一阶RC电路的全响应
- 格式:ppt
- 大小:106.00 KB
- 文档页数:4
RC一阶电路的响应测试实验报告实验报告:RC一阶电路的响应测试一、实验目的:1.掌握RC一阶电路的响应特性;2.了解RC一阶电路的时间常数对电路响应的影响;3.学会使用示波器观察电路的动态响应。
二、实验原理:由于充电或放电需要一定的时间,电路的响应是有延迟的。
根据电容充电时间常数τ的不同,可以将RC电路分为快速响应和慢速响应两种情况。
电容C的充电或放电方程为:i(t) = C * dV(t) / dt根据Ohm's Law,电路中的电流和电压之间的关系为:V(t) = VR(t) + VC(t) = i(t) * R + V0 * exp(-t/τ)其中,VR(t)是电阻R上的电压,VC(t)是电容C上的电压,V0是电路初始电压,τ=C*R是电路的时间常数。
当输入信号为直流电压时,电路将会处于稳态,电容将保持充电或放电状态,直到与电源电压相等。
当输入信号为瞬态电压时,电路将会发生响应,电容充放电的过程导致电压变化。
三、实验器材和仪器:1.RC电路板;2.直流电源;3.示波器;4.电阻和电容。
四、实验步骤:1.将示波器的地线和信号触发线接地。
2.按照实际电路中的元件数值,在RC电路板上连接电阻和电容。
3.将示波器的一个探头连接到电阻两端,另一个探头连接到电容的一端。
4.打开直流电源,设定合适的电压大小,使电路处于稳定状态。
5.调整示波器的触发模式和触发电平,保证波形稳定可观察。
6.增加或减小直流电压,观察电路响应,并记录波形。
7.改变电阻或电容的数值,重复步骤6,观察并记录不同响应特性。
8.关闭直流电源和示波器,取下电路连接。
五、实验数据及结果:实验中,我们首先建立了一个由1000Ω电阻和0.1μF电容串联组成的RC电路。
然后,我们分别给电路输入不同幅值和时间常数的矩形波信号,观察电路的响应。
1.输入直流电压的稳态响应:当输入直流电压时,电路处于稳态,电容已经充电到与电源电压相等的电压值。
实验十 RC 一阶电路的响应测试一.实验目的1.研究RC 一阶电路的零输入响应、零状态响应和全响应的规律和特点。
2.学习一阶电路时间常数的测量方法,了解电路参数对时间常数的影响。
3.掌握微分电路和积分电路的基本概念。
二.原理说明1.RC 一阶电路的零状态响应RC 一阶电路如图12-1所示,开关S 在…1‟的位置,uC =0,处于零状态,当开关S 合向…2‟的位置时,电源通过R 向电容C 充电,uC (t)称为零状态响应,τtU U u -S S c e -=变化曲线如图12-2所示,当uC 上升到S 632.0U 所需要的时间称为时间常数τ,RC τ=。
2.RC一阶电路的零输入响应在图12-1中,开关S 在…2‟的位置电路稳定后,再合向…1‟的位置时,电容C 通过R 放电,uC (t)称为零输入响应,τtU u -S c e =变化曲线如图12-3所示,当uC 下降到S 368.0U 所需要的时间称为时间常数τ,RC τ=。
3.测量RC一阶电路时间常数τ图12-1电路的上述暂态过程很难观察,为了用普通示波器观察电路的暂态过程,需采用图12-4所示的周期性方波uS 作为电路的激励信号,方波信号的周期为T ,只要满足τ52≥T,便可在示波器的荧光屏上形成稳定的响应波形。
电阻R 、电容C 串联与方波发生器的输出端连接,用双踪示波器观察电容电压uC ,便可观察到稳定的指数曲线,如图12-5所示,在荧光屏上测得电容电压最大值(cm)a Cm =U ,S U c u 图 12-1S U U 632 . 0 图 12-2S U U 368 . 0 图12-3S U T2图 12-4图 12-5a)(T2SU Su 0R uC u 图 12-6b)(取 (c m )0.632a b =,与指数曲线交点对应时间t轴的x点,则根据时间t轴比例尺(扫描时间cm t ),该电路的时间常数cm(cm)x t ⨯=τ。
实验四RC一阶电路的响应测试RC一阶电路的响应测试★实验一.实验目的1.测定RC一阶电路的零输入响应,零状态响应及完全响应2.学习电路时间常数的测量方法3.掌握有关微分电路和积分电路的概念二.原理说明1.动态网络的过渡过程是十分短暂的单次变化过程,对时间常数较大的电路,可用慢扫描长余辉示波器观察光点移动的轨迹。
然而能用一般的双踪示波器观察过渡过程和测量有关的参数,必须使这种单次变化的过程重复出现,为次,我们利用信号发生器输出的方波来模拟阶跃激励信号,即令方波输出的上升沿作为零状态响应的正阶跃激励信号;方波下降沿作为零输入响应的负阶跃激励信号,只要选择方波的重复周期远大于电路的时间常数。
电路在这样的方波序列脉冲信号的激励下,它的影响和直流接通与断开的过渡过程是基本相同的。
2.RC一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数。
3.时间常数的测量方法:用示波器测得零输入响应的波形如图4-1(a)所示:根据一阶微分方程的求解得知U0 Ee t/Rc Ee t/当t= 时,U0 0.368E,此时所对应的时间就等于也可用零状态响应波形增长到0.368E所对应的时间测得,如图3-1(c)所示。
若将图4-2(a)中的R与C位置调换一下,即由C端作为响应输出,且当电路参数的选择满足=RC〉〉T/2条件时,如图4-2(b)所示即称为积分电路,因为此时电路的输出信号电压与输入信号电压的积分成正比。
三.实验设备1.双踪示波器2.信号源(下组件)3.相应组件四.实验内容及步骤实验线路板的结构如图3-2所示,首先看懂线路板的走线,认清激励与响应端口所在的位置;认清R、C元件的布局及其标称值;各开关的通断位置等。
(1)选择动态电路板上的R、C元件,令R=10K ,C=3300pF组成如图4-1(b)所示的RC充放电电路,E为脉冲信号发生器输出VP P 2V,f=1KHz的方波电压信号,并通过示波器探头将激励源E和响应Uc的信号分别连至示波器的两个输入口Ya 和Yb,这时可在示波器的屏幕上观察到激励与响应的变化规律,来测时间常数,并用方格纸1:1的比例描绘波形。
一阶电路的全响应一阶电路的全响应一、全响应全响应一阶电路在外加激励和动态元件的初始状态共同作用时产生的响应,称为一阶电路的全响应(complete response)。
图5.5-1(a)所示的一阶RC电路,直流电压源Us是外加激励,时开关S处于断开状态,电容的初始电压。
时开关闭合,现讨论时电路响应的变化规律。
时,响应的初始值为时,响应的稳态值为用叠加定理计算全响应:开关闭合后,电容电压的全响应,等于初始状态U0单独作用时产生的零输入响应和电压源Us单独作用时产生的零状态响应的代数和,如图5.5-1(b)、(c)所示。
图5.5-1(b)中,零输入响应为图5.5-1(c)中,零状态响应为根据叠加定理,图5.5-1(a)电路的全响应为用表示全响应,表示响应的初始值,表示稳态值。
全响应的变化规律1、当时,即初始值大于稳态值,则全响应由初始值开始按指数规律逐渐衰减到稳态值,这是动态元件C或L对电路放电。
2、当时,即初始值小于稳态值,则全响应由初始值开始按指数规律逐渐增加到稳态值,这是电路对动态元件C或L充电。
3、当时,即初始值等于稳态值,则全响应。
电路换路后无过渡过程,直接进入稳态,动态元件C或L既不对电路放电,也不充电。
二、全响应的三要素计算方法全响应的三要素初始值稳态值时间常数例5.5-1 图5.5-2(a)所示电路,已知C=5uF,t<0时开关S处于断开状态,电路处于稳态,t=0时开关S闭合,求时的电容电流。
解:欲求电容电流,只要求出电容电压即可。
1、确定初始状态。
作时刻的电路,如图5.5-2(b)所示,这时电路已处于稳态,电容相当于开路,则。
由换路定则得初始状态2、确定电容电压的稳态值。
作t→∞时的电路,如图5.5-2(c)所示,这时电路也处于稳态,电容也相当于开路,则3KΩ电阻两端的电压则电容电压的稳态值为3、求时间常数τ。
求从电容C两端看进去的戴维南等效电阻R的电路如图5.5-2(d)所示,这时将15V和5V电压源都视为短路,等效电阻为6KΩ和3KΩ电阻的并联,即R=6K∥3K=2KΩ所以,时间常数为4、求全响应。
§5.4 一阶电路的全响应与三要素在上两节中分别研究了一阶电路的零输入响应和零状态响应,电路要么只有外激励源的作用,要么只存在非零的初始状态,分析过程相对简单。
本节将讨论既有非零初始状态,又有外激励源共同作用的一阶电路的响应,称为一阶电路的全响应。
5.4.1 RC 电路的全响应电路如图5-9所示,将开关S 闭合前,电容已经充电且电容电压0)0(U u c =-,在t=0时将开关S 闭合,直流电压源S U 作用于一阶RC 电路。
根据KVL ,此时电路方程可表示为:C u图 5-19 一阶RC 电路的全响应S C CU u tu RC=+d d (5-19) 根据换路原则,可知方程(5-19)的初始条件为 0)0()0(U u u C C ==-+令方程(5-9)的通解为 C CC u u u ''+'= 与一阶RC 电路的零状态响应类似,取换路后的稳定状态为方程的特解,则S CU u =' 同样令方程(5-9)对应的齐次微分方程的通解为τtCAe u -=''。
其中RC =τ为电路的时间常数,所以有τtS C AeU u -+=将初始条件与通解代入原方程,得到积分常数为 S U U A +=0所以电容电压最终可表示为τtS S c e U U U u --+=)(0 (5-20)电容充电电流为etS C R U U t u C i τ--==0d d这就是一阶RC 电路的全响应。
图5-20分别描述了s U ,0U 均大于零时,在0U U s >、0=s U 、0U U s <三种情况下c u 与i 的波形。
(a) (b)图5-20C u ,i 的波形图将式(5-20)重新调整后,得)1(0ττtS tC e U eU u ---+=从上式可以看出,右端第一项正是电路的零输入响应,第二项则是电路的零状态响应。
显然,RC 电路的全响应是零输入响应与零状态响应的叠加,即 全响应 = 零输入响应 + 零状态响应研究表明,线性电路的叠加定理不仅适用于RC 电路,在RC 电路的分析过程中同样适用,同时,对于n 阶电路也可应用叠加定理进行分析。
一阶电路的全响应一阶电路的全响应一、全响应全响应一阶电路在外加激励和动态元件的初始状态共同作用时产生的响应,称为一阶电路的全响应(complete response)。
图5.5-1(a)所示的一阶RC电路,直流电压源Us是外加激励,时开关S处于断开状态,电容的初始电压。
时开关闭合,现讨论时电路响应的变化规律。
时,响应的初始值为时,响应的稳态值为用叠加定理计算全响应:开关闭合后,电容电压的全响应,等于初始状态U0单独作用时产生的零输入响应和电压源Us单独作用时产生的零状态响应的代数和,如图5.5-1(b)、(c)所示。
图5.5-1(b)中,零输入响应为图5.5-1(c)中,零状态响应为根据叠加定理,图5.5-1(a)电路的全响应为用表示全响应,表示响应的初始值,表示稳态值。
全响应的变化规律1、当时,即初始值大于稳态值,则全响应由初始值开始按指数规律逐渐衰减到稳态值,这是动态元件C或L对电路放电。
2、当时,即初始值小于稳态值,则全响应由初始值开始按指数规律逐渐增加到稳态值,这是电路对动态元件C或L充电。
3、当时,即初始值等于稳态值,则全响应。
电路换路后无过渡过程,直接进入稳态,动态元件C或L既不对电路放电,也不充电。
二、全响应的三要素计算方法全响应的三要素初始值稳态值时间常数例5.5-1 图5.5-2(a)所示电路,已知C=5uF,t<0时开关S处于断开状态,电路处于稳态, t=0时开关S闭合,求时的电容电流。
解:欲求电容电流,只要求出电容电压即可。
1、确定初始状态。
作时刻的电路,如图5.5-2(b)所示,这时电路已处于稳态,电容相当于开路,则。
由换路定则得初始状态2、确定电容电压的稳态值。
作t→∞时的电路,如图5.5-2(c)所示,这时电路也处于稳态,电容也相当于开路,则3KΩ电阻两端的电压则电容电压的稳态值为3、求时间常数τ。
求从电容C两端看进去的戴维南等效电阻R的电路如图5.5-2(d)所示,这时将15V和5V电压源都视为短路,等效电阻为6KΩ和3KΩ电阻的并联,即R=6K∥3K=2KΩ所以,时间常数为4、求全响应。