过渡金属有机化学1
- 格式:ppt
- 大小:1.16 MB
- 文档页数:8
第1章纳米过渡金属催化有机反应的进展纳米金属粒子一般是指1~50nm尺寸的粒子,在这个尺度内,其形状以及大小对该金属的性能有显著的影响。
其颗粒越小,分布于表面的原子越多。
有报道表明,当纳米粒子的直径为10nm时,有大约10%的原子在粒子表面,而当纳米粒子的直径小于1nm时,则100%的原子都在粒子的表面,这使其成为一种高活性的金属形态。
[1]因而,过渡金属纳米粒子用于催化有机反应近年来在国际上引起了极大的兴趣。
[2-6]近年来,各种形状或尺寸的纳米材料相继被制备出来,它们所具有的特殊性质,为催化剂的发展提供了新的思路。
纳米催化剂可通过化学、物理等方法进行制备。
无论采用何种方法,制备的纳米粒子都必须达到如下要求: 1)粒子形状、粒径及粒度分布可控;2)粒子不易团聚;3)易于收集;4)产率高。
纳米粒子由于其大小位于纳米级尺度,因此表现出了宏观物质不具备或在宏观物质中可被忽略的一些物理效应,例如:表面效应、量子尺寸效应、体积效应以及宏观量子隧道效应等。
纳米催化剂的表面原子的排列方式以及纳米粒子的晶态结构和形状对其催化作用有显著影响。
由于表面效应使得纳米催化材料的比表面积大、表面能高、晶内扩散通道短、表面催化活性位多,同时由于反应条件温和、催化性能优异而且易于与反应产物分离,具有高活性和高选择性,因此相对于常规催化剂而言,纳米催化剂在催化领域有着更为广阔的应用前景[7]。
加之反应结束后纳米粒子可以回收而且依然保持催化活性,所以可以重复使用,且其制作过程不污染环境,是一种环境友好的催化剂,从而具有常规催化剂所无法比拟的优点。
国际上已把纳米催化剂称为第四代催化剂[7]。
1.1纳米过渡金属催化剂的一般制备和稳定方法1.1.1 纳米过渡金属催化剂的一般制备方法过渡金属纳米粒子一般可由如下方法制备[8,9]:溶胶-凝胶法、浸渍法、微乳液法、离子交换法、水解法、等离子体法、微波合成法;金属盐的化学还原;零价金属配合物的热、光以及超声化学分解;有机金属化合物配体还原;气相沉积;以及高价金属的电化学还原等。
有机过渡金属化学的研究与发展有机过渡金属化学是一门研究有机化合物中过渡金属元素参与的化学反应的学科。
过渡金属元素在有机化合物中扮演着重要的角色,其参与的反应可以有效地改变有机分子的性质,并且在有机合成中具有广泛的应用。
随着有机合成领域的不断发展,有机过渡金属化学进一步受到了研究者们的重视。
有机过渡金属化学的研究可以追溯到19世纪末的排队反应规律的探索。
当时的化学家开始研究铜、铁等过渡金属对于有机化合物的影响,并发现它们可以催化一系列有机反应,如重氮化物和亚胺的生成。
这些发现为有机过渡金属化学的研究奠定了基础。
随着科技的进步,研究者们逐渐发现了更多过渡金属元素在有机反应中的重要性。
例如,钌催化剂在有机氢化、羰基化合物的合成以及氧化反应中发挥了重要作用。
铂催化剂的应用则广泛涉及到羰基还原、氢化、氢气化合物的活化等反应。
有机过渡金属化学的研究不仅拓展了有机反应的范围,还提供了高效、高选择性的合成方法,为有机化学合成的研究领域作出了重要贡献。
有机过渡金属化学的研究与发展也涉及到催化剂的设计和反应机理的探索。
催化剂的设计是有机过渡金属化学的关键课题之一。
通过调整催化剂的配体结构和金属中心的选择,可以实现对反应选择性和反应速率的调控。
此外,研究者还需要深入了解有机过渡金属化学反应的机理,通过理论计算等手段揭示反应的本质和可能的中间体。
这些研究对于揭示有机过渡金属化学反应的本质以及合理设计新型催化剂具有重要意义。
有机过渡金属化学的研究还涉及到与其他学科的交叉。
例如,有机过渡金属化学与生物化学之间存在着密切的联系。
生物体内许多重要的酶类催化反应中都含有过渡金属元素,这些反应对于生命的维持至关重要。
有机过渡金属化学研究者可以通过模拟这些生物酶催化体系,深入探索有机反应机制。
此外,有机过渡金属化学还与材料科学、能源科学等学科领域相结合,为开发新型功能化合物提供了重要的思路。
未来,有机过渡金属化学的研究与发展前景广阔。
金属有机化学1.序言2.主族金属有机化学3.过渡金属有机化学4.稀土金属有机化学5.有机合成中的金属有机化学6.金属有机化学催化反应一、序言1. 定义:金属有机化学是研究含有金属-碳键的化合物的化学,包括合成、结构、反应性质及催化性能等。
其中金属包括硼、硅、砷等类金属。
严格区分:有机金属化合物 M -C金属有机化合物 M -O ,M -N ,M -C金属有机化学是无机化学和有机化学的交叉学科,既可以归属于无机化学,也可以归属于有机化学。
2. 发展史1760年 合成第一个金属有机化合物1827年 合成第一个过渡金属有机化合物(第一个含烯烃的金属有机化合物)Zeise’s 盐,Na[Pt(C 2H 4)Cl 3]1849年 E. Frankland 用氢气作保护气体3C 2H 5I + 3Zn → (C 2H 5)2Zn + C 2H 5ZnI + ZnI 21890年 第一个有工业应用价值的金属有机化合物Ni(CO)4,可用于提纯金属镍。
1901年 格氏试剂的发现,V . Grignard (1912年诺贝尔奖)RX + Mg → RMgX1919年 H. Hein, CrCl 3 + PhMgBr → Ph 2Cr1925年 Fischer-Tropsch 反应的发现,其机理的研究目前仍然是金属有机化学的一个重要研究领域,可能是先生成M -C 或者M =C 。
1938年 O.Roelen 发现氢甲酰化反应(Hydroformylation, oxo process)。
PdCl 2催化乙烯水合生成乙醛。
1938~1945年 Reppe 合成的发展CO + H 2 + CH 2=CH 2 → CH 3CH 2CHO1951年 二茂铁的发现 FeCl 2 + C 5H 5- → Fe(C 5H 5)2,导致烯烃-金属π络合物理论的提出。
1953年 Wittig 反应的发现,利用膦叶立德合成烯烃的方法1955年 Ziegler-Natta 催化剂的发现 MCl 3/AlR 3催化烯烃低压聚合 "Cadet's fuming liquid" [(CH 3)2A s]2O A s 2O 3 + 4CH 3COOK1956年H. C. Brown 硼氢化反应的发现,符合反马可夫尼可夫原则,R 2B 接在最少取代的碳原子上。