第二章 刚体转动
- 格式:doc
- 大小:453.00 KB
- 文档页数:8
刚体旋转知识点总结图解一、刚体的定义刚体是指形状和大小在一定范围内不改变,结构完整,部分不会随着外力的作用而发生形变的物体。
刚体的旋转是指刚体绕着某个固定轴线旋转的运动。
二、刚体的转动定律1. 刚体的角位移:刚体绕固定轴线旋转时,每个质点的位移方向都与该质点的运动轨迹相切,并且线速度不同,但角速度相同。
2. 刚体的角加速度:刚体绕固定轴线旋转时,各质点的加速度虽然大小不同,但方向都垂直于该质点的运动轨迹,并与其对应的线速度方向一致。
3. 刚体的角动量:刚体绕固定轴线旋转时,当刚体的转动轴不经过质心时,刚体的角动量等于该点相对于质心的角动量之和。
三、刚体的转动定律1. 角动量定理:刚体绕固定轴线旋转时,刚体的角动量与外力矩之和等于刚体对旋转轴的角动量的变化率。
2. 动能定理:刚体绕固定轴线旋转时,刚体的动能等于刚体的角动量的变化率与角速度的乘积之和。
3. 动量矩定理:刚体绕固定轴线旋转时,刚体的角动量改变的原因是外力矩。
如果外力矩为零,则刚体的角动量是守恒的。
四、刚体的转动惯量1. 刚体的转动惯量:刚体绕固定轴线旋转时,刚体对于该轴线的转动惯量等于各质点到该轴线距离的平方与质点质量乘积之和。
2. 转动惯量的计算方法:刚体对于不同轴线的转动惯量计算是以刚体某一坐标轴为基准,按照平行轴定理或垂直轴定理进行转动惯量的计算。
3. 转动惯量的应用:刚体绕固定轴线旋转时,转动惯量的大小决定了刚体旋转的惯性大小。
转动惯量越大,刚体绕轴旋转越困难。
五、刚体的转动动力学1. 合力与合力矩:刚体绕固定轴线旋转时,合力是刚体质心的动力学性质,而合力矩是刚体绕轴线旋转的动力学性质。
2. 麦克尔斯定理:刚体绕固定轴线旋转时,如果刚体受到合力矩的作用,则该合力矩等于刚体在质心处受到的效力矩与刚体到该轴的距离的乘积。
3. 角动量矩定理:刚体绕固定轴线旋转时,角动量矩定理描述了刚体对旋转轴的角动量的变化率等于刚体受到的外力矩。
六、刚体的平衡与稳定1. 刚体的平衡:刚体绕固定轴线旋转时,刚体处于平衡状态可以分为静平衡和动平衡,其中静平衡是指刚体的合外力和合外力矩均为零,而动平衡是指刚体的合外力为零。
第⼆章刚体转动《⼤学物理》综合练习(⼆)——刚体定轴转动班级学号:姓名:⽇期:⼀、选择题(把正确答案的序号填⼊括号内)1.两个⼩球质量分别为m 和m 3,⽤⼀轻的刚性细杆相连。
对于通过细杆并与之垂直的轴来说,轴应在图中什么位置处物体系对该轴转动惯量最⼩?(A)cm 10=x 处; (B)cm 20=x 处; (C)cm 5.22=x 处; (D)cm 25=x 处。
[ C ]2.⼀匀质杆质量为m ,长为l ,绕通过⼀端并与杆成θ⾓的轴的转动惯量为(A)3/2ml ; (B) 12/2ml ; (C) 3/sin 22θml ; (D) 2/cos 22θml 。
[ C ]3.⼀正⽅形均匀薄板,已知它对通过中⼼并与板⾯垂直的轴的转动惯量为J 。
若以其⼀条对⾓线为轴,它的转动惯量为(A)3/2J ; (B)2/J ; (C)J ; (D)不能判定。
[ B ]4.如图所⽰,A 、B 为两个相同的定滑轮,A 滑轮挂⼀质量为m 的物体,B 滑轮受拉⼒F ,⽽且mg F =,设A 、B 两滑轮的⾓加速度分别为A β和B β,不计滑轮轴的摩擦,这两个滑轮的⾓加速度的⼤⼩⽐较是 (A)B A ββ=; (B)B A ββ>; (C)B A ββ<; (D)⽆法⽐较。
[ C ]5.关于⼒距有以下⼏种说法:B题1图题4图(1)内⼒矩不会改变刚体对某个定轴的⾓动量; (2)作⽤⼒和反作⽤⼒对同⼀轴的⼒矩之和必为零;(3)质量相等形状和⼤⼩不同的两个刚体,在相同⼒矩作⽤下,它们的⾓加速度⼀定相等。
在上述说法中:(A)只有(2)是正确的; (B)(1)、(2)是正确的; (C)(2)、(3)是正确的; (D)(1)、(2)、(3)都是正确的。
[ B ]6.⼀⽔平圆盘可绕固定的铅直中⼼轴转动,盘上站着⼀个⼈,初始时整个系统处于静⽌状态,忽略轴的摩擦,当此⼈在盘上随意⾛动时,此系统 (A)动量守恒; (B)机械能守恒;(C)对中⼼轴的⾓动量守恒; (D)动量、机械能和⾓动量都守恒; (E)动量、机械能和⾓动量都不守恒。
第二章 刚体的转动习 题1、两个半径相同的飞轮用一皮带相连,作无滑动转动时,大飞轮边缘上各点的线速度的大小是否与小飞轮边缘上各点的线速度的大小相同?角速度又是否相同?2、当刚体转动时,如果它的角速度很大,是否说明刚体的角加速度一定很大?3、如果作用在刚体上的合力矩垂直于刚体的角动量,则刚体角动量的大小和方向会发生变化吗?4、一个人随着转台转动,两手各拿一只重量相等的哑铃,当他将两臂伸开,他和转台的转动角速度是否改变?5、直径为0.6 m 的转轮,从静止开始做匀变速转动,经20 s 后,它的角速度达到100π rad/s,求角加速度和在这一段时间内转轮转过的角度。
6、求质量为m ,长为l 的均匀细棒对下面几种情况的转动惯量。
(1) 转轴通过棒的中心并与棒成垂直; (2) 转轴通过棒的一端并与棒垂直;(3) 转轴通过棒上离中心为h 的一点并与棒成垂直; (4) 转轴通过棒中心并和棒成θ角。
7、如图2-19所示,一铁制飞轮,已知密度ρ=7.8 g/cm 3,R 1=0.030 m ,R 2=0.12 m ,R 3=0.19 m ,b =0.040 m ,d =0.090 m ,求它对转轴的转动惯量。
8、一飞轮直径为0.3 m ,质量为5 kg ,边缘绕绳,现用恒力拉绳一端,使它由静止均匀地加速,经0.5 s 转速达到10 rev/s,假定飞轮可看做实心圆柱体,试求:(1)飞轮的角加速度及其在这段时间内转过的转数;(2)从拉动后t =10 s 时飞轮的角速度及轮边缘上一点的速度和加速度。
(3)拉力及拉力所作的功;9、用线绕于半径R =1 m ,质量m =100 kg 的圆盘上,在绳的一端作用10 N 的拉力,设圆盘可绕过盘心垂直于盘面的定轴转动。
试求: (1)圆盘的角加速度;(2)当线拉下5 m 时,圆盘所得到的动能。
10、两个质量为m 1和m 2的物质分别系在两条绳上,这两条绳又分别绕在半径为r 1和r 2并装在同一轴的两鼓轮上,如图2-20所示。
《大学物理》综合练习(二)——刚体定轴转动班级学号: 姓 名: 日 期: 一、选择题(把正确答案的序号填入括号内)1.两个小球质量分别为m 和m 3,用一轻的刚性细杆相连。
对于通过细杆并与之垂直的轴来说,轴应在图中什么位置处物体系对该轴转动惯量最小?(A)cm 10=x 处; (B)cm 20=x 处; (C)cm 5.22=x 处; (D)cm 25=x 处。
[ C ]2.一匀质杆质量为m ,长为l ,绕通过一端并与杆成θ角的轴的转动惯量为(A)3/2ml ; (B) 12/2ml ; (C) 3/sin 22θml ; (D) 2/cos 22θml 。
[ C ]3.一正方形均匀薄板,已知它对通过中心并与板面垂直的轴的转动惯量为J 。
若以其一条对角线为轴,它的转动惯量为(A)3/2J ; (B)2/J ; (C)J ; (D)不能判定。
[ B ]4.如图所示,A 、B 为两个相同的定滑轮,A 滑轮挂一质量为m 的物体,B 滑轮受拉力F ,而且mg F =,设A 、B 两滑轮的角加速度分别为A β和B β,不计滑轮轴的摩擦,这两个滑轮的角加速度的大小比较是 (A)B A ββ=; (B)B A ββ>; (C)B A ββ<; (D)无法比较。
[ C ]5.关于力距有以下几种说法:B题1图题4图(1)内力矩不会改变刚体对某个定轴的角动量; (2)作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等形状和大小不同的两个刚体,在相同力矩作用下,它们的角加速度一定相等。
在上述说法中:(A)只有(2)是正确的; (B)(1)、(2)是正确的; (C)(2)、(3)是正确的; (D)(1)、(2)、(3)都是正确的。
[ B ]6.一水平圆盘可绕固定的铅直中心轴转动,盘上站着一个人,初始时整个系统处于静止状 态,忽略轴的摩擦,当此人在盘上随意走动时,此系统 (A)动量守恒; (B)机械能守恒;(C)对中心轴的角动量守恒; (D)动量、机械能和角动量都守恒; (E)动量、机械能和角动量都不守恒。
[ C ]7.一质量为kg 60的人站在一质量为kg 60、半径为1m的均匀圆盘的边缘,圆盘可绕与盘面相垂直的中心竖直轴无摩擦地转动,系统原来是静止的。
后来人沿圆盘边缘走动,当他相对圆盘的走动速度为m /s 2时,圆盘角速度为 (A)rad/s 1; (B)rad/s 2; (C)rad/s 3/2; (D)rad/s 3/4。
[ B ]8.水平刚性轻细杆上对称地串着两个质量均匀为m 的小球,如图所示。
在外力作用下细杆绕通过中心的竖直轴转动,当转速达到0ω时两球开始向杆的两端滑动,此时使撤去外力任杆自行转动(不考虑转轴和空气的摩擦)。
(1)此后过程中球、杆系统 E(A)动能和动量守恒; (B)动能和角动量守恒; (C)只有动量守恒; (D)只有角动量守恒; (E)动量和角动量守恒。
(2)当两球都滑至杆端时系统的角速度为(A)0ω; (B)02ω; (C)016.0ω; (D)]二、填充题(单位制为SI)cm 4=dcm 20=l 题8图1.当一汽车发动机以1800转/分的角速率转动时,它输出的功率是100马力(4105.7⨯ 瓦),则其输出的力矩为m N 1098.32⋅⨯。
2.一滑轮的半径为cm 10,转动惯量为24cm g 100.1⋅⨯。
一变力23.05.0t t F +=(F 的单位为牛顿,t 的单位为秒)沿着切线方向作用在滑轮的边缘上。
如果滑轮最初处于静止状态,那么它在0.3秒后的角速度为rad/s 1095.42⨯。
3.将一根米尺m)1(=l 竖直地立在地板上,而后让它倒下。
设接触地板的一端不因倾倒而滑动,则当它撞击地板时,顶端的速率为m /s 42.5。
4.如图所示的装置可测轮子的转动惯J ,若m 由静止开始下降,t 秒后下降的距离为h ,则=J ⎪⎪⎭⎫ ⎝⎛-1222h gt mR 。
5.长为l 质量为m 的均匀细棒,一端悬挂在过O 点的无靡擦的水平转轴上,在此转轴上另有一长为r 的轻绳悬挂一小球,质量也为m ,当小球悬线偏离铅直方向某一角度θ时由静止释放(如图示),小球在悬挂点正下方与静止的细棒发生弹性碰撞,且碰后小球刚好静止,则=r L 33;若︒=60θ,则碰后细棒的角速度=ωL g 3。
6.一长为l 质量为m 的均匀细棒,其一端有一固定的光滑水平轴,因而可在竖直平面内转动。
最初棒静止在水平位置,则它由此下摆θ角时的角加速度=βg cos 3θ,角速度·O〇lrθ ·AOθl v·Rmh题3图题4图题5图题6图=ωL g θsin 3,端点A 的速度=A v θsin 3Lg ,切向加速度2cos 3θg a t =,法向加速度θsin 3g a n =。
Δ棒受轴的力的大小1sin 9941222+=+=θmg F F F n t ,力的方向θθβsin 10cos arctan arctan ==n t F F 。
三、计算题1.质量M 、半径R 的均匀球壳可绕装在光滑轴承上的竖直轴转动,如图所示。
一根轻绳绕在球壳赤道上,又跨过转动惯量为0J 、半径r 的滑轮,然后系在一质量为m 小物体上,这个小物体在重力的作用下下降。
试问当它从静止下落距离h 时,它的速率为多大?1. 设1T 、2T 分别为物体m 与滑轮间、球壳与滑轮间绳的张力,J 为球壳绕竖直轴的转动惯量,a 为物体m 的加速度大小,方向竖直向下。
由转动定律和牛顿第二定律,得球壳: RaMR R a JJ R T 2232===α (1) 滑轮: raJ J r T T 00021)(==-α (2)物体: ma T mg =-1 (3) 由(1)~(3)式解得:2032r J M m mga ++=,ah v 2=20322rJ M m mgh++=2.在一根长为2.1m 质量为4.6kg 的均匀钢棒的两端各装上质量为06.1kg 的小球。
这钢棒只能绕通过其中点的竖直轴在水平面内转动。
在某一时刻,其转速为0.39转/秒。
由于轴的摩擦作用,在0.32s 后它就停止转动。
假如摩擦力矩恒定不变,试计算: (1)轴摩擦力所作的总功; (2)在0.32s 的时间内转过的转数;(3)如果已知摩擦力矩不是恒定的,那么(1)(2)中有没有什么量仍然可以计算出来而无需任何附加条件?请求出它的数值。
钢棒绕其转轴的转动惯量2222221m Kg 53.122.106.122.14.6121221212⋅=⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯=⎪⎭⎫⎝⎛⨯+=+=l m Ml J J J(1) 由动能定理得轴摩擦力所做的总功AJ 1060.421420⨯-=-=∆=ωJ E A k(2) 恒定力矩的功 n M M A πθ2==,故在s 32内转过的转数(rev)9.62439253.120.321060.4224=⨯⨯⨯⨯⨯===ππαππJ A M A n(3) 当摩擦力矩不恒定时,只有力矩作功可以计算,无需任何附加条件,且 J 1060.44⨯-=A3.一个转动惯量为J 的圆盘绕一固定轴转动,初始角速度为0ω。
设它所受阻力矩与转动角速度成正比,即ωK M -=(K 为大于零的常数),求: (1)它的角速度从0ω变为2/0ω所需的时间; (2)在上述过程中阻力矩所作的功。
(1) 由转动定律 ωωK tJ-=d d ,积分 ⎰⎰-=2/000d d ωωωωt t J K ,得2ln KJt = (2) 由动能定理 20220832122112ωωωJ J J E E A k k -=-⎪⎭⎫ ⎝⎛=-=4.一均匀细杆长l ,可绕离其一端4/l 的水平轴在竖直平面内转动。
当杆自由悬挂时,给它一个起始角速度0ω,若杆能持续转动而不摆动(一切摩擦不计),问ω为多少?取杆自由悬挂时的质心所在位置为势能零点,杆对离其一端4/l 的水平轴的转动惯量为2224874121ml l m ml J =⎪⎭⎫ ⎝⎛+=系统在整个运动过程中机械能守恒,故有22120l mg J =ω,l g 7340=ω,0ωω> 5.如图所示,水平桌面上有一长m 0.1=l 、质量kg 0.31=m 的均质细杆,细杆可绕通过O 点的铅直轴转动,杆与桌面间的动摩擦系数20.0=μ。
开始时杆静止,有一子弹质量g 202=m ,速率m /s 400=v ,沿水平方向以与杆成︒=30θ角入射杆的中点,且留在杆中。
求:(1)子弹射入后,细杆开始转动的角速度; (2)细杆停下来时转过的角度。
(1) 碰撞过程不计摩擦力的影响,系统对O 点的角动量守恒02122210234330sin 2ωωωl m l m l m J v m l≈⎪⎪⎭⎫ ⎝⎛+==︒ 23325.040002.03230sin 2120=⨯⨯⨯=⨯︒=l m v lm ωrad/s(2) 在距O 点r 处取一长为r d 质元,摩擦力大小为 r lgm mg f d d d 1μμ==,f d 对O 点的力矩 r r l gm f r M d d d 1μ-=-=,则整个细杆所受的摩擦力对O 点的力矩为 ⎰⎰-=-==l l gl m r r l g m M M 00112d d μμ由动能定理 2022121ωωθJ J M -=rad 68.08.92.03232321212201202120=⨯⨯==-⨯-=-=g l gl m l m M J μωμωωθ6.一根质量为m 、长为l 2的均匀细棒,可以在竖直平面内绕通过其中心的水平轴转动。
开始时细棒在水平位置,一质量为m '的小球以速度u垂直落到棒的端点,与棒作完全弹性碰撞,求碰撞后小球的回跳速度及棒的角速度各为多少?·u m '系统对通过其中心的水平轴的角动量守恒vl m J ul m '-='ω即 ωω231)(ml J l v u m ==+' (1)因小球和细杆作弹性碰撞,系统机械能守恒222212121ωJ v m u m +'=' (2) 由(1)和(2)式解得m m m m u v '+'-=3)3(,l m m u m )3(6'+'=ω7.如图所示,质量为m 、半径为R 的匀质圆盘,初角速度为0ω,不计轴承处的摩擦,若空气对圆盘表面单位面积的摩擦力正比于该处的线速度,即kv f -=,k 为常数,求: (1) 圆盘在任一角速度ω时所受的空气阻力矩; (2) 圆盘在停止转动前转过的圈数。
(1) 在距圆心r 处取一宽度为r d 的圆环,其上所受的阻力大小为f d ,则r kr r r kr s kv f d 4d 4d d 2πωπω===圆盘所受的空气阻力矩为⎰⎰⎰-=-=-==RRkR r kr f r M M 043d 4d d πωπω(2) 由转动定律θωωθθωωπωd d d d d d d d 4J t J t JkR M ===-=ω积分⎰⎰-=θωωπθ0040d d kR J得 2040240221kR m kR mR kR J πωπωπωθ=== 22042kRm n πωπθ==。