运放稳定性1-环路稳定性基础
- 格式:pdf
- 大小:522.16 KB
- 文档页数:14
电压反馈运算放大器的稳定性分析及补偿技术1,介绍:电压反馈放大器(VFA)已经有60年的历史,但从第一天起,对电路的设计仍存在问题。
反馈系统是易变的和精密的,但总有不稳定的趋势。
运算放大器电路结构使用了一个高增益放大器,它的参数取决于外部的反馈元件,如果没有反馈元件,放大器的增益非常高。
最轻微的输入信号都会使输出饱合。
运放是一个通用元件,所以这个结构的研究要很细致,但结果在很多电压反馈电路中都是可用的。
电流反馈放大器(CFA)很象电压反馈放大器(VFA),但其间的差异很重要,在隔离反馈系统中应用时要确保CFA在掌控之中。
稳定性作为电子电路中的术语,常定义为实现无振荡状态,这是一个不准确不恰当的定义词汇。
稳定性是个相对概念,而其饱合使人们不易处理,因为相对地评判已经用尽,它很容易在一个电路之间画一条线,是振荡还是不振荡。
所以我们能了解为什么一些人相信振荡是稳定和不稳定之间的一条边界线。
反馈电路展示出一个拙劣的相位响应,过冲及振荡之前的振铃。
这些现象在电路设计时都要考虑到,而且是不希望有的。
本文不去涉及振荡器,于是相对的稳定性定义为一项性能。
根据此定义,当设计师决定在可接受的相对稳定的电路中有些折衷,相对的稳定性的测量是阻尼的比例(ζ)阻尼比的细节讨论见参考文件1。
阻尼比相对于相位移动是另一个稳定性的测量标准。
多数稳定电路都有较长的响应时间,低的带宽,高的精度及少的过冲。
欠稳定的电路有最快的响应时间,最高的带宽,低的精度及一些过冲。
放大器由有源元件诸如晶体管一类组成。
合适的晶体管参数象晶体管增益,提供一个漂移及初始的来自各方的非精密度。
所以放大器由这些元件组合时就存在了漂移和非精密状态。
而漂移和非精准要用负反馈来消除。
运放电路结构采用反馈系统使电路的传输函数与放大器特性无关。
做到了这一点,电路的传输函数就只取决于外部元件。
外部的无源元件几乎可以满足漂移和精度的规范,仅有成本和几何尺寸限制这些无源元件的使用。
运放稳定性分析环路稳定性基础引言本系列所采用的所有技术都将“以实例来定义”,而不管它在其他应用中能否用普通公式来表达。
为便于进行稳定性分析,我们在工具箱中使用了多种工具,包括数据资料信息、技巧、经验、SPICE仿真以及真实世界测试等,都将用来加快我们的稳定运放电路设计。
尽管很多技术都适用于电压反馈运放,但上述这些工具尤其适用于统一增益带宽小于20MHz的电压反馈运放。
选择增益带宽小于20MHz的原因是,随着运放带宽的增加,电路中的其他一些主要因素会形成回路,如印制板(PCB) 上的寄生电容、电容中的寄生电感以及电阻中的寄生电容与电感等。
我们下面介绍的大多数经验与技术并非仅仅是理论上的,而且是从利用增益带宽小于20MHz的运放、实际设计并构建真实世界电路中得来的。
本系列的第1部分回顾了进行稳定性分析所需的一些基本知识,并定义了将在整个系列中使用的一些术语。
波特图(曲线)基础幅度曲线的频率响应是电压增益改变与频率改变的关系。
这种关系可用波特图上一条以分贝(dB) 来表示的电压增益比频率(Hz) 曲线来描述。
波特幅度图被绘成一种半对数曲线:x轴为采用对数刻度的频率(Hz)、y轴则为采用线性刻度的电压增益(dB) ,y轴最好是采用方便的每主格45°刻度。
波特图的另一半则是相位曲线(相移比频率),并被描绘成以“度”来表示的相移比频率关系。
波特相位曲线亦被绘成一种半对数曲线:x轴为采用对数刻度的频率(Hz)、y轴为采用线性刻度的相移(度),y轴最好是采用方便的每主格45°刻度。
幅度波特图要求将电压增益转换成分贝(dB) 。
进行增益分析时,我们将采用以dB(定义为20Log10A)表示的电压增益,其中A为以伏/伏表示的电压增益。
在电压增益波特图上,增益随频率变化的斜线可定义成按+20dB/decade或-20dB/decade增加或减小。
另一种描述同样斜线的方法是按+6dB/octave 或-6dB/octave增加或减小(参见图1.4)以下推导证明了20dB/decade与6dB/octave的等效性:?A(dB) = A(dB) at fb – A(dB) at fa?A(dB) = [Aol(dB) - 20log10(fb/f1)] – [Aol(dB) - 20log10(fa/f1)]?A(dB) = Aol(dB) - 20log10(fb/f1) – Aol(dB) + 20log10(fa/f1)]?A(dB) = 20log10(fa/f1) – 20Log10(fb/f1)]?A(dB) = 20log10(fa/fb)?A(dB) = 20log10(1k/10k) = -20dB/decade?A(dB) = 20log10(fb/fc)?A(dB) = 20log10(10k/20k) = -6db/octave-20dB/decade = -6dB/octave因此:+20dB/decade = +6dB/octave -20dB/decade = -6dB/octave+40dB/decade = +12dB/octave -40dB/decade = -12dB/octave+60dB/decade = +18dB/Octave -60dB/decade = -18dB/Octave极点à单个极点响应在波特图(幅度或增益曲线)上具有按-20dB/decade 或-6db/octave斜率下降的特点。
典型的两级运算放大器环路稳定性分析典型的两级运放如图所示,负载电容CL=50fF。
首先建立静态工作点。
加偏置电流I0=4uA,加共模输入电平1.25V。
仿真后得到结果如下,静态工作点是合适的。
1.开环分析米勒补偿前做开环分析如下,显然,这是不合适的。
加米勒补偿电容Cc=200fF,做开环分析如下,显然,这也是不合适的。
这是由于电路中存在零点造成的。
加入调零电阻Rz=40K,,仿真结果如下。
可以看出,,,相位裕度为40度,不够。
可通过加大补偿电容来进一步分裂p1,p2主次极点。
(已尝试过加米勒补偿电容Cc=300fF可以得到大于60度的相位裕度)。
但是本次设计的运放用在负反馈环路中,故只需要负反馈环路是稳定的就达到设计标准。
理论计算。
查看各管子的静态工作点。
,,,即。
,,,即。
,。
理论值与仿真结果非常接近。
,理论值与仿真结果非常接近。
,,理论值与仿真结果非常接近。
,,理论值与仿真结果40度偏差较大。
2.在负反馈环路中做环路稳定性分析:从上图可以看出,加入反馈电阻网络R1,R2后就打破了原有的静态工作点:主要是反馈电阻网络R1,R2中的电流由M7管提供,所以M7管的静态工作点打破了,即运放的第二级跨导GmⅡ,输出电阻R2都变了。
从波特图中可以看出相位裕度为77度,满足设计标准。
理论计算:查看各管子的静态工作点。
,,,即。
,,,即。
,。
理论值与仿真结果非常接近。
,理论值与仿真结果非常接近。
,理论值与仿真结果非常接近。
,,理论值与仿真结果77度偏差较大。
此结果可能是由于gm7变大,原来的调零电阻RZ过大造成的。
现在改变调零电阻Rz=25K,,仿真结果如下:此时,相位裕度为63度,满足设计标准。
3.改用大电感大电容仿真环路增益:仿真方法如上图所示,将环路断开,加入大电感L0=1GH通直流以建立直流工作点,并且断开交流通路,加入大电容C3=1GF通交流小信号V8。
从仿真结果图中可以看出相位裕度为70度。
不同的仿真方式所得到的结果略有误差。
信息科学与技术学院模拟CMOS集成电路设计——稳定性与频率补偿学习报告姓名:学号:二零一零年十二月稳定性及频率补偿2010-12-3一、自激振荡产生原因及条件1、自激振荡产生原因及条件考虑图1所示的负反馈系统,其中β为反馈网络的反馈系数,并假定β是一个与频率无关的常数,即反馈网络由纯电阻构成,不产生额外的相移(0βϕ= );H (s )为开环增益,则()H s β为环路增益。
所以,该系统输入输出之间的相移主要由基本放大电路产生。
图1 基本负反馈系统 该系统的闭环传输函数(即系统增益)可写为:()()1()Y H s s X H s β=+ 由上式可知,若系统增益分母1()H s j βω==-1,则系统增益趋近于∞,电路可以放大自身的噪声直到产生自激振荡,即:如果1()H j βω=-1,则该电路可以在频率1ω产生自激振荡现象。
则自激振荡条件可表示为:1|()|1H j βω=1()180H j βω∠=-注意到,在1ω时环绕这个环路的总相移是360 ,因为负反馈本身产生了180 的相移,这360 的相移对于振荡是必需的,因为反馈信号必须同相地加到原噪声信号上才能产生振荡。
为使振荡幅值能增大,要求环路增益等于或者大于1。
所以,负反馈系统在1ω产生自激振荡的条件为:(1)在该频率下,围绕环路的相移能大到使负反馈变为正反馈;(2)环路增益足以使信号建立。
2、重要工具波特图判断系统是否稳定的重要工具是波特图。
波特图根据零点和极点的大小表示一个复变函数的幅值和相位的渐进特性。
波特图的画法:(1)幅频曲线中,每经过一个极点P ω(零点Z ω),曲线斜率以-20dB/dec(+20dB/dec)变化;(2)相频曲线中,相位在0.1P ω(0.1Z ω)处开始变化,每经过一个极点P ω(零点Z ω),相位变化-45 (±45 ),相位在10P ω(10Z ω)处变化-90 (±90 );(3)一般来讲,极点(零点)对相位的影响比对幅频的影响要大一些。
--放大器的精度和稳定性电路结构建议采用典型电路形式和厂商提供的电路,许多电路结构都是经过很多工程师们反复实验和验证过的。
采用OP构成的放大器电路的精度主要与外部元器件参数有关,例如放大倍数与外接的电阻有关。
解决放大器的稳定性就比较复杂了,涉及到放大器的电路结构、PCB布局、电源供给、以及放大器所在的系统环境等等、等等。
一些建议如下:与分立器件相比,现代集成运算放大器(op amp)和仪表放大器(in-amp)为设计工程师带来了许多好处。
虽然提供了许多巧妙、有用并且吸引人的电路。
往往都是这样,由于仓促地组装电路而会忽视了一些非常基本的问题,从而导致电路不能实现预期功能——或者可能根本不工作放大器电路设计:如何避免常见问题。
(1)最常遇到的一个应用问题是在交流(AC)耦合运算放大器或仪表放大器电路中没有提供偏置电流的直流(DC)回路。
在图1中,一只电容器与运算放大器的同相输入端串联以实现AC耦合,这是一种隔离输入电压(VIN)的DC分量的简单方法。
这在高增益应用中尤其有用,在那些应用中哪怕运算放大器输入端很小的直流电压都会限制动态范围,甚至导致输出饱和。
然而,在高阻抗输入端加电容耦合,而不为同相输入端的电流提供DC通路,会出现问题。
图1 运算放大器AC耦合输入错误的连接形式(2)在仪表放大器的输出端和ADC的输入端之间通常接一个简单的RC低通抗混叠滤波器以减少带外噪声。
RC低通滤波器的典型值:R = 50Ω~ 200Ω, C = 1/(2πR F),按电路的-3 dB带宽设置C的取值。
(3)当从电源电压利用分压器为放大器提供参考电压时应保证PSR性能一个经常忽视的问题是电源电压VS的任何噪声、瞬变或漂移都会通过参考输入按照分压比经过衰减后直接加在输出端。
实际的解决方案包括旁路滤波以及甚至使用精密参考电压IC 产生的参考电压,例如ADR121,代替Vs分压。
当设计带有仪表放大器和运算放大器的电路时,这方面的考虑很重要。
环路稳定性基础引言本系列所采用的所有技术都将“以实例来定义”,而不管它在其他应用中能否用普通公式来表达。
为便于进行稳定性分析,我们在工具箱中使用了多种工具,包括数据资料信息、技巧、经验、SPICE仿真以及真实世界测试等,都将用来加快我们的稳定运放电路设计。
尽管很多技术都适用于电压反馈运放,但上述这些工具尤其适用于统一增益带宽小于20MHz的电压反馈运放。
选择增益带宽小于20MHz的原因是,随着运放带宽的增加,电路中的其他一些主要因素会形成回路,如印制板(PCB) 上的寄生电容、电容中的寄生电感以及电阻中的寄生电容与电感等。
我们下面介绍的大多数经验与技术并非仅仅是理论上的,而且是从利用增益带宽小于20MHz的运放、实际设计并构建真实世界电路中得来的。
本系列的第1部分回顾了进行稳定性分析所需的一些基本知识,并定义了将在整个系列中使用的一些术语。
图字(上、下):数据资料信息、技巧、经验、Tina SPICE仿真、测试;目的:学习如何用数据资料信息、技巧、经验法则、Tina SPICE仿真及测试来“更容易地”分析和设计运放,以确保环路稳定性;注:用于统一增益带宽小于20MHz的电压反馈运放的技巧与经验法则。
波特图(曲线)基础幅度曲线的频率响应是电压增益改变与频率改变的关系。
这种关系可用波特图上一条以分贝(dB) 来表示的电压增益比频率(Hz) 曲线来描述。
波特幅度图被绘成一种半对数曲线:x轴为采用对数刻度的频率(Hz)、y轴则为采用线性刻度的电压增益(dB) ,y轴最好是采用方便的每主格45°刻度。
波特图的另一半则是相位曲线(相移比频率),并被描绘成以“度”来表示的相移比频率关系。
波特相位曲线亦被绘成一种半对数曲线:x轴为采用对数刻度的频率(Hz)、y轴为采用线性刻度的相移(度),y轴最好是采用方便的每主格45°刻度。
图字(上、下):Aol曲线、幅度曲线、频率、相位曲线。
幅度波特图要求将电压增益转换成分贝(dB) 。
运放稳定性第5部分(共15部分):单电源缓冲器电路的实际设计作者:Tim Green,德州仪器公司本系列的第5部分将着重讨论“实际”应用,我们到目前为止所学会的技巧和经验都将得到应用,帮助我们方便地稳定一个复杂的电路。
我们将设计一个通用单电源缓冲放大器(将2.1V 缓冲至4.1V参考),5V单电源供电使它能够线性地工作,可提供较大的输出电流(>13mA),并在 -40°C 至 +125°C工作温度范围的飘移为0.4V。
虽然可将该电路用于许多应用中,但我们仍将简要介绍一下促使给出这个设计的原因,并解释为何没有现成的电路可用来完成此项工作。
我们这里采用综合技术来开发器件网络,以提供一个证明对许多运放应用都有益的稳定电路。
技术背景:在实际应用中,惠斯通电桥的一个常见应用就是压力测量。
如图 5.1所示,随着所加压力变化,很多这种压力传感器都具有明显的二阶非线性特性。
图5.1 典型实际传感器输出比所加压力图字(上、下):室温下电桥输出与压力关系、理想传感器、实际传感器;坐标轴字: X轴:压力、Y轴:Vexc=1V时的电桥输出(V/V或Vbridge)除了随所加压力变化而产生的非线性外,许多压力传感器随温度变化在偏移量和范围上也有非线性特性。
用来校正这些误差的一种现代解决方法是在压力传感器中内置电子电路,然后将电子电路与压力传感器作为一个模块,随着温度的变化进行数字校准。
一种适用于此类用途的IC是由德州仪器公司提供的Burr-Brown产品PGA309(如图 5.2所示)。
此输出电压已经过数字校准的传感器,其信号调整IC包含有一个模拟传感器线性化电路,该电路将输出电压的一部分反馈至传感器的电压激励引脚,从而以20:1的改良比例对二阶非线性进行线性化。
因此,V EXC引脚将随传感器所加压力的变化而对其电压进行调整。
此电路的一个局限就是其传感器激励引脚V EXC,在工作温度范围内限制在5mA最大输出电流上。
信息科学与技术学院模拟CMOS集成电路设计——稳定性与频率补偿学习报告姓名:学号:二零一零年十二月稳定性及频率补偿2010-12-3一、自激振荡产生原因及条件1、自激振荡产生原因及条件考虑图1所示的负反馈系统,其中β为反馈网络的反馈系数,并假定β是一个与频率无关的常数,即反馈网络由纯电阻构成,不产生额外的相移(0βϕ=);H (s )为开环增益,则()H s β为环路增益。
所以,该系统输入输出之间的相移主要由基本放大电路产生。
图1 基本负反馈系统 该系统的闭环传输函数(即系统增益)可写为:()()1()Y H s s X H s β=+ 由上式可知,若系统增益分母1()H s j βω==-1,则系统增益趋近于∞,电路可以放大自身的噪声直到产生自激振荡,即:如果1()H j βω=-1,则该电路可以在频率1ω产生自激振荡现象。
则自激振荡条件可表示为:1|()|1H j βω=1()180H j βω∠=-注意到,在1ω时环绕这个环路的总相移是360,因为负反馈本身产生了180的相移,这360的相移对于振荡是必需的,因为反馈信号必须同相地加到原噪声信号上才能产生振荡。
为使振荡幅值能增大,要求环路增益等于或者大于1。
所以,负反馈系统在1ω产生自激振荡的条件为:(1)在该频率下,围绕环路的相移能大到使负反馈变为正反馈;(2)环路增益足以使信号建立。
2、重要工具波特图判断系统是否稳定的重要工具是波特图。
波特图根据零点和极点的大小表示一个复变函数的幅值和相位的渐进特性。
波特图的画法:(1)幅频曲线中,每经过一个极点P ω(零点Z ω),曲线斜率以-20dB/dec(+20dB/ dec)变化;(2)相频曲线中,相位在0.1P ω(0.1Z ω)处开始变化,每经过一个极点P ω(零点Z ω),相位变化-45(±45),相位在10P ω(10Z ω)处变化-90(±90);(3)一般来讲,极点(零点)对相位的影响比对幅频的影响要大一些。
测试运算放大器需要稳定的测试环路
本文我们将介绍使用推荐测试电路时所涉及的补偿问题。
如果测试电路中的环路不稳定,那它就没有用。
在测试过程中要一直监控被测试器件测试环路的输出。
如果环路发生振荡,而您不知道,您可能会报告不好的结果。
更糟糕的是,您可能很晚才发现,而此时纠正该问题已经更难了。
自测试补偿
使用大型电阻器测试时,需要为每个Ib 电阻器布置一个小电容器,以保持环路稳定(请参考之前的文章)。
添加该电容器可降低电阻器噪声,但要注意在测量之前要完全充电电容器。
双放大器环路补偿。
运算放大器的稳定性第4部分(共15部分):环路稳定性主要技巧与经验作者:Tim Green,TI公司本系列的第4部分着重讨论了环路稳定性的主要技巧与经验。
首先,我们将讨论45度相位及环路增益带宽准则,考察了在Aol 曲线与1/β曲线以及环路增益曲线Aolβ中的极点与零点之间的互相转化关系。
我们还将讨论用于环路增益稳定性分析的频率“十倍频程准则”。
这些十倍频程准则将被用于1/β、Aol及Aolβ曲线。
我们将给出运放输入网络ZI与反馈网络ZF的幅度“十倍频程准则”。
我们将开发一种用于在1/β曲线上绘制双反馈路径的技术,并将解释为何在使用双反馈路径时应该避免出现“BIG NOT”这种特殊情况。
最后,我们将给出一种便于使用的实际稳定性测试方法。
在本系列的第5部分中,这些关键工具的综合使用使我们能够系统而方便地稳定一个带有复杂反馈电路的实际运放应用。
环路增益带宽准则已确立的环路稳定性标准要求在fcl处相移必须小于180度,fcl是环路增益降为零时的频率。
在fcl处的相移与整个180度相移之间的差定义为相位余量。
图4.0详细给出了建议用于实际电路的经验,亦即在整个环路增益带宽(f≤fcl)中设计得到135度的相移(对应于45度的相位余量)。
这是考虑到,在实际电路中存在着功率上升、下降及瞬态情况,在这些情况下,运放在Aol曲线上的改变可能会导致瞬态振荡。
而这种情况在功率运放电路中是特别不希望看到的。
由于存在寄生电容与印制板布局寄生效应,因此这种经验还考虑在环路增益带宽中用额外的相位余量来考虑实际电路中的附加相移的。
此外,当环路增益带宽中相位余量小于45度时,即可能在闭环传输函数中导致不必要的尖峰。
相位余量越低及越靠近fcl,则闭环尖峰就会越明显。
18013545Frequency(Hz)90θ-45-135oDesign for: <Loop Stability Criteria:<-180 degree phase shift at fcl-135 degree phase shift at all frequencies <fclWhy?:Because Aol is not always “Typical”Power-up, Power-down, Power-transient ÆUndefined “Typical”AolAllows for phase shift due to real world Layout & Component Parasitics图4.0:环路增益带宽准则图字(上下、左右):Aolβ(环路增益)相位曲线、-135°“相移”、频率 (Hz)、45°“相位余量”环路稳定性标准:在fcl处相移< -180度设计目的:在所有< fcl 的频率上,都有相移≤ -135度原因:因为Aol (开环增益)并不总是“典型”,考虑到实际电路布局与器件的寄生效应,存在着功率上升、下降及暂态现象→这些是未定义的“典型” Aol 。
运放稳定性第1部分(共15部分):环路稳定性基础作者:Tim Green ,TI 公司Burr-Brown 产品战略发展经理1.0 引言本系列所采用的所有技术都将“以实例来定义”,而不管它在其他应用中能否用普通公式来表达。
为便于进行稳定性分析,我们在工具箱中使用了多种工具,包括数据资料信息、技巧、经验、SPICE 仿真以及真实世界测试等,都将用来加快我们的稳定运放电路设计。
尽管很多技术都适用于电压反馈运放,但上述这些工具尤其适用于统一增益带宽小于20MHz 的电压反馈运放。
选择增益带宽小于20MHz 的原因是,随着运放带宽的增加,电路中的其他一些主要因素会形成回路,如印制板 (PCB) 上的寄生电容、电容中的寄生电感以及电阻中的寄生电容与电感等。
我们下面介绍的大多数经验与技术并非仅仅是理论上的,而且是从利用增益带宽小于20MHz 的运放、实际设计并构建真实世界电路中得来的。
本系列的第1部分回顾了进行稳定性分析所需的一些基本知识,并定义了将在整个系列中使用的一些术语。
9Data Sheet Info 9Tricks 9Rules-Of-Thumb 9Tina SPICE Simulation9TestingGoal:EASILY Tricks & Rules-Of-Thumb apply for Voltage FeedbackOp Amps, Unity Gain Bandwidth <20MHzTo learn how to analyze and design Op Amp circuits for guaranteed Loop Stability using Data Sheet Info, Tricks, Rules-Of-Thumb, Tina SPICE Simulation, and Testing.Note:图1.0 稳定性分析工具箱图字(上、下):数据资料信息、技巧、经验、Tina SPICE 仿真、测试;目的:学习如何用数据资料信息、技巧、经验法则、Tina SPICE 仿真及测试来“更容易地”分析和设计运放,以确保环路稳定性;注:用于统一增益带宽小于20MHz 的电压反馈运放的技巧与经验法则。
运放稳定性第1部分(共15部分):环路稳定性基础作者:Tim Green ,TI 公司Burr-Brown 产品战略发展经理1.0 引言本系列所采用的所有技术都将“以实例来定义”,而不管它在其他应用中能否用普通公式来表达。
为便于进行稳定性分析,我们在工具箱中使用了多种工具,包括数据资料信息、技巧、经验、SPICE 仿真以及真实世界测试等,都将用来加快我们的稳定运放电路设计。
尽管很多技术都适用于电压反馈运放,但上述这些工具尤其适用于统一增益带宽小于20MHz 的电压反馈运放。
选择增益带宽小于20MHz 的原因是,随着运放带宽的增加,电路中的其他一些主要因素会形成回路,如印制板 (PCB) 上的寄生电容、电容中的寄生电感以及电阻中的寄生电容与电感等。
我们下面介绍的大多数经验与技术并非仅仅是理论上的,而且是从利用增益带宽小于20MHz 的运放、实际设计并构建真实世界电路中得来的。
本系列的第1部分回顾了进行稳定性分析所需的一些基本知识,并定义了将在整个系列中使用的一些术语。
9Data Sheet Info 9Tricks 9Rules-Of-Thumb 9Tina SPICE Simulation9TestingGoal:EASILY Tricks & Rules-Of-Thumb apply for Voltage FeedbackOp Amps, Unity Gain Bandwidth <20MHzTo learn how to analyze and design Op Amp circuits for guaranteed Loop Stability using Data Sheet Info, Tricks, Rules-Of-Thumb, Tina SPICE Simulation, and Testing.Note:图1.0 稳定性分析工具箱图字(上、下):数据资料信息、技巧、经验、Tina SPICE 仿真、测试;目的:学习如何用数据资料信息、技巧、经验法则、Tina SPICE 仿真及测试来“更容易地”分析和设计运放,以确保环路稳定性;注:用于统一增益带宽小于20MHz 的电压反馈运放的技巧与经验法则。
1目的 (2)2适用范围 (2)3引用标准 (2)4测试仪器/设备 (2)5定义 (2)5.1环路稳定性 (2)5.2相位裕度 (2)5.3增益裕度 (2)5.4穿越频率 (2)6环路稳定性评价方法 (3)6.1环路稳定性评价指标 (3)6.2开关电源控制环路稳定性验证 (3)6.3环路稳定性评价指标判定 (3)7附录 (4)1目的制定日期页码第2 / 4页本规范为产品验证阶段的环路稳定性测试提供指导,保证正确测量环路特性和合理评估电源产品的稳定程度。
2适用范围本规范适用于MOS 消费类电源和LED 电源验证过程中进行的电路环路稳定性评价。
3引用标准无4测试仪器/设备N4L PSM2200频率响应分析仪5、定义5.1环路稳定性:是评价电源输出电压品质的一项重要指标,即直接决定电源启动特性、输入电压跃变响应 特性、负载跃变响应特性、高低温稳定性以及影响生产和调试难易度等的特性。
5.2增益裕度(Gain Margin):又称增益容限,是指当开关电源的输出随着负载特性的改变而控制环路所对应 频率点的相位为 Odeg 时的增益量。
5.3相位裕度(Phase Margin):又称相位容限,是指当开关电源的输出随着负载特性的改变而控制环路的增 益量下降到0dB时所对应频率点的相位。
(实际是衰减)。
5.4穿越频率(Crossover Frequency ):又称频带宽度,是指在频率 -增益曲线上,增益为零时所对应的频率值。
6.环路稳定性评价方法 6.1环路稳定性评价指标衡量开关电源稳定性的指标是相位裕度和增益裕度。
同时穿越频率,也应作为一个参考指标。
(1) 相位裕度是指:增益降到 0dB 时所对应的相位。
(2) 增益裕度是指:相位为 0deg 时所对应的增益大小(实际是衰减)。
(3) 穿越频率是指:增益为 0dB 时所对应的频率值。
相位裕度,增益裕度,穿越频率,如图2 (波德图)所示。
J 穿越频率图1波德图注:图1中,相位容限即相位裕度,增益容限即增益裕度。
使用运放构成电压跟随器的稳定性问题本文介绍了使用运放构成电压跟随器的稳定性问题及解决方法。
用运放构成电压跟随器的电路,传统教科书仅是简单的把输出和反相输入端连接起来完事儿(如图一),而实际电路要复杂的多,稳定性问题不可忽视!本文是在一家日本IC厂家网站上找到的,希望对实际应用有一点帮助。
(电压跟随器,顾名思义,就是输出电压与输入电压是相同的,就是说,电压跟随器的电压放大倍数恒小于且接近1。
)电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆是很容易做到的。
输出阻抗低,通常可以到几欧姆,甚至更低。
在电路中,电压跟随器一般做缓冲级及隔离级。
因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。
在这个时候,就需要电压跟随器来从中进行缓冲。
起到承上启下的作用。
应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。
电压跟随器的另外一个作用就是隔离,在HI-FI电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多数的放大电路是不能很好的工作的。
但是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。
造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。
但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。
)Q. 用电压跟随器使运算放大器保持稳定,须注意哪些问题?A:对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。
电压跟随器也不例外。
运算放大器理想的运行状态是输出电压和输入电压为同相,即,当负输入端的印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。
不过,运算放大器的输入端和输出端的相位总有差异。
運算放大器穩定性之原理與分析15之1:迴路穩定性基本原理作者:Tim Green - Strategic Development Engineer, Burr-Brown Products from Texas Instruments1.0 前言本運算放大器系列文章將以「範例定義」(definition by example) 做為主要分析技巧,同時還有一般性公式可用於其它應用。
為了讓穩定性分析更容易,我們會運用許多不同的分析工具,例如元件資料表資訊、秘訣技巧、經驗規則、SPICE 模擬、和實際測試等,來加快穩定運算放大器電路的設計。
雖然這些工具中有部份可用於任何電壓回授型運算放大器,但是其主要目標為單位增益頻寬小於20 MHz的電壓迴授型放大器。
以20 MHz做為上限,是因為隨著運算放大器的頻寬增加,許多其它因素必須列入考慮,例如電路板訊號線的寄生電容、電容的寄生電感、以及電阻的寄生電容和寄生電感等。
目前已有理論支持多數的經驗規則和秘訣技巧,還有實際設計和製造運算放大器電路時所累積的知識做為依據。
本系列的第一篇文章將複習一些對於穩定性分析的簡化極為重要的基本原理。
我們另外還會定義此系列文章可能用到的某些名詞術語。
目標:學習如何利用元件資料表資訊、秘訣技巧、經驗規則、Tina SPICE模擬和測試來輕易地分析設計運算放大器電路,同時確保迴路穩定性。
說明:秘訣技巧和經驗規則適用於單位增益頻寬小於20 MHz的電壓迴授型放大器圖1:穩定性分析工具1.1 波德圖基本原理頻率響應圖的振幅圖可以顯示電壓增益如何隨著頻率而改變,可由代表電壓增益與頻率之間關係的波德圖(Bode plot) 描述。
波德圖是一種半對數圖,其橫軸以對數座標表示頻率值(Hz),縱軸則以線性座標表示的電壓增益值(dB)。
而為了分析方便,縱軸每格最好為20 dB。
波德圖的另一半是相位圖,代表相位移與頻率之間的變化關係;通常是以相位移度數和頻率來顯示的關係圖。
运放稳定性第1部分(共15部分):环路稳定性基础作者:Tim Green ,TI 公司Burr-Brown 产品战略发展经理1.0 引言本系列所采用的所有技术都将“以实例来定义”,而不管它在其他应用中能否用普通公式来表达。
为便于进行稳定性分析,我们在工具箱中使用了多种工具,包括数据资料信息、技巧、经验、SPICE 仿真以及真实世界测试等,都将用来加快我们的稳定运放电路设计。
尽管很多技术都适用于电压反馈运放,但上述这些工具尤其适用于统一增益带宽小于20MHz 的电压反馈运放。
选择增益带宽小于20MHz 的原因是,随着运放带宽的增加,电路中的其他一些主要因素会形成回路,如印制板 (PCB) 上的寄生电容、电容中的寄生电感以及电阻中的寄生电容与电感等。
我们下面介绍的大多数经验与技术并非仅仅是理论上的,而且是从利用增益带宽小于20MHz 的运放、实际设计并构建真实世界电路中得来的。
本系列的第1部分回顾了进行稳定性分析所需的一些基本知识,并定义了将在整个系列中使用的一些术语。
9Data Sheet Info 9Tricks 9Rules-Of-Thumb 9Tina SPICE Simulation9TestingGoal:EASILY Tricks & Rules-Of-Thumb apply for Voltage FeedbackOp Amps, Unity Gain Bandwidth <20MHzTo learn how to analyze and design Op Amp circuits for guaranteed Loop Stability using Data Sheet Info, Tricks, Rules-Of-Thumb, Tina SPICE Simulation, and Testing.Note:图1.0 稳定性分析工具箱图字(上、下):数据资料信息、技巧、经验、Tina SPICE 仿真、测试;目的:学习如何用数据资料信息、技巧、经验法则、Tina SPICE 仿真及测试来“更容易地”分析和设计运放,以确保环路稳定性;注:用于统一增益带宽小于20MHz 的电压反馈运放的技巧与经验法则。
1.1 波特图(曲线)基础幅度曲线的频率响应是电压增益改变与频率改变的关系。
这种关系可用波特图上一条以分贝 (dB) 来表示的电压增益比频率 (Hz) 曲线来描述。
波特幅度图被绘成一种半对数曲线:x 轴为采用对数刻度的频率 (Hz)、y 轴则为采用线性刻度的电压增益 (dB) ,y 轴最好是采用方便的每主格45°刻度。
波特图的另一半则是相位曲线(相移比频率),并被描绘成以“度”来表示的相移比频率关系。
波特相位曲线亦被绘成一种半对数曲线:x 轴为采用对数刻度的频率 (Hz)、y 轴为采用线性刻度的相移(度),y 轴最好是采用方便的每主格45°刻度。
2040608010010M1M100k10k1k100101Frequency (Hz)A (dB )Aol Curve+90-90+45+-45101001k10k100k1M10MFrequency (Hz)图 1.1 幅度与相位波特曲线(图)图字(上、下):Aol 曲线、幅度曲线、频率、相位曲线。
幅度波特图要求将电压增益转换成分贝 (dB) 。
进行增益分析时,我们将采用以dB (定义为20Log 10A )表示的电压增益,其中A 为以伏/伏表示的电压增益。
图1.2 幅度波特曲线分贝(dB) 定义θ(d e g r e e s )Magnitude PlotPhase PlotA A = Voltage Gain in V/V dB ÆA(dB)=20Log 10where 01201040100601,0008010,000100100,0001201,000,00014010,000,000-200.1-400.01-600.001 A (dB)A (V/V)图1.3定义一些常用的波特图术语:•Roll-Off Rate •Decade Æ•Octave Æ ÆDecrease in gain withfrequencyx10 increase or x1/10 decrease in frequency. From 10Hz to 100Hz is one decade.X2 increase or x1/2 decrease in frequency. From 10Hz to 20Hz is one octave.图1.3 更多波特曲线定义图字(上、下):roll-off rate (下降速率)——增益随频率减小;decade (十倍频程)——频率按x10增加或按x1/10减小,从10Hz 到100 Hz 为一个decade (十倍频程);octave (倍频程)——频率按x2增加或按x1/2减小,从10Hz 到20 Hz 为一个octave (倍频程);在电压增益波特图上,增益随频率变化的斜线可定义成按 +20dB/decade 或-20dB/decade 增加或减小。
另一种描述同样斜线的方法是按 +6dB/octave 或 -6dB/octave 增加或减小(参见图1.4)以下推导证明了20dB/decade 与 6dB/octave 的等效性:∆A(dB) = A(dB) at fb – A(dB) at fa∆A(dB) = [Aol(dB) - 20log10(fb/f1)] – [Aol(dB) - 20log10(fa/f1)] ∆A(dB) = Aol(dB) - 20log10(fb/f1) – Aol(dB) + 20log10(fa/f1)] ∆A(dB) = 20log10(fa/f1) – 20Log10(fb/f1)] ∆A(dB) = 20log10(fa/fb)∆A(dB) = 20log10(1k/10k) = -20dB/decade∆A(dB) = 20log10(fb/fc)∆A(dB) = 20log10(10k/20k) = -6db/octave-20dB/decade = -6dB/octave因此:+20dB/decade = +6dB/octave -20dB/decade = -6dB/octave +40dB/decade = +12dB/octave -40dB/decade = -12dB/octave +60dB/decade = +18dB/Octave -60dB/decade = -18dB/Octave 02040608010010M1M 100k 10k 1k 100101Frequency (Hz)20k 54B )A (d图1.4 幅度波特图:20dB/decade = 6dB/octave极点Æ 单个极点响应在波特图(幅度或增益曲线)上具有按 -20dB/decade 或 -6db/octave 斜率下降的特点。
在极点位置,增益为直流增益减去3dB 。
在相位曲线上,极点在频率f P 上具有-45°的相移。
相位在f P 的两边以 -45°/decade 的斜率变化为0°和 -90°。
单极点可用图1.5中的简单RC 低通网络来表示。
请注意极点相位是如何影响直到高于(或低于)极点频率10倍频程处的频率的。
V IN OU TA = V OU T /V IN Single Pole Circuit Equivalent +90-90+45+-45Frequency(Hz)0θ(d e g r e e s )020406080100A (d B )¾Pole Location ¾Magnitude ¾Phase = f P = -20dB/Decade Slope Slope begins at f P and continues down as frequency increases Actual Function = -3dB down @ f P= -45°/Decade Slope through f P Decade Above f P Phase = -90° Decade Below f P Phase = 0°图1.5 极点:波特曲线幅度与相位图字:实际函数、直线近似、频率;单极点电路等效电路图 极点位置= f p幅度= -20dB/decade 斜线- 斜线从f P 处开始、并继续随频率增加而下降 - 实际函数= -3dB down @ f p 相位= -45°/decade 斜率通过f p- f p 以上10倍频程处相位= -90° - f p 以下10倍频程处相位= 0°零点Æ 单个零点响应在波特图(幅度或增益曲线)上具有按 +20dB/decade 或+6db/octave 斜率上升(对应于下降)的特点。
在零点位置,增益为直流增益加3dB 。
在相位曲线上,零点在其频率f z 上具有+45°的相移。
相位在f z 的两边以+45°/decade 斜率变化为0°与+90°。
单零点可用图1.6中的简单RC 高通网络来表示。
请注意零点相位是如何影响直到高于(或低于)零点频率10倍频程处的频率的。
+90-90+45+-45Frequency (Hz)θ(d e g r e e s )20406080100A (dB )¾Zero Location ¾Magnitude ¾Phase = f Z= +20dB/Decade Slope Slope begins at f Z and continues up as frequency increasesActual Function = +3dB up @ f Z = +45°/Decade Slope through f Z Decade Above f Z Phase = +90°Decade Below f Z Phase = 0°图1.6 零点:波特曲线幅度与相位图字:实际函数、直线近似、频率;单零点电路等效电路图 零点位置= f z幅度= +20dB/decade 斜线- 斜线从f z 开始、并继续随频率增加而上升 - 实际函数= -3dB up @ f z 相位= +45°/decade 斜率通过f z- f z 以上10倍频程处相位=+90° - f z 以下10倍频程处相位= 0°在波特幅度图上,很容易测量给定极点或零点的频率。