt 可以用α1,α2,…,αs 线性表示.判别“β是否可以用α1, α2,…,αs 线性表示? 表示方式是否唯一?”就是问:向量方程x 1α1+ x 2α2+…+x s αs =β 是否有解?解是否唯一?用分量写出这个向量方程,就是以(α1, α2,…,αs |β)为增广矩阵的线性方程组.反之,判别“以(A |β)为增广矩阵的线性方程组是否有解?解是否唯一?”的问题又可转化为“β是否可以用A 的列向量组线性表示? 表示方式是否唯一?”的问题.向量组之间的线性表示问题与矩阵乘法有密切关系: 乘积矩阵AB 的每个列向量都可以表示为A 的列向量组的线性组合,从而AB 的列向量组可以用A 的列向量组线性表示;反之,如果向量组β1,β2,…,βt 可以用α1,α2,…,αs 线性表示,则矩阵(β1,β2,…,βt )等于矩阵(α1,α2,…,αs )和一个s ⨯t 矩阵C 的乘积. C 可以这样构造: 它的第i 个列向量就是βi 对α1,α2,…,αs 的分解系数(C 不是唯一的).向量组的线性表示关系有传递性,即如果向量组β1,β2,…,βt 可以用α1,α2,…,αs 线性表示,而α1,α2,…,αs 可以用γ1,γ2,…,γr 线性表示,则β1,β2,…,βt 可以用γ1,γ2,…,γr 线性表示.当向量组α1,α2,…,αs 和β1,β2,…,βt 互相都可以表示时,就说它们等价,并记作{α1,α2,…,αs }≅{β1,β2,…,βt }.等价关系也有传递性.2. 向量组的线性相关性(1) 定义(从三个方面看线性相关性)线性相关性是描述向量组内在关系的概念,它是讨论向量组α1, α2,…,αs 中有没有向量可以用其它的s-1个向量线性表示的问题.定义 设α1,α2,…,αs 是n 维向量组,如果存在不全为0的一组数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0, 则说α1,α2,…,αs 线性相关,否则(即要使得c 1α1+c 2α2+…+c s αs =0,必须c 1,c 2,…,c s 全为0)就说它们线性无关.于是, α1,α2,…,αs “线性相关还是无关”也就是向量方程x 1α1+ x 2α2+…+x s αs =0“有没有非零解”,也就是以(α1,α2,…,αs )为系数矩阵的齐次线性方程组有无非零解.当向量组中只有一个向量(s=1)时,它相关(无关)就是它是(不是)零向量. 两个向量的相关就是它们的对应分量成比例.(2) 性质① 当向量的个数s 大于维数n 时, α1, α2,…,αs 一定线性相关.如果向量的个数s 等于维数n,则 α1, α2,…,αn 线性相关⇔| α1, α2,…,αn |=0. ② 线性无关向量组的每个部分组都无关(从而每个向量都不是零向量).③ 如果α1,α2,…,αs 线性无关,而α1,α2,…,αs ,β线性相关,则β可用α1,α2,…,αs 线性表示.。
第二章 矩阵矩阵是线性代数的重要组成部分,也是以后各章中计算的重要工具.在矩阵的理论中,矩阵的运算起着重要的作用.我们在这一章里,将要介绍矩阵的基本概念及其运算.§2.1 矩阵的定义一、矩阵的定义首先看几个例子.例1 设有线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=+-+=++--=--+7739183332154321432143214321x x x x x x x x x x x x x x x x这个方程组未知量系数及常数项按方程组中的顺序组成一个矩形阵列如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------77391111833312111151这个阵列决定着给定方程组是否有解?以及如果有解,解是什么等问题.因此对这个阵列的研究很有必要.例2 某企业生产5种产品,各种产品的季度产值(单位:万元)如表2-1.表2-1这个排成4行5列的产值阵列⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡7680827088809090759076848570986478755880具体描述了这家企业各种产品各季度的产值,同时也揭示了产值随季节变化规律的季增长率及年产量等情况.例3 生产m 种产品需用n 种材料,如果以ij a 表示生产第i 种产品(m i ,,Λ2,1=)耗用第j 种材料(n j ,,Λ2,1=)的定额,则消耗定额可以用一个矩形表表示,如表2-2.表2-2这个由m 行n 列构成的消耗定额阵列⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211描述了生产过程中产出的产品与投入材料的数量关系.类似这样的数表,我们在自然科学、工程技术和经济管理等不同领域中经常遇到.这种数表在数学上就叫做矩阵.下面我们给出矩阵的定义.定义 由n m ⨯个数),,2,1;,,2,1(n j m i a ij ΛΛ==排成m 行n 列的数表⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A ΛΛΛΛΛΛΛ212222111211 (2-1-1) 叫做m 行n 列矩阵,简称n m ⨯矩阵.这n m ⨯个数叫做矩阵A 的元素,ij a 叫做矩阵A 的第i 行第j 列元素.一般情形下,用大写字母A ,B ,C ,…表示矩阵.为了标明矩阵的行数m 和列数n ,可用n m A ⨯表示,或记作()nm ija ⨯.二、几种特殊的矩阵1.n 阶方阵当n m =时,即A =()nn ija ⨯时,A 称为n 阶方阵.2.对角矩阵主对角线以外的元素都为零的方阵称为对角矩阵,即⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=n OO A λλλO21 3.单位矩阵主对角线上的元素都是1的n 阶对角矩阵称为单位矩阵,记为E ,如⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=111O O OE 4.三角矩阵主对角线一侧所有元素都为零的方阵称为三角矩阵,如⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n a a aa a a ΛM O M M ΛΛ00022211211 或 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n a a a a aa ΛM O M M ΛΛ21222111000 5.零矩阵所有元素都为零的矩阵称为零矩阵.记作n m O ⨯,简记O . 6.行矩阵、列矩阵m =1时的矩阵,即()n a a a A Λ21=称为行矩阵;n =1时的矩阵,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A M 21称为列矩阵.7.对称矩阵在矩阵n n ij a A ⨯=)(中,若),,2,1,(n j i a a jiij Λ==则矩阵A 称为对称矩阵,如⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡410781086076258051§2.2 矩阵的运算矩阵的意义不仅在于将一些数据排成数表形式,而且在于对它定义了一些有理论意义和实际意义的运算,从而使它成为进行理论研究或解决实际问题的有力工具.一、矩阵的加法、减法首先给出矩阵相等的概念. 定义1 在矩阵()nm ija A ⨯=和()nm ijb B ⨯=中,若它们的对应元素相等,即),,2,1;,,2,1(n j m i b a ijij ΛΛ===则称矩阵A 与B 相等,记为A=B .定义2 设()nm ija A ⨯=,()nm ijb B ⨯=,矩阵()nm ijij b a ⨯±称为矩阵A 与矩阵B 的和或差,记作A +B 或A -B ,即n m ij ij b a B A ⨯±=±)(注意,只有当两个矩阵的行数相同且列数也相同时,这两个矩阵才能进行加法、减法运算.例1 有两种物资(单位:吨)从3个产地运往4个销地,两次调运方案分别为矩阵A 与矩阵B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=846075120231321034022753B A则从各产地运往各销地两次的物资调运量(单位:吨)为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+11670109142984834261007354102202273513 846075120231321034022753B A矩阵加法满足以下运算规律:(1)A B B A +=+(2))()(C B A C B A ++=++(3)A O A =+ 矩阵()nm ija ⨯-称为矩阵()nm ija A ⨯=的负矩阵,记为()nm ija A ⨯-=-.显然,有(4)O A A =-+)(二、数与矩阵的乘法定义3 以数k 乘矩阵A 的每一个元素所得到的矩阵,称为数k 与矩阵A 的积,记作kA .如果()nm ija A ⨯=,那么()()n m ij n m ij ka a k kA ⨯⨯==不难证明,数与矩阵乘法满足以下运算规律: (1) kB kA B A k +=+)( (2) lA kA A l k +=+)( (3) )()(lA k A kl =(4) A A A A -=-=⋅)1(1, (5) O O k =⋅ (O 为零矩阵) 例2 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=052110351234230412301321B A求3A -2B .解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-----+-+----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-61941016151055011061094021223066910023496683052110351234223412301321323B A 例3 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=612379154257864297510213B A且B X A =+2,求X ..解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-=1271211122223227212244446421)(21A B X 三、矩阵与矩阵的乘法先看一个例子.例4 某工厂有321,,A A A 三个车间,某月各种原材料的消耗量如表2-3.又各种原材料每吨价格和加工费如表2-4.求各车间某月支出原料费及加工费各为多少元?解我们可以直接计算出各车间支出的原料费用和加工费用为A车间的原料费=21×12+15×14+16×8+10×20=790(元)1A车间的原料费=53×12+0×14+13×8+4×20=820(元)2A车间的原料费=24×12+32×14+10×8+0×20=816(元)3A车间的加工费=21×5+15×4+16×2.5+10×3=235(元)1A车间的加工费=53×5+0×4+13×2.5+4×3=309.5(元)2A车间的加工费=24×5+32×4+10×2.5+0×3=273(元)3上述结果列成表2-5如果用矩阵来表示,则表2-3、表2-4、表2-5分别为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2738165.309820235790,3205.28414512,010322441305310161521C B A 从上述分析可以看出,矩阵A 、B 与C 之间的关系是:C 中第i 行第j 列)2,1;3,2,1(==j i 元素恰好等于A 的第i 行各元素分别和矩阵B 第j 列对应元素的乘积之和.因此,我们将矩阵C 定义为矩阵A 与矩阵B 的乘积,记为C =AB , 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==2738165.3098202357903205.28414512010322441305310161521AB C 我们将上面例题中矩阵之间的这种关系定义为矩阵的乘法. 定义4 设矩阵()l m ik a A ⨯=的列数与矩阵()nl kjb B ⨯=的行数相同,则由元素),,2,1;,,2,1(12211n j m i b a b a b a b a c lk kjik lj il j i j i ij ΛΛΛ===+++=∑=构成的m 行n 列矩阵n m lk kj ik n m ij b a c C ⨯=⨯∑==)()(1称为矩阵A 与矩阵B 的积,记为C =A ·B 或AB .这个定义说明,如果矩阵A 的列数等于矩阵B 的行数,则A 与B 的乘积C 中第i 行第j 列的元素,等于矩阵A 的第i 行元素与矩阵B 的第j 列对应元素乘积的和.并且矩阵C 的行数等于矩阵A 的行数,矩阵C 的列数等于矩阵B 的列数.例5 若,012321,132132⎥⎦⎤⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=B A 求AB . 解⎥⎦⎤⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=012321132132AB⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯+-⨯-⨯+-⨯⨯+⨯⨯-+-⨯-⨯-+-⨯⨯-+⨯⨯+-⨯-⨯+-⨯⨯+⨯=97530367801)3(3)1(1)2(321130)2()3(1)1()2()2(12)2(1103)3(2)1(3)2(22312我们还可以求一下BA .⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⨯+-⨯-+⨯⨯+⨯-+⨯⨯-+-⨯-+⨯⨯-+⨯-+⨯=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡---=834910)2()1(32301)1(221)3()2()2(313)3(1)2(21132132012321BA显然,BA AB ≠.例6 若()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==530412,013B A ,求AB . 解()()()32500113)3(0)4(123530412013=⨯+⨯+⨯-⨯+-⨯+⨯=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ABBA 没有意义,因为B 的列数不等于A 的行数,BA 不可进行运算.例7 若⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=6342,2142B A ,求AB 及BA .解⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--=168321663422142AB .000021426342BA AB BA ≠⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--=由例5,例6,例7可以看到矩阵的乘法一般不满足交换律.由例6可以看到AB 有意义,BA 不一定有意义.由例5、例7可以看到,即使AB 、BA 都有意义,AB 与BA 也不一定相等.但并不是任何两矩阵相乘都不可以交换,如下面的例8,两矩阵相乘可以交换,但作为统一的运算法则,矩阵乘法交换律是不成立的.由例7还可得出:两个非零矩阵相乘,可能是零矩阵,从而不能从AB =O 必然推出A =O 或B =O .例8 若⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=1021,1011B A ,求AB 与BA . 解⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=103110211011AB⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=103110111021BA 显见,AB=BA .如果两矩阵A 与B 相乘,有AB=BA ,则称矩阵A 与矩阵B 可交换. 矩阵相乘时必须注意顺序,AX 称为用X 右乘A ,XA 称为用X 左乘A . 矩阵乘法具有下列性质:(1)(AB )C=A (BC )(2)k (AB )=(kA )B=A (kB ) (其中k 为数值)(3)A (B+C )=AB+AC (4)(B+C )A=BA+CA 设A 是n 阶方阵,规定:,,,,,1210A A A AA A A A E A k k ⋅====+Λ其中k 为正整数,k A 称为A 的k 次幂.例9 设⎥⎦⎤⎢⎣⎡-=4321A ,求E A A 5322+-. 解E A A 5322+-=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-1001543213432122=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--6127181650051296344181214四、矩阵的转置定义5 把矩阵A 的所有行换成相应的列所得到的矩阵,称为矩阵A 的转置矩阵,记为TA ,即若()nm ija A ⨯=,则()mn jiT a A ⨯=.例10 若⎥⎦⎤⎢⎣⎡-=52134071A ,则 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=54201731T A 可见,若A 是对称矩阵,则有TA A =. 矩阵的转置具有下列性质: (1)A A TT=)((2)TTTB A B A +=+)( (3)T TA A λλ=)((4)TT T A B AB =)(五、方阵的行列式定义6 由n 阶方阵A 的元素所构成的行列式(各元素的位置不变),叫做方阵A 的行列式,记作A .应该注意,方阵与行列式是两个不同的概念,n 阶方阵是2n 个数按一定方式排列成的数表,而n 阶行列式是这些数(也就是数表A )按一定运算法则所确定的一个数.由A 确定的A 的这个运算满足下述运算规律(设A ,B 为n 阶方阵,k 为数值): (1)A A T = (2)A k kA n= (3)B A AB =由(3)可知,对于n 阶方阵A 、B ,一般说来BA AB ≠,但总有BA AB =例11 设⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=43522231B A ,,求AB . 解法1⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=22171143522231AB所以 56221711=-=AB解法256)7(843522231=-⨯-=⋅-==B A AB习题2.21. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=150421321,111111111B A ,求 (1)3AB-2A (2)B A T2.已知011311232021132=⎥⎦⎤⎢⎣⎡-----⎥⎦⎤⎢⎣⎡--X ,求X .3.计算下列乘积.(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-127075321134 (2)()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡123321 (3)()132211-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- (4)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--131201********* (5)()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11212221211211y x c b b b a a b a a y x 4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=321431422,531531531,431541532C B A证明:(1)AB=BA=0 (2)AC=A ,CA=C (3)ACB=CBA5.证明矩阵下列运算性质.(1))()(C B A C B A ++=++ (2)TTTB A B A +=+)( (3)A A nλλ= (4)AE =EA =A 6.求下列矩阵的幂. (1)设⎥⎦⎤⎢⎣⎡=101λA ,求kA A A ,,,Λ32 (2)求nO O⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡λλλOO7.若矩阵AB =BA ,则称B 与A 可交换,设⎥⎦⎤⎢⎣⎡=1011A ,求所有与A 可交换的矩阵.§2.3 逆矩阵一、逆矩阵的定义矩阵与数相类似,有加、减、乘三种运算.于是,自然会提出矩阵的乘法是否也和数一样存在逆运算呢?解一元线性方程ax=b ,当0≠a 时,存在一个数1-a ,使b a x 1-=为方程组的解.那么在解矩阵方程AX =B 时,是否也存在一个矩阵,使这个矩阵乘以B 等于X .这就是我们要讨论的逆矩阵的问题.逆矩阵在矩阵理论和应用中都起着重要的作用.定义1 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得AB =BA=E那么矩阵A 称为可逆矩阵,而B 称为A 的逆矩阵. 如果A 可逆,A 的逆矩阵是唯一的.因为如果B 和1B 都是A 的逆矩阵,则有E A B AB E BA AB ====11,那么 1111)()(B EB B BA AB B BE B ===== 即 1B B =所以逆矩阵是唯一的.我们把矩阵A 唯一的逆矩阵记作1-A .定义2 若n 阶矩阵A 的行列式0≠A ,则称A 为非奇异的. 为了讨论逆矩阵存在的条件和逆矩阵的求法,先引进伴随矩阵的概念. 定义3 设ij A 是矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a a a a a A ΛΛΛΛΛΛΛ212222111211 的行列式A 中的元素ij a 代数余子式,那么矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n nn n A A A A A A A A A A ΛΛΛΛΛΛΛ212221212111*称为矩阵A 的伴随矩阵.定理1 矩阵A 存在逆矩阵的充分必要条件是0≠A ,即A 为非奇异矩阵时才有逆矩阵存在.证 必要性:因为A 可逆,则有1-A使E A A AA==--11.因此,01111≠====---E A A A A AA ,即0≠A .充分性:若0≠A ,作矩阵*1A AB =由§1.2定理1和定理2,可得E A A AA AA =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=00*O , 即得AB=E .同理,可证,BA=E .故*11A AA B ==- 二、逆矩阵的性质逆矩阵具有下列性质: (1)A A =--11)( (2)111)(---=A B AB(3)11)()(--=TTA A (4)AA11=- (5)111)(--=A kkA 下面仅证明性质2,其它性质请读者自己证明. 证(2) 因为E AA AEA A BB A A B AB ====------111111)())((, E B B EB B B A A B AB A B ====------111111)())((,所以 111)(---=A B AB证毕 由定理1,可得由矩阵A 的伴随矩阵*A 求逆矩阵1-A 的计算方法,求出矩阵A 的所有元素的代数余子式;写出伴随矩阵*A ;由*11A AA=-便得1-A .这种方法常用于三阶以下的方阵求逆矩阵的问题. 例1 求矩阵⎥⎦⎤⎢⎣⎡-=4312A 的逆矩阵. 解 因为011≠=A ,所以1-A 存在.由于213422211211=-===A A A A因此 ⎥⎦⎤⎢⎣⎡--=2314*A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--==-11211311111423141111*1A A A 例2 求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=631321222A 的逆矩阵. 解 因为,02≠=A 所以1-A 存在,由于 131213613136332131211==-=-===A A A ,4312210612266322232221-=-===-=-=A A A221224312223222333231=-=-=-===A A A因此⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==-122125231323241410326321211332313322212312111*1A A A A A A A A A A A A 例3 试用逆矩阵求解线性方程组.⎪⎩⎪⎨⎧=+=++=--353042231321321x x x x x x x x 解 令,302,,503411112321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=B x x x X A 于是原方程组可写成AX=B (2-3-1)因为 ,0653411112≠=--=A 故1-A 存在,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==-3339137355611*1A A A对(2-3-1)式两侧左乘1-A ,得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==-63613613131613023339137355611B A X即线性方程组的解为21,613,61321=-==x x x .习题2.31. 验证矩阵B 是矩阵A 的逆矩阵.(1)⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=2123124321B A (2)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1012015120110141101510075504321B A 2.写出下列初等方阵的逆矩阵。