乘除法的关系和运算律
- 格式:doc
- 大小:48.50 KB
- 文档页数:24
二、乘除法的关系和运算律第1课时教学内容:义务教育课程标准实验教科书(西南师大版)四年级(下)第n〜15页例1〜2,课堂活动第1〜2题以及练习三第1〜5题。
教学目标:1、在计算与解决问题的具体情景中体会乘除法的互逆关系和乘除法各部分间的关系。
2、经历探索发现乘与除互逆关系和乘除法各部分间关系的过程,并有成功探索的体验,培养学生的比较、归纳概括能力。
3、能运用乘除法的关系进行验算和解决简单的实际问题。
教学重点:在计算和解决问题的情景中探索乘除法的互逆关系和乘除法各部分间的关系。
教学过程:一、创设情境,激发兴趣1教师出示主题图,谈话引入:同学们,你们去过游乐园吗?今天老师和同学们一起到游乐园玩一玩。
请同学们仔细观察游乐园情景图,你都获得了哪些数学信息?(1)学生说出自己选择的数学信息和数学问题,并列出算式解答。
教师板书算式:12X5X4 = 24012X4 = 4848+4=1248+12 = 4……(2)学生认真观察算式,你有什么发现?学生1:都是乘除法算式。
学生2:12X4 = 48和48 + 4=12这两个乘除法算式有相同的地方,好像有点关系。
(3)同学们观察得好,你能观察出乘除法各部分间有什么关系吗?今天我们一起来探讨乘除法之间的关系。
板书课题:乘除法的关系二、探究新知1教学例1教师:刚才我们从情景图中知道:每棵树上挂了4个灯笼。
12棵树上挂了 48个灯笼。
通过这3个信息列出了 3道算式,请同学们仔细观察这3道算式。
12X4 = 48 48 + 4=12 48 + 12 = 4(1)结合具体情景,让学生说说每个数所表示的意思和每个算式解决的问题。
(2)看一看除法和乘法之间有什么关系?学生分组讨论,全班交流。
学生1:都说的是同一件事。
学生2:……教师:同学们观察讨论得很好,找出了这3道算式之间的一些关系,我们继续来研究下面的问题是不是也有这种关系?2 教学例2出示例2情景图,学生选择两个信息提出问题并解决。
第二单元乘除法的关系和运算律第一课时乘除法的关系学习内容:课本11——14页中的例1、例2及相关习题学习目标:能结合具体的情境,理解并理解乘除法的关系,学会应用乘除的关系解决一些实际问题。
学习过程:一、探究新知1、学习例1:每棵树上挂了4个灯笼。
12棵树上挂了48个灯笼。
根据这些信息,我能写出相对应的乘法和除法算式,并说出各个算式解决了什么问题?,这个算式求的是,这个算式求的是,这个算式求的是比较上面的算式,我发现:2、学习例2:每个足球65元,15个足球975元。
根据这些信息,我能写出相对应的乘法和除法算式。
比较上面的算式,我发现:一个因数=被除数=除数=我还知道己知,求另一个因数,用法。
教师引导:观察算式13÷3=4 (1)我知道被除数、除数、商、余数之间的关系是:通过学习我知道:是的逆运算;不能作除数。
二、预习小结:通过预习我知道了自主作业设计第二课时理解整除学习内容:教材13-14页例3及相关练习题。
学习目标:理解整除,理解整除的意义,进一步理解掌握乘除法之间关系。
一、探究新知计算。
6÷2= 39÷2= 15÷12=250÷7= 26÷13= 25÷7=160÷1= 0÷9= 76÷21=我能把上面的算式按计算结果分为两类:通过度类后,我发现了:一个整数除以的整数,商是,没有,我们就说一数能被另一个数整数。
我会说:6÷2=3 就是能被整除,或者说能整除。
0÷9=0呢?怎么说?二、预习小结:通过学习我知道了自主作业设计第三课时乘法运算律学习内容:课本17——19页中的例1——例2及相关习题。
学习目标:在解决实际问题的过程中发现并理解乘法交换侓和乘法结合侓,并学会用字母表示乘法交换侓和乘法结合侓。
学习过程:一、探究新知:1、观察例1,要求有多少个鸡蛋?能够这样列式:我还能够这样列式观察这两个算式你发现了什么?你还能写出几个这样的算式吗?通过观察这些算式,我发现了:这叫乘法交换侓。
乘除法的关系和运算律知识要点1.乘除法的关系出发是乘法的逆运算,已知两个因数的积与其中的一个因数,求另一个因数,用除法。
2.数的整除一个整数除以另一个不为0的整数,商是整数且没有余数,我们就说一个数能被另一个数整除。
3.乘法运算律乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c4.解决问题速度和×相遇时间=总路程总路程÷速度和=相遇时间总路程÷相遇时间=速度和效率和×合作时间=工作总量工作总量÷效率和=合作时间工作总量÷合作时间=效率和课后练习一、填空题1.在括号里填上合适的答案。
(1)一个数除以1的商是();0乘任何数都得();除数不能为();乘法和除法互为()。
(2)36÷4=9,我们说( )能被( )整除,也可以说( )能整除( )。
(3)25×19×4=25×4×19 应用了( )律;125×36+125×44=125×(36+44),这是应用了( ﹚律;13×125×8=13×(125×8)应用了( )律。
(4)在一道有余数的除法里,商和余数都是18,被除数最小是﹙﹚。
(5)两个数相除的商是12,如果被除数和除数同时乘100,那么商是()。
(6)用除法验算乘法是根据( ),用乘法验算除法是根据( )。
(7)两个数相乘的积是280,若一个因数扩大10倍,另一个因数缩小100倍,积是( )。
(8)在一道没有余数的除法算式中,被除数加上商与除数的积,和是80,被除数是﹙﹚。
(9)两个因数的积是50,两个因数都扩大2倍,则积是﹙﹚。
(10)把630÷90=7改写成一道乘法算式是﹙﹚,改写成一道除法算式是(﹚。
一、四则混和运算四则混合运算的顺序:在四则混合运算中:1.只有加减或只有乘除的运算,就从左至右依此计算;2.如果既有加减法又有乘除法,就要先算乘除,后算加减;3.如果有括号,就要先算括号里面的,再算括号外面的;4.如果既有小括号,又有中括号,就先算小括号里面的,再算中括号里面的,最后算括号外面的。
二、乘除法的关系和运算律乘除法的关系:一个因数=积÷另一个因数已知两个因数的积与其中的一个因数,求另一个因数,用除法。
除数=被除数÷商被除数=商×除数除法是乘法的逆运算 0不能作除数在有余数的除法里,被除数与商、除数、余数之间的关系:被除数=商×除数+余数除数=(被除数-余数)÷商一个整数除以另一个不为0的整数,商是整数,没有余数,我们就说一个数能被另一个数整除。
如:6÷2=3,就是6能被2整除,或者说2能整出6。
两个因数相乘,交换因数的位置,积不变,这就是乘法交换律。
如果用a,b 表示两个数,乘法交换律可以表示为: a×b=b×a三个数相乘,先乘前两个数或者先乘后两个数,积不变,这就叫乘法结合律。
如果用a,b,c表示3个数,乘法结合律可以表示为:(a ×b)×c=a×(b×c)两个数的和与一个数相乘,可以先把两个数与这个数分别相乘,再将两个积相加,结果不变,这叫做乘法分配律。
如果用如果用a,b,c表示3个数,乘法分配律可以表示为: (a+b) ×c= a ×c+ b×c:如,利用上面的运算定律,可以使计算简便,还可以用凑整法,分解法,一个数连续减两个数,等于这个数减两个数的和,等等。
因数与积的变化规律:一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)相同的倍数。
一个因数扩大(或缩小)几倍,另一个因数也扩大(或缩小)几倍,积就扩大(或缩小)两个因数扩大(或缩小)的倍数之积。
2019西师大版数学四下《二、乘除法的关系和运算律》word教案【教学内容】义务教育课程标准实验教科书(西南师大版)四年级(下)第38页乘除法的关系和乘法运算律的内容。
【教学目标】1——表格法。
2与问题的良好习惯。
3【教学重、难点】让学生体验对本单元知识的有序整理,巩固掌握本单元知识。
【教学过程】一、谈话引入教师:同学们,这一段时间我们一起学习了第二单元《乘除法的关系和运算定律》。
今天这节课,我们一起来对这部分知识进行整理与复习,进一步巩固所学知识,并弥补我们学习中的一些不足。
(板书课题:整理与复习)二、回顾整理出示为学生设计好的表格。
教师:今天,我们将学习一种新的整理方法——表格法。
请同学们看这张表格里有4栏,内容分别是……提出要求:(1)认真回忆本单元所学知识,然后根据自己的实际情况填表。
(2)填完以后同学们在四人小组内交流自己整理的内容,看看还有哪些需要补充、修改的地方。
流程:A并填表。
BC全班交流时:教师:哪位同学愿意把自己整理的表格展示给大家看看?在展示台上出示学生的作品,组织学生评议。
教师:你认为他对本单元知识的整理是否全面呢?有什么修改意见吗?注意:乘除法之间的关系,要求写出关系式;乘法运算律,最好能用字母式子来表达。
教师:通过回忆本单元知识,同学们还总结了自己在学习中的收获与问题,你们有这么多的收获,老师真为你们感到高兴。
你们的疑惑下面我们就一起来解决吧!三、答疑解难教师:把你在本单元学习中遇到的困难告诉大伙,我们互帮互学,好吗?四、知识巩固第38页第1~4题。
独立完成后集体评议。
评议时指出每个问题是复习了什么知识。
重点复习第3题,如何应用乘法运算律进行简便运算。
五、独立练习练习八第1~4题。
六、课堂小结这节课我们重点做了两件事,第一对本单元知识进行了整理,第二重点复习了乘除法的关系和乘法运算律。
附送:2019西师大版数学四下《生活中的小数》word教案教学目标:1.通过学习使学生了解小数在生活中的广泛应用,在学生初步认识小数和分数的基础上,进一步理解小数的意义。
20232024学年四年级下学期数学二乘除法的关系和乘法运算律《乘法运算律》(教案)作为一名经验丰富的教师,我将以我的口吻为您呈现一堂关于《乘法运算律》的数学课。
一、教学内容本节课我们将学习乘法运算律,主要涉及教材中第三章第二节的内容。
具体内容包括乘法交换律、乘法结合律以及乘法的分配律。
二、教学目标通过本节课的学习,希望学生们能够理解并掌握乘法运算律,能够运用运算律进行简便计算,提高计算效率。
三、教学难点与重点本节课的重点是让学生们理解和掌握乘法运算律,难点在于如何让学生们理解和运用乘法分配律。
四、教具与学具准备为了更好地进行课堂教学,我准备了PPT、黑板、粉笔以及一些数学练习题。
五、教学过程1. 实践情景引入:我会通过一些生活中的实例,如购物时如何计算总价,引入乘法运算的概念。
2. 讲解乘法交换律:我会通过具体的例子,如2×3和3×2,引导学生发现乘法交换律,并让学生们自己尝试找出更多的例子。
3. 讲解乘法结合律:我会通过具体的例子,如2×3×4和(2×3)×4,引导学生发现乘法结合律,并让学生们自己尝试找出更多的例子。
4. 讲解乘法分配律:我会通过具体的例子,如2×(3+4)和(2×3)+(2×4),引导学生发现乘法分配律,并让学生们自己尝试找出更多的例子。
5. 例题讲解:我会选取一些典型的例题,如2×(3+4)、(2+3)×4等,让学生们运用所学的乘法运算律进行解答。
6. 随堂练习:我会给出一些练习题,让学生们自己在课堂上进行解答,以巩固所学知识。
7. 作业设计:我会布置一些相关的作业题,如运用乘法运算律进行计算等,并给出详细的答案。
六、板书设计我会在黑板上列出乘法交换律、乘法结合律和乘法分配律的公式,并附上相关的例子。
七、作业设计a. 2×3+4×3b. (2+3)×4c. 2×(3+4)d. (2×3)×42. 请找出生活中的一些实例,说明乘法运算律的应用。
乘法运算律重要知识点1、乘法结合律:三个数相乘,先把前两个数相乘再乘第三个数,或先将后两个数相乘再乘第一个数,它们的积不变。
这个规律叫做乘法结合律。
用字母表示为:(a·b)·c=a·(b·c)2、乘法交换律:两个数相乘,交换因数的位置,它们的积不变。
这个规律叫做乘法交换律。
用字母表示为:a·b=b·a3、除法运算性质:一个数连续除以两个数,等于这个数除以这两个除数的积。
用字母表示为:a÷b÷c=a÷(b×c)4、乘除法各部分之间的关系:(1)乘法各部分之间的关系:因数×因数=积一个因数=积÷另一个因数(2)除法各部分之间的关系:被除数÷除数=商除数=被除数÷商被除数=商×除数(3)乘、除法之间的关系:除法是乘法的逆运算5、乘法分配律:两个数的和与一个数相乘,可以把这两个加数分别与这个数相乘,再把积相加。
这个规律叫做乘法分配律。
用字母表示为:(a+b)·c=a·c+b·c其逆运算为: a·c+b·c=(a+b)·c6、乘法分配律的拓展:两个数的差与一个数相乘,可以用这个数分别去乘相减的两个数,再把积相减。
用字母表示为:(a-b)·c=a·c-b·c其逆运算为:a·c-b·c=(a-b)·c。
【知识要点】(一)、乘除法各部分之间的关系:(1)乘法各部分之间的关系:因数×因数=积一个因数=积÷另一个因数(2)除法各部分之间的关系:没有余数的除法:有余数的除法:被除数=商×除数被除数=商×除数+ 余数除数=被除数÷商除数=(被除数-余数)÷商商= 被除数÷除数商= (被除数-余数)÷除数(3)乘、除法之间的关系:除法是乘法的逆运算注意:0不能作除数。
(4)整除:a÷b(b≠0)=c 则a能被b整除,b能整除a。
(二)乘法运算律两个数相乘,交换因数的位置,它们的积不变。
这个规律叫做乘法交换律。
用字母表示为:a·b=b·a2、乘法结合律:三个数相乘,先把前两个数相乘再乘第三个数,或先将后两个数相乘再乘第一个数,它们的积不变。
这个规律叫做乘法结合律。
用字母表示为:(a·b)·c=a·(b·c)两个数的和与一个数相乘,可以把这两个加数分别与这个数相乘,再把积相加。
这个规律叫做乘法分配律。
用字母表示为:(a+b)·c=a·c+b·c a·c+b·c=(a+b)·c乘法分配律的拓展:两个数的差与一个数相乘,可以用这个数分别去乘相减的两个数,再把积相减。
用字母表示为:(a-b)·c=a·c-b·ca·c-b·c=(a-b)·c(三)减法简便运算:1、一个数连续减去两个数,可以用这个数减去这两个数的和。
用字母表示:a-b-c=a-(b+c)2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
用字母表示:a-b-c=a—c-b(四)除法简便运算:1、一个数连续除以两个数,可以用这个数除以这两个数的积。
用字母表示:a÷b÷c=a÷(b×c)2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。
用字母表示:a÷b÷c=a÷c÷b(五)积的变化规律①一个因数缩小(扩大)几倍,另一个因数扩大(缩小)相同的倍数,积不变。
②一个因数缩小(或扩大几倍),另一个因数不变,积也随着缩小(或扩大)几倍。
③一个因数扩大m倍,另一个因数扩大n,积扩大m×n倍;一个因数缩小m倍,另一个因数缩小n,积缩小m×n倍;一个因数扩大(缩小)m倍,另一个因数缩小(扩大)n倍,积扩大或缩小m÷n倍。
(六)解决问题:1、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间2、工程问题工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率3、最多、最少问题人数最少多买贵的,人数最少多买便宜的。
4、购物、旅游合算问题先计算后比较。
【例题精选】一、常见乘法计算:25×4=100 125×8=1000二、加法交换律简算例子:三、加法结合律简算例子:50+98+50488+40+60=50+50+98 =488+(40+60)=100+98 =488+100=198=588四、乘法交换律简算例子:五、乘法结合律简算例子:25×56×499×125×8=25×4×56=99×(125×8)=100×56=99×1000=5600 =99000六、含有加法交换律与结合律的简便计算:65+28+35+72=(65+35)+(28+72)=100+100=200七、含有乘法交换律与结合律的简便计算:25×125×4×8=(25×4)×(125×8)=100×1000=100000八、乘法分配律简算例子:一、分解式二、合并式25×(40+4)135×12—135×2=25×40+25×4=135×(12—2)=1000+100 =135×10=1100 =1350三、特殊1 四、特殊299×256+25645×102=99×256+256×1=45×(100+2)=256×(99+1)=45×100+45×2=256×100 = 4500+90=25600=4590五、特殊3 六、特殊499×2635×8+35×6—4×35=(100—1)×26=35×(8+6—4)=100×26—1×26=35×10=2600—26 =350=2574九、连续减法简便运算例子:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =25 0十、连续除法简便运算例子:3200÷25÷4=3200÷(25×4)=3200÷100=32十三、其它简便运算例子:256—58+44 250÷8×4=256+44—58 =250×4÷8=300—58 =1000÷8=242 =125【专项训练】一、积的变化规律练习题1、先用积的变化规律填空,再用笔算或计算器验算。
26×48=1248 17×12=20426×24=()17×24=()26×12=()17×36=()2、请学生完成下列计算,并在组内述说自己发现的规律。
18×24=105×45=(18÷2)×(24×2)=(105×3)×(45÷3)=(18×2)×(24÷2)=(105÷5)×(45×5)=3、在○中填上运算符号,在□中填上数。
24×75=1800 36×104=3744(24○6)×(75×6)=1800 (36×4)×(104○4)=3744(24○3)×(75○□)=1800 (36○□)×(104○□)=37444、一个长方形的面积是256平方厘米,如果长缩小4倍,宽扩大4倍,这个长方形就变成了正方形,这个正方形的面积是多少?它的边长是多少?二、乘法的运算律(一)在□里填上合适的数,在()里填上运算定律。
135+□=467+□运用了()(29×□)×8=29 ×(125×□)运用了()25×67×4=25×□×67运用了()125×(400+□)=125×400+125×8运用了()72 + 57 + 43 = 72 + (57 + 43)运用了()(二)判断,对的打“√”,错的打“×”(用手势表示),并说明理由。
⑴4×15=15×4…… …… …… ……()⑵(28×5)×15=28×(5+15)…… ()⑶43×27=27+43…… …… ……()⑷101×63=100×63+63…… ……… ()⑸98×15=100×15+2×15…… …… ()(三)用简便方法计算。
⑴35+63+27 ⑵(103-3)×15⑶25×44⑷14×32+69×14(四)体味生活中的数学--购物。
王阿姨是开商店的,今天她准备到好多多超市批发下列清单中的商品,她带了3000元,如果要购买这些商品,钱够用吗?请你帮王阿姨算一算,看谁的方法最巧妙。
【解决问题】(1)师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?(2)甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?(3) 甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。
已知乙船每小时行42千米,甲船每小时行多少千米?(4)一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。
已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?(5)两地相距270千米,甲、乙两列火车同时从两地相对开出,经过4小时相遇。
已知甲车的速度是乙车的1.5倍,求甲、乙两列火车每小时各行多少千米?(6)甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?(7)甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。
乙车每小时行多少千米?(8)A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?(9)甲、乙两列汽车同时从两地出发,相向而行。
已知甲车每小时行45千米,乙车每小时行32千米,相遇时甲车比乙车多行52千米。
求甲乙两地相距多少千米?(10)姐妹俩同时从家里到少年宫,路程全长770米。
妹妹步行每分钟行60米,姐姐骑自行车以每分钟160米的速度到达少年宫后立即返回,途中与妹妹相遇。
这时妹妹走了几分钟?(2001年上海市金山区升级考试卷)(11)小明和小华从甲、乙两地同时出发,相向而行。
小明步行每分钟走60米,小华骑自行车每分钟行190米,几分钟后两人在距中点650米处相遇?(2002年上海市金山区升级考试卷)(12)A、B两地相距300千米,两辆汽车同时从两地出发,相向而行。