高等有机化学_第5章羰基的亲核加成及相关反应
- 格式:doc
- 大小:1.24 MB
- 文档页数:19
羰基的亲核加成及相关反应羰基化合物包括醛、酮、羧酸及衍生物和5.1 羰基的结构CO2。
CO亲电中心羰基碳的活性较大,易被亲核试剂进攻而发生亲核加成反应和亲核取代反应。
5.2 亲核加成反应的历程及影响因素 5.2.1 HCN 的加成 反应为碱催化。
v k [ CO ][ CN ]快OH - + HCN CN -+ H 2O- 慢OH 2OOHCN -+ C O C 快 C + OH -CN CN 反应的平衡位置受电子效应和空间效应的影响。
酮正向反应的趋势较小(空阻大)二、亲核加成反应的一般特点 1.反应可以被酸或碱催化 酸催化可提高羰基的亲电活性。
碱催化提高亲核试剂的亲核性。
活性:Nu -> Nu H2.多数醛酮的亲核加成为可逆反应,用于分离与提纯。
5.2.2 影响羰基亲核加成反应活性的因素 一、羰基化合物的结构1.电子效应 羰基碳的正电性越大,亲核加成速度越大,反应活性越大。
羰基碳所连的吸电基( 加成反应的活性增加,而供电基( +I , +C )则使其活性降低。
活泼顺序:H +C OH C + OHNu H + OHNu -+ H 2O-I ,-C )使其亲核50%(1) - 共轭效应(增加其稳定性) ;( 2)+C 效应(降低羰基碳的正电性) ;(3)加成产物失去共轭 能,反应活化能高; ( 4)产物的张力大幅增加。
2.立体效应、试剂的亲核性 对同一羰基化合物,试剂的亲核性越大,平衡常数越大,亲核加成越容易。
1.带负电荷的亲核试剂比起共轭酸(中性分子)的亲核性强。
OH ->H 2O, RO ->ROH 。
2.极性大的分子比极性小的分子亲核性强。
HCN>H 2O (极性与电负性 )。
3.同周期元素的负离子的亲核性与碱性大小一致; R 3C ->R 2N ->RO ->F - 4.同一主族元素的负离子的亲核性与可极化度大小一致。
I ->Br ->Cl ->F -5.2.3 亲核加成反应的立体化学 一、非手性的羰基化合物的加成前(潜)手性分子 结果得外消旋化产物-I >+C(+C) (+C, 空阻) ( +C > -I) (+C) 活性极低OH> CH 3 C HO >CH 3 C CH 3 >OOO >CH 3CH 2 C CH 2CH 3> Ph C PhR Nu C R' O -R Nu RC Nu R' OH50% dlR R'OCNuH +R R'OHCNu张力增加OH +、手性羰基化合物的亲核加成方向遵守Cram 规则,得立体选择性的非对称异构体产物。
一、概述羰基的加成反应是有机化学中一种重要的反应类型,具有广泛的应用价值。
本文将探讨羰基的加成反应在有机合成中的应用。
二、羰基的加成反应基本原理1. 羰基的结构特点羰基是含有碳氧双键的有机化合物官能团,一般表示为“C=O”。
羰基通常分为醛、酮和羧酸三种类型,它们具有较强的电性,是有机合成中常见的反应物和产物。
2. 羰基的加成反应羰基的加成反应是指具有亲核试剂(如胺、醇等)与羰基发生亲核加成反应,形成加成产物的过程。
这种反应通常在碱性或酸性条件下进行,产物可以是醇、醛、酮、羧酸等化合物。
三、羰基的加成反应在有机合成中的应用1. 羰基的还原羰基的加成反应可用于醛酮的还原反应,常见的还原试剂有金属氢化物(如氢化钠、氢化铝锂等)和还原醇(如醇、胺等)等。
借助该反应,可以将醛酮还原为相应的醇,扩大有机合成的应用范围。
2. 羰基的羟化反应在羰基的加成反应中,羟胺(氨和水的混合物)可以与醛酮发生羟化反应,形成羟醇。
这种反应被广泛应用于药物合成和其他有机合成领域,具有重要的化学和生物活性。
3. 羰基的羟胺加成在温和的酸性条件下,羟胺可以与羰基形成加成产物。
该反应常用于合成β-羟基酮或β-羟基醛的过程中,产物可以进一步转化为药物分子或生物活性分子。
4. 羰基的羟胺甲酰化在适当的反应条件下,羰基与羟胺发生甲酰化反应,生成羰基甲酰胺。
这种反应在药物合成和有机合成中具有重要的应用价值,可以构建含氨基酰胺结构的化合物。
5. 羰基的醇加成在碱性条件下,醇可以与羰基形成加成产物。
这种反应常用于合成醛醇或酮醇的过程中,产物在有机合成中具有重要的应用价值。
6. 羰基的氧化反应在适当的氧化条件下,羰基可以与氧化剂发生氧化反应,形成羧酸。
这种反应在生物活性分子或有机合成中具有重要的应用价值。
7. 羰基的胺加成在适当的酸性条件下,胺可以与羰基形成加成产物。
这种反应在合成酰胺类化合物中具有重要的应用价值,是有机合成中一种有效的方法。
四、结论羰基的加成反应在有机合成中具有广泛的应用价值,可以用于合成各种类型的有机化合物,包括醇、醛、酮、羧酸等。
第五章 羰基的亲核加成及相关反应羰基化合物包括醛、酮、羧酸及衍生物和CO 2。
5.1 羰基的结构COδ+δ-亲电中心羰基碳的活性较大,易被亲核试剂进攻而发生亲核加成反应和亲核取代反应。
5.2 亲核加成反应的历程及影响因素 5.2.1 HCN 的加成 反应为碱催化。
]CN ][CO [k v ->=OH -+HCNCN -+ H 2O快-Cδ+δ-CO -CNCOHCN+OH - 反应的平衡位置受电子效应和空间效应的影响。
二、亲核加成反应的一般特点 1.反应可以被酸或碱催化酸催化可提高羰基的亲电活性。
CO +H ++OH碱催化提高亲核试剂的亲核性。
NuH +OH --+H 2ONu H ->2.多数醛酮的亲核加成为可逆反应,用于分离与提纯。
5.2.2 影响羰基亲核加成反应活性的因素 一、羰基化合物的结构 1.电子效应羰基碳的正电性越大,亲核加成速度越大,反应活性越大。
羰基碳所连的吸电基(-I ,-C )使其亲核加成反应的活性增加,而供电基(+I ,+C )则使其活性降低。
活泼顺序:ClCHO > HCHO > RCHO > CH 3COR > RCOOR' > RCONR'2 > RCOO --I > +C(+C)(+C,空阻)( +C > -I)(+C)CO RR'活性极低(1)π-π共轭效应(增加其稳定性);(2)+C 效应(降低羰基碳的正电性);(3)加成产物失去共轭能,反应活化能高;(4)产物的张力大幅增加。
2.立体效应CO -sp 2活性:O CHH OC CH 3H OC CH 3CH 3O OC CH 3CH 2CH 2CH 3OC Ph Ph>>>>>二、试剂的亲核性对同一羰基化合物,试剂的亲核性越大,平衡常数越大,亲核加成越容易。
1.带负电荷的亲核试剂比起共轭酸(中性分子)的亲核性强。
OH ->H 2O, RO ->ROH 。
2.极性大的分子比极性小的分子亲核性强。
HCN>H 2O(极性与电负性)。
3.同周期元素的负离子的亲核性与碱性大小一致; R 3C ->R 2N ->RO ->F -4.同一主族元素的负离子的亲核性与可极化度大小一致。
I ->Br ->Cl ->F -一、非手性的羰基化合物的加成CNu O -H+C NuOH50%CO -Nu+COH Nu 50%dl前(潜)手性分子 结果得外消旋化产物二、手性羰基化合物的亲核加成方向遵守Cram 规则,得立体选择性的非对称异构体产物。
C S L C MRO+R'ZC SL M C R'R OZC S L MC R'R非对映异构体还原含 -手性碳的醛酮时,手性碳上两个体积较小的基团(S 与M )分处于羰基两侧,体积最大的基团L 则与羰基呈反位交叉构象,还原剂从体积的较小S 与M 之间进攻羰基占优势,这就是Cram 规则。
(次)R'ZRR'重叠式交叉式(主要产物)HBr C CH 3PhONaBH 4H OH HBrPhCH 3+HO H HBrPhCH 3(2R)(1S,2R)(1R,2R)苏式(主)赤式(次)MeMe Ph+(优)BH -(1R,2R)(1S,2R)(2R)H+樟脑(刚性桥环不能翻转) 外型冰法 内型冰法转位阻大98.6% 0.4% 86% 14%NaBH 4LiBH(CHCH 2CH 3)3CH 3(位阻增大) 5.3醛酮的亲核加成一、与NaHSO 3的加成O +NaHSO 3COH SO 3Na(白色晶体)亲核中心为硫原子HSO 3-体积大,空间效应明显,只有醛、脂肪族甲基酮和碳原子少于8的环酮才能反应。
C OH SO 3-+CN-C OH CN+SO 32-好的离去基,避免用HCN二、与水加成CO +H 2OC OH OH水的亲核性较小,反应后空阻增大,故不利于水化。
若带吸电基时,有利于水化反应。
三、与醇的加成O +ROHH -或OH -COH OR半缩醛(酮)不稳定C OR C OH OR+H+COH 2CORC OR ORH只被酸催化 缩醛酮 醛与一元醇易形成缩醛,而酮则不易,常用 -二醇形成环状缩酮。
R 2C=O +HOCH 2CH 2OHCOORR +H 2O缩醛(酮)对碱、氧化剂、还原剂、碱金属等稳定,可用来保护醛基和酮基。
四、与金属有机化合物的反应 1、与炔钠加成RC CHRC CNa①O H 3OTHFC OH R'C R''CR 炔丙式醇2.与Grignard 试剂C O RH(R')+R''MgX①②干醚H 3OCROH H(R')R''O+R''MgXR''CH 2CH 2OH①干醚3RCOR'O+R''MgXRCR''O ①R''MgX C OH R''R R''H 3+O反应可能停留到酮阶段(C 2H 5O)2C=O +3C 2H 5MgBrH O +(C 2H 5)3COH 82-88%CH(OC 2H 5)2CH 3H +OCHOCH 374%HC(OC 2H 5)3+MgClCH 3原甲酸酯 副反应:(1)还原反应,格利亚试剂作为还原剂,经过环状过渡态影响(当二试剂的空阻都很大时)C CMg Mg C OH CC C OH MgXH 3+OC OHH+C C转移β-H(2)烯醇化,不存在β-H ,且位阻大时。
CC HC OMgX +RH烷基锂活性高,高位阻的酮仍然发生加成反应。
t BuC Bu Ot +t BuLi①THF H 3O(t Bu)3COH81%而格氏试剂却不能反应 3.Reformatsky 反应+RCHCO 2Et X Zn XZnCHCO 2EtRR'CR''OH +OCCHCO 2Et R'R''OH R-H 2OC R'R''CCO 2EtR用此反应来合成β-羟基酸酯和α,β-不饱和酸酯,同时可使醛酮的碳键增加。
PhCHO +RCHCOOEtBrZn 2PhCHCHCO 2EtOH2△PhCH=CCO 2EtRH /NiPhCH 2CHCH 2OHRCr O 吡啶PhCH 2CHCHOR一、与胺衍生物的反应C2ZCR OH NHZ-H O 加成消除C=NZ存在p-π共轭而稳定Z=R, Ar, OH, PhNH, NH 2CONH仲胺与醛酮加成后不能形成亚胺,如果α-碳上有氢则可脱水得烯胺。
R''2NH +RCH 2COR 'TiCl C R'2δδ++H 2O烯胺的β碳原子具有较强的亲核性能与卤代烃,卤代酮,卤代酸酯等作用,在烯胺β碳上引入烃基或与酰卤作用在β碳上引入酰基,产物经水解及到相应的醛酮。
O+N H②CH 2=CHCH 2Br2OCH 2CH=CH 2增加醛酮α-碳活性 二、Mannich 反应具有α-H 的醛酮或其他含活泼氢的化合物与甲醛及胺或氨作用,生成胺甲基化产物的反应称胺甲基化反应或Mannich 反应。
HCHO +NH 3+CH 3CORH +或OH -H 2NCH 2CH 2COR含活泼氢的化合物有;RCH 2COR,RCH 2COOR,RCH 2COOH,RCH 2CN 和RCH 2NO 2等。
氨和1º胺可进一步发生Mannich 反应CH 3COCH 3+HCHO +CH 3NH 2+CH 3CCH 2CH 2NHCH 3OHCHO, CH COCH CH 3CCH 2CH 2NCH 2CH 2CCH 3OO3区域选择性OCH 32H 2O.△CH 3CH 2NMe 2O+OCH 2NMe 2CH 370%30%氨甲基化产物对热不稳定,易分解为α,β-不饱和羰基化合物PhCCH 3O+HCHO +Me 2NH+PhCOCH 2CH 2NMe PhCOCH=CH 2Me 2CHCH 2CHO +HCHO +Me 2NH①H +CH 2=C CHOCH (CH 3)2OCH 2O+HCHO +PhNH 2①CF 3COOH托品酮的合成,1963年从环庚酮出发经十几步来合成。
HH O+H 2NCH 3+O COOHCOOHON CH 3活泼氢 托品酮(一步合成) 3—氧代-1,4-戊二醇 5.4.3 Wittig 反应C R 3R 4O +Ph 3P=C R 2R 1C CR3R 4R 2R 1+Ph 3P O二烃代亚甲基 三苯基膦 Wittig 试剂1. Wittig 试剂Ph 3P +CHCH 2XR1R 2Ph 3PCH R 1R 2X-强碱或PhLi 等Ph 3P CR 12空3d 轨道电子对Ph 3PCR 1R 2内鎓盐(主要贡献) d -p 共轭 ylide (盐,磷叶立德) ylene (烯,叶立因)(1) 活泼的wittig 试剂,此时R 1,R 2=H 或烷基。
与O 2,H 2O,HX 或醇均能反应。
(2) 不活泼的Wittig 试剂当OC NOO等吸电子与带负电荷的α碳相连时,因-I,-C 负电荷分散,Wittig 试剂比较稳定。
Ph 3PCH CRO如Ph 3C CH CN与醛反应活性低,与酮作用慢或不反应。
(3)稳定的Wittig 试剂位连有苯基或乙烯基时,Wittig 试剂不与醛酮反应。
如:Ph 3PPPh 32.Wittig 反应历程Ph 3P CR 1R 2+C R'R 2OC R 1R 2C R 3R 4PPh 3O -C C R 1R 2R3R 4Ph 3POC CR 1R 2R 3R 4+Ph 3P O氧磷环丁烷甜菜碱(非常稳定) 3. 立体化学活泼Wittig 试剂的反应产物以顺式烯为主。
Ph 3P CH CH 3+PhCHOC C CH 3H Ph H+C CCH 3H HPh 87%13%中间体以反应动力学有利的赤式为主。
C C Ph 3P O -H PhPh 3PCH CH 3+PhCHOPh 3PC HC PhO -苏式(次)赤式(主)C PhHHMeC C MeHPhH共轭稳定的wittig 试剂反应产物以反式烯烃为主。
Ph 3PCH Ph +C CPhHPhH25%+C C PhHHPh75%PhCHO中间体以热力学稳定的苏式为主Ph 3P C H CHO-苏式(主)赤式(次)C C PhHHPh C PhHPhHPh 3PCH Ph+PhCHOPh 3CH C PhO-另外醛酮的结构和溶剂的极性将影响其立体选择性。