塑胶件的超声波焊接工艺下
- 格式:ppt
- 大小:665.50 KB
- 文档页数:2
塑料超声波焊接结构一、介绍塑料超声波焊接结构是一种常用的塑料焊接技术,通过超声波振动将塑料件的表面加热并压合,实现塑料件的连接。
本文将对塑料超声波焊接结构进行全面、详细、完整且深入地探讨。
二、原理塑料超声波焊接结构的原理是利用超声波振动将塑料件的表面加热并压合,实现塑料件的连接。
具体步骤如下: 1. 将需要焊接的塑料件放置在焊接工装中。
2. 通过超声波振动器将超声波传导到塑料件上。
3. 超声波振动使得塑料件表面分子产生摩擦热,温度升高。
4. 当温度升高到一定程度时,塑料件表面开始软化。
5. 在超声波振动的作用下,将两个塑料件的表面压合在一起。
6. 随着温度的升高和超声波振动的作用,塑料件表面的分子逐渐交错并重新排列,形成焊接接头。
7. 焊接接头冷却后,塑料件之间形成坚固的连接。
三、优点塑料超声波焊接结构具有以下优点: 1. 高效:焊接速度快,可以实现连续生产。
2. 焊接强度高:焊接接头强度高,与塑料件本身强度相当。
3. 无需添加其他材料:不需要焊接剂或胶水等辅助材料。
4. 焊接过程无污染:焊接过程中无产生烟尘、气味等污染物。
5. 适用范围广:适用于各种塑料材料的焊接。
四、应用领域塑料超声波焊接结构广泛应用于以下领域: 1. 汽车制造:用于汽车塑料件的连接,如车灯、仪表盘等。
2. 电子电器:用于电子电器产品的组装,如手机、电视机等。
3. 包装行业:用于塑料包装产品的制造,如瓶盖、塑料袋等。
4. 医疗器械:用于医疗器械的生产,如输液器、注射器等。
五、注意事项在进行塑料超声波焊接结构时,需要注意以下事项: 1. 焊接温度控制:要控制好焊接温度,避免过高或过低导致焊接质量下降。
2. 焊接压力控制:要控制好焊接压力,避免过大或过小导致焊接接头强度不足。
3. 焊接时间控制:要控制好焊接时间,避免过长或过短影响焊接效果。
4. 选择适当的超声波频率:不同塑料材料对超声波频率的要求不同,需要选择适当的频率。
超声波焊是一种快捷,干净,有效的装配工艺,用来装配处理热塑性塑料配件,及一些合成构件的方法。
目前被运用的朔胶制品与之间的粘结,朔胶制品与金属配件的粘结及其它非朔胶材料之间的粘结!它取代了溶剂粘胶机械坚固及其它的粘接工艺是一种先进的装配技术!超声波焊接不但有连接装配功能而且具有防潮、防水的密封效果。
超声波的优点:1,节能2,无需装备散烟散热的通风装置3,成本低,效率高4,容易实现自动化生产!超声波焊接机的工作原理!超声波焊接装置是通过一个电晶体功能设备将当前50/60Hz的电频转变成20KHz或40KHz的电能高频电能,供应给转换器。
转换器将电能转换成用于超声波的机械振动能,调压装置负责传输转变后的机械能至超声波焊接机的焊头。
焊头是将机械振动能直接传输至需压合产品的一种声学装置。
振动通过焊接工作件传给粘合面振动磨擦产生热能使塑胶熔化,振动会在熔融状态物质到达其介面时停止,短暂保持压力可以使熔化物在粘合面固化时产生个强分子键,整个周期通常是不到一秒种便完成,但是其焊接强度却接近是一块连着的材料!!焊接:指的是广义的将两个热塑性塑料产品熔接的过程。
当超音停止振动时,固体材料熔化,完成焊接。
其接合点强度接近一整块的连生材料,只要产品的接合面设计得匹配,完全密封是绝对没有什么问题的,碟合:熔化机械锁形成一个材质不同的塑料螺栓的过程。
嵌入:将一个金属无件嵌入塑料产品的预留孔内。
具有强度高,成型周期短安装快速的优点!!类似于模具设计中的嵌件!Ultrasonic Welding 1 Ultrasonic Welding 2塑料件超声波焊接设计塑料与塑料加工2010-12-09 22:53:48 阅读34 评论0 字号:大中小订阅现代注塑方式能有效提供比较完美的焊接用塑胶件。
光我们决定用超声波焊接技术完成熔合时,塑料件的结构设计必须首先考虑如下几点:1 焊缝的大小(即要考虑所需强度)2 是否需要水密、气密3 是否需要完美的外观4 避免塑料熔化或合成物的溢出5 是否适合焊头加工要求焊接质量可能通过下几点的控制来获得:1 材质2 塑料件的结构3 焊接线的位置和设计4 焊接面的大小5 上下表面的位置和松紧度6 焊头与塑料件的妆触面7 顺畅的焊接路径8 底模的支持为了获得完美的、可重复的熔焊方式,必须遵循三个主要设计方向:1 最初接触的两个表面必须小,以便将所需能量集中,并尽量减少所需要的总能量(即焊接时间)来完成熔接。
塑料超音波焊接工艺
塑料超音波焊接工艺是一种高科技技术,利用每秒15000次或20000次或更高频率的振动将两个塑料工件的接触面在短时间内熔合在一起,从而形成一个坚固的分子链,实现焊接的目的。
超音波熔接法是熔接热塑性塑料制品的高科技技术,各种热塑性胶件均可使用超声波熔接处理,而不需加溶剂、粘接剂或其它辅助品。
应用这种工艺时,焊头以超音波超高频率振动的焊头在适度压力下,使二块塑胶的接合面产生磨擦热而瞬间熔融接合,焊接强度可与本体媲美。
超声波塑料焊接的好坏取决于换能器焊头的振幅、所加压力及焊接时间等三个因素。
其中,焊接时间和焊头压力是可以调节的,振幅由换能器和变幅杆决定。
当超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声能量传送到焊区。
由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。
又由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。
当超声波停止作用后,让压力持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的。
此外,还有铆焊法和埋植法等应用方法。
如需了解更多关于塑料超音波焊接工艺的信息,建议查阅相关资料或咨询专业技术人员。
塑料超声波焊接简介1.连接器超声波焊接原理及步骤1.1超声波焊接简介及原理超声波焊接是利用超声波振动频率,接触摩擦产生热能而使两个塑胶件在焊接界面熔融而固定在一起。
超声波焊接是一种快捷、干净、有效的装配工艺,用于满足塑胶件高强度的装配要求,是广泛使用的一种先进装配技术,适用于多种类型塑胶件的装配。
正常情况下,超声波焊件具有较高的抗拉强度,可以取代溶剂粘胶及机械紧固等装配方法,同时还可以具有防水、防潮的密封效果。
超声波焊接的工作原理是通过超声波发生器将50 Hz或60 Hz电流转换成 15、20、30或40 kHz的电能,被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的调幅器装置传递到焊头,如图1所示。
图1超声波焊接原理焊头将接收到的振动能量传递到待焊接塑胶件的界面,在该区域,振动能量通过摩擦方式被转换为热能,将塑料熔化,振动停止后维持在塑胶件上的短暂压力使两塑胶件以分子连接方式凝固为一体,如图2所示。
图2超声波焊接过程1.2超声波焊接步骤超声波焊接详细步骤如图3所示:图3超声波焊接详细步骤1.3超声波焊接在连接器中的适用范围、优点及局限性1.3.1超声波焊接在连接器中的适用范围超声波焊接是一种快速高效的连接技术,不需要焊剂和外部加热。
超声波塑料焊接以其生产效率高、生产成本低、精度保证高、质量一致性好合维护使用方便等优点,广泛应用于连接器行业。
超声波焊接可以应用到需要塑料连接的场合。
对于两体式的绝缘体连接,可以直接应用超声波焊接来替代传统的胶粘剂粘接。
对于依靠倒钩相扣的绝缘体连接形式也可以直接改为超声波焊接,取消原倒钩和横抽芯的模具结构,达到简化模具结构、提高产品可靠性的目的。
对于一体式的印制板连接器,改用超声波焊接结构可以解决绝缘体开裂问题,避免塑压参数的客观或人为的变化造成批量生产不稳定,且可以简化结构。
1.3.2超声波焊接的优点超声波焊接是一种快捷、十净、可靠性高的装配工艺,具有以下优点:1)焊接速度快,效率高。
(塑料橡胶材料)超声波焊接塑料件的设计超声波焊接塑料件的设计代注塑方式能有效提供比较完美的焊接用塑胶件。
光我们决定用超声波焊接技术完成熔合时,塑料件的结构设计必须首先考虑如下几点:1焊缝的大小(即要考虑所需强度)2是否需要水密、气密3是否需要完美的外观4避免塑料熔化或合成物的溢出5是否适合焊头加工要求焊接质量可能通过下几点的控制来获得:1材质2塑料件的结构3焊接线的位置和设计4焊接面的大小5上下表面的位置和松紧度6焊头和塑料件的妆触面7顺畅的焊接路径8底模的支持为了获得完美的、可重复的熔焊方式,必须遵循三个主要设计方向:1最初接触的俩个表面必须小,以便将所需能量集中,且尽量减少所需要的总能量(即焊接时间)来完成熔接。
2找到适合的固定和对齐的方法,如塑料件的接插孔、台阶或齿口之类。
3围绕着连接界面的焊接面必须是统壹而且相联系互紧密接触的。
如果可能的话,接触面尽量在同壹个平面上,这样可使能量转换时保持壹致。
下面就对塑料件设计中的要点进行分类举例说明:整体塑料件的结构1.1塑料件的结构塑料件必须有壹定的刚性及足够的壁厚,太薄的壁厚有壹定的危险性,超声波焊接时是需要加压的,壹般气压为2-6kgf/cm2。
所以塑料件必须保证在加压情况下基本不变形。
1.2罐状或箱形塑料等,在其接触焊头的表面会引起共振而形成壹些集中的能量聚集点,从而产生烧伤、穿孔的情况(如图1所示),在设计时能够罐状顶部做如下考虑○1加厚塑料件○2增加加强筋○3焊头中间位置避空1.3尖角如果壹个注塑出来的零件出现应力非常集中的情况,比如尖角位,在超声波的作用下会产生折裂、融化。
这种情况可考虑在尖角位加R角。
如图2所示。
1.4塑料件的附属物注塑件内部或外部表面附带的突出或细小件会因超声波振动产生影响而断裂或脱落,例如固定梢等(如图3所示)。
通过以下设计可尽可能减小或消除这种问题:○1在附属物和主体相交的地方加壹个大的R角,或加加强筋。
○2增加附属物的厚度或直径。
一.超声波主要应用技术二.超声波塑料焊接的相容性和适应性:热塑性塑料,由于各种型号性质不同,造成有的容易进行超声焊接,有的不易焊接.表3.3中黑方块表示两种塑料的相容性好,容易进行超声焊接,圆圈表示在某些情况下相容,焊接性能尚可,空格表示两种塑料相容性很差,不易焊接.■-表示相容○-表示在煤屑情况下相容表中所列仅供参考,因为熟知的变化可导致结果略有差异.应用:超声波焊接的焊口设计:两个热塑性塑料零件的超声波焊接要求超声波振动通过焊接头传递到组合件的上半部,最后传至两半的结合处或界面上.在此,振动能量转换成热能,用以熔化塑料.当振动停止后,塑料在压力下固化,在结合面上产生焊接.两个结合表面的设计,对于获得最佳焊接结果来说是非常重要的.有各种各样的连接设计,每一种都有特色和优点.各种设计的使用取决于许多因素,例如塑料类型、零件几何形状、焊接的要求(即粘性、强度、密封等).夹具装置:塑料超声波焊接的一个重要因素是夹具装置.夹具装置的主要用途是固定零件,使之与焊接头对准,同时对组合件提供适当的支撑.被焊接的材料、零件几何形状、壁厚和零件的对称性均可影响能量向界面的传递,因此设计夹具时必须加以考虑.某些用途,例如铆接和嵌插,要求在焊接头接触区下面有坚硬的承托装置.铝质的夹具装置可提供必要的刚度,可以镀铬来防止零件出现疤痕和提高耐磨性.在一些用途中,夹具必须具有一定程度的弹性以保证在连结区产生异相状态.异相状态一般在最差的结合处出现,这是待焊接的范围;不过,由于某些零件材料和几何形状,结合的两半可能合成一整体,上下同时振动,如果这种状态出现,将承槽由刚性材料改为弹性材料,或者将硬度计由软性材料改为另一种材料,往往足以在连结区重新建立异相状态.简单的实验性夹具可用木料、环氧树脂或熟石膏建造.对于更精密、更长寿命的夹具将要用铝、钢、黄铜、铸塑尿烷,或其它的弹性材料.夹具设计范围广,从快速拆卸夹具到简单的金属板均有.应用的要求和生产率通常决定夹具的设计.焊接:图10表示简单的对接焊连接和有能量导向部分的理想连接的时间--温度曲线.能量导向部分允许迅速焊接,同时达到最大的强度.在导向部分的材料如图示在整个结合区内流动.图11表示焊前按要求比例设计能量导向部分改进对接焊与导致的材料流动.工件尺寸的选择应是如图示能量导向部分熔化后足够分布于结合面之间,通常,对于易焊的树脂能量导向部分最小高度为0.010英寸(0.25毫米).对于某些需要高能量的树脂,即结晶型、低刚度或高熔化温度的非晶型(例如聚碳酸酯、聚砜)树脂,需要较大的能量定向部分,其最小高度为0.020英寸(0.5毫米).在工件之间对齐的方法,例如销钉和插口,应包括在工件设计中.必须指出,为熔剂焊封所作的设计一般可以修改,以符合超声波焊接的要求.要避免:能量导向部分设计的典型错误是将结合面削成45度的斜面.图12表示这样做的结果.图13表示便于对齐的阶梯式连接.这种连接设计适合于在侧面不宜有过多的熔体或溢料之场合.榫槽连接法:(图14)主要用于焊接和防止内外烧化.不过,需要保持榫舌两侧的间隙使模制较困难.锥度可根据模塑实践经验进行修改,但必须避免在零件之间产生任何障碍.图15表示适用于超声波焊接的各种基本能量导向连接法,这些可作为典型连接部分的参考,对具体用途应稍作修改.图16表示需要严密封接时所用的剪切连接法,特别适合于晶型树脂(尼龙、聚甲醛、热塑性聚酯、聚乙烯、聚丙烯和聚苯硫).因为晶型树脂从固态到熔化改变迅速、温度范围窄、能量导向式连接就不是最佳方法,原因是来自导向部分的熔融树脂在它能与相结合的表面熔合之前会迅速凝固.剪切连接法的焊接方法是:首先熔化较小的开始接触区域,然后继续熔化沿着垂直壁的阻碍部分,使零件压在一起.为了便于自定位,需要引入端,而且必要时可设一个溢料收集点.连接强度与焊缝的垂向尺寸(焊接深度)有关,而且可以调整以满足应用的要求.对于超过零件强度的连接强度,建议深度为壁厚的1.25倍.对于连接的典型阻阻碍范围列于下表内:底部零件的壁必须用夹具支持在焊缝处,夹具必须与此零件的外部轮廓吻合,以免在焊接压力下向外挠曲.顶部零件应尽可能薄,实际上象是一个盖子,以防向内挠曲,对于中间壁连接,最好采用图17所示的榫槽连接法,这种连接对于大零件也有用.图18表示各种基本剪切连接设计.。
超声波塑料焊接技术详解一、超声波模具架设不准确、受力不平均怎么办?在一般认为超声波作业时,产品与模具表面只要接触准确就可以得到应该的超声波焊接机焊接效果,其实这只是表面的看法,超声波既然是摩擦振,就会产生音波传导的现象.我们如果单只观察硬件(模具)的稳合程度,而忽略了整合型态的超声波作业方式,必定会产生舍本逐末或误判的后果,所以在此必须先强调超声波焊接的作业方式是传导音波,使成振动摩擦转为热能而焊接. 这时候超声波模具的稳合程度、产品截面的高低、肉厚、深浅、材质的组织,必定无法是百分之百承受相同的压力。
另一方面上模(H o r n)输出的能量,每一点都有其误差值,并非整个面发出的能量都相同。
就这整体而言,势必产生产品焊接线焊接程度的差异。
所以也就必须作修正,如何修正,那就是靠超声波焊接机本身的水平螺丝,或是贴较薄的胶带或铝箔来克服了。
二、塑料产品材质配合不当?每一种塑料材质的熔点,各有不同,例如ABS塑料材质的熔点约115℃,耐隆约175℃、PC之145℃以上、PE约85℃为例:ABS与PE二种材质的熔点差距太大,超声波焊接势必困难。
而ABS与PC二种材质,亦有差距,但已非前项差距如此之大,是以尚可焊接,但在超声波功率相同,能量扩大相同的情况下,相异的塑料材质,绝无法比相同材质的焊接效果好。
三、超声波机台输出能量不足该怎么处理?客户在购买超声波焊接机时,通常较难预料未来产品发展的规格,所以会遇到较大产品对象超出超声波标准焊接的情形。
此时在不增加成本的预算下,只得以现有设备来作业生一、超声波模具架设不准确、受力不平均怎么办?在一般认为超声波作业时,产品与模具表面只要接触准确就可以得到应该的焊接效果,其实这只是表面的看法,超声波既然是摩擦振,就会产生音波传导的现象.我们如果单只观察硬件(模具)的稳合程度,而忽略了整合型态的超声波作业方式,必定会产生舍本逐末或误判的后果,所以在此必须先强调超声波焊接的作业方式是传导音波,使成振动摩擦转为热能而焊接. 这时候超声波模具的稳合程度、产品截面的高低、肉厚、深浅、材质的组织,必定无法是百分之百承受相同的压力。
在众多的产品中,塑料的焊接用的可是不少,而且焊接方式也是多式多样。
首先一起来大约了解下,目前常用的各种零件焊接方式(实际上有些我也不曾亲自用过)1.超声波焊接 2,振动焊接3,旋转焊接 4,热板焊接5.感应焊接6,接触电阻焊接 7,热气焊接 8,挤出焊接但超声波焊接和旋转焊接是我们实际中在塑胶产品上应用的最多,最广泛的。
接下来只就针对这两种焊接工艺做讲述。
其它的焊接工艺,有兴趣的朋友可以自已找资料学习研究和是私下找我商讨也行。
首先,我们一定要真正弄清焊接的原理,只有这样,才能设计出好的焊接结构,才能在这种结构上成为真正的工程师,不然你的所谓经验和资料,都将成为你的绊脚石。
一,焊接的原理:几乎所有的焊接,都是将两焊接零件的焊接端面分子产生运动,使它们相互扩散,相互缠结。
达到相互连接的目的。
如我们的超声波焊接就是利用焊头的高频振动,使两焊接零件高频磨擦,将机械能转化为热能,热能将两焊接面的分子溶解,恢复其活性,然后在外作用力的辅助下,分子相互缠结来达到焊接目的,而我们通常用的502胶水,或是其它粘接剂,胶水本是一种高腐蚀的液体,它将焊接面的分子膨涨,恢复其活性,然后在外作用力的辅助下,分子相互缠结来达到焊接目的。
其实不难明白。
焊接就是一个让分子相互缠结的过程。
二,超声焊接剖析:2.1:超声波焊接设备,相信各位都有见过,还是再来哆嗦一下。
如图:由上图我们不难明白,超声焊的焊接原理:1,输入低频电 --->◊---◊2.通过电源箱变频,转换成高频电输出>3.通过变压器装置将高电频信号转换成机械振动。
原理就和电铃一样,都是电磁场的高频切换来实现,这个就是我们所谓的超声了。
--->◊---◊4.通过振幅变压器整合振幅>---◊5.输出能量,将焊头引至高频振动>---◊6.焊头将塑胶零件高频摩擦,产生热能。
使塑胶熔化。
> 7.风压装置同时下压运动.将两零件融合在一起,然后冷却,达到粘结目的。
塑料超声波焊接工艺
塑料超声波焊接工艺是现代工业生产中常用的一种焊接方式。
具
体来说,它是通过超声波的作用,使塑料材料发生摩擦加热并紧密粘
接在一起的焊接方法。
下面我们来了解一下塑料超声波焊接的具体步骤。
第一步,准备工作
在进行超声波焊接之前,需要将要焊接的塑料材料加工成相应的
形状和尺寸。
然后,准备好焊接设备和耗材,以及工作环境的温度和
湿度等。
这些准备工作是确保焊接质量的重要步骤。
第二步,放置塑料材料
将需要焊接的塑料材料放置在超声波焊接机的焊接头下,稳固地
固定好。
一般需要将要焊接的两个塑料材料压在一起以确保它们在焊
接时能够紧密贴合在一起。
第三步,启动超声波焊接机
启动超声波焊接机,将焊接头置于要焊接的位置。
开始超声波发
生器,通过电能的转化使得超声波发射向塑料材料的接触面。
这时,
超声波会产生振动和摩擦,将塑料材料加热并融合在一起。
第四步,等待焊接完成
等待足够的焊接时间,直到塑料材料彻底固化。
一般约3-5秒钟
的时间就足以完成这个过程。
在等待的过程中,不可对塑料材料进行
干扰或移动,以免影响焊接质量。
第五步,完成过程
当焊接完成后,将焊接头离开塑料材料并关掉超声波发生器。
最后,需要对焊接后的塑料材料进行观察质量检查,确保没有质量问题。
总之,塑料超声波焊接工艺是一种快捷、高效、无污染的焊接方式,已在许多工业领域得到了广泛的应用。
只要我们按照标准操作流
程进行操作,就可以保证焊接质量和效率。
《塑胶件超声波焊接常见缺陷及处理》1. 引言在工业生产中,塑胶件的焊接是一项非常重要的工艺。
而超声波焊接作为一种常见的塑胶件焊接方法,具有高效、可靠的特点,被广泛应用于汽车、电子、医疗器械等领域。
然而,随着焊接技术的发展,常常会出现一些焊接缺陷,影响产品质量和工艺稳定性。
本文将深入探讨塑胶件超声波焊接常见的缺陷及其处理方法,以帮助读者更全面地理解超声波焊接工艺。
2. 塑胶件超声波焊接常见缺陷及处理2.1 比例不合适- 超声波焊接中,适当的振幅和压力是非常重要的。
如果振幅和压力的比例不合适,会导致焊接强度不足,甚至出现焊接不牢固的情况。
处理方法包括调整振幅和压力的比例,确保其合适性,以保证焊接质量。
2.2 温度控制不当- 超声波焊接需要在一定的温度范围内进行,过高或过低的温度都会对焊接质量造成影响。
处理方法包括加强对温度的监控和控制,确保焊接过程中温度处于适宜的范围内。
2.3 塑胶材料选择不当- 不同类型的塑胶材料适用于不同的超声波焊接工艺,选择不当会导致焊接质量不佳。
处理方法包括根据具体情况选择合适的塑胶材料,并进行充分的测试和验证。
2.4 超声波焊接头磨损- 超声波焊接头的磨损会导致焊接质量下降,甚至出现焊接缺陷。
处理方法包括定期检查和更换焊接头,确保其保持良好状态。
2.5 焊接环境不佳- 焊接环境的清洁程度和湿度都会对焊接质量产生影响。
处理方法包括优化焊接环境、保持清洁和控制湿度,以确保焊接质量稳定。
3. 总结与展望本文针对塑胶件超声波焊接常见的缺陷及处理方法进行了全面的分析和探讨。
通过对比实际生产中的案例和相关研究,我们对于超声波焊接工艺有了更深入的理解,并总结出了一些处理方法。
未来,随着技术的不断发展,我们相信会有更多的创新方法出现,为塑胶件超声波焊接带来更好的解决方案。
4. 个人观点与理解作为一名从事塑胶件超声波焊接多年的从业者,对于焊接技术的重要性有着深刻的理解。
只有不断总结经验、改进工艺,我们才能有效地避免焊接缺陷,提高产品质量和生产效率。
塑胶件超声波焊接常见缺陷及处理
塑胶件超声波焊接常见的缺陷有以下几种:
1. 脱胶:焊接过程中,塑胶件与焊接界面的粘结力不足,导致焊接区域脱胶。
处理方法可以通过增加焊接压力、增加超声波能量、调整焊接时间等方式来提高焊接界面的粘结强度。
2. 焊接接头不牢固:焊接接头未能完全融合,导致焊接接头的强度不足。
处理方法可以通过增加超声波能量、提高焊接压力、延长焊接时间等方式来保证焊接接头的牢固性。
3. 渗漏:在焊接过程中,焊接区域的塑胶材料未能完全密合,导致焊接接头的密封性不足,从而造成渗漏。
处理方法可以通过增加焊接压力、调整焊接时间、增加超声波能量等方式来提高焊接接头的密封性。
4. 焊接面变形:焊接时,塑胶件受到过大的焊接压力或温度,导致焊接面发生变形。
处理方法可以通过控制焊接压力、控制焊接温度、采用合适的焊接夹具等方式来减少焊接面变形的发生。
5. 焊瘤:焊接过程中,由于焊接参数不合适或塑胶材料有缺陷,导致焊瘤的产生。
处理方法可以通过调整焊接参数、更换合适的塑胶材料等方式来减少焊瘤的产生。
需要注意的是,在处理这些常见的缺陷时,需要根据具体情况选择合适的处理方法,以确保焊接质量和性能的达到要求。
塑胶件的结构设计:超声波焊接篇(中)04超声波焊接效果的影响因素一、塑胶材料因素上篇已经介绍的适合超声波焊接的材料选择,一般情况下两种材料满足Tg或熔点接近、化学相容性良好和熔体流动指数接近这三个条件,基本可认为是可焊接的,但需要注意以下几点:1、热塑性塑胶又分为非结晶性(也叫无定形)塑胶和结晶性(或半结晶性)塑胶。
1)对于非结晶性塑胶,其分子排列无序、有明显的使材料逐步变软、熔化及至流动的温度(Tg玻璃化温度)。
2)对于结晶性塑胶,其分子排列有序,有明显的熔点(Tm熔化温度)和再度凝固点,在温度达到熔点之前,半结晶塑料始终保持固态,当温度达到熔点时,整个分子链开始移动,塑胶开始融化,如果此时热量降低,塑胶很快就会凝固。
图3-106显示了非晶塑料和半结晶塑料的熔化过程之间的差异。
同时,结晶性塑料常常有较高的熔点,需要很高的能量(高熔化热度)才能把结晶型的结构打断从而使材料从结晶状态变为粘流状态。
因此,与非结晶性塑料相比,结晶性塑料更难焊接。
为了获得结晶塑料的更高焊接质量,通常需要考虑更多因素,例如更高的振幅,更短的焊接距离等,且为了集中超声能量,超声线的角度设计的更小或采用其他的超声结构(剪切式)。
焊接过程中,结晶性(或半结晶性)塑料迅速熔化和迅速冷却,焊缝处容易产生较多的非晶态(无定形)状态塑料。
如当产品在后续使用过程中在高温下工作时,焊缝处非晶态(无定形)状态塑料会逐步转变成半结晶状态,从而在焊缝处内部产生额外的结晶应力,可能会降低焊接强度。
所以,针对这一点,非结晶性塑胶塑胶比结晶性(或半结晶性)塑胶更适用于超声波焊接。
2、同一材料之间熔点是相同的,从原理讲是可以焊接的,但是当材料的熔点大于350℃时,不建议使用超声焊接。
因为通过超声波振动效应熔化高熔点的材料需要更久的时间,显然超声波焊接效率的优势就明显降低,此种情况应该选择其它焊接工艺,如热板焊接等。
3、难焊接的材料,除非部件设计可以弥补材料性能对焊接的影响。
超声波塑料焊接工艺超声波塑料焊接工艺是一种高效并且环保的塑料连接工艺,它能够将两个或多个塑料件快速地、牢固地连接在一起。
本文将详细介绍超声波塑料焊接工艺的原理、应用、优点以及局限性。
一、超声波塑料焊接工艺的原理超声波塑料焊接工艺是利用超声波产生的高频振动来摩擦、加热和融化塑料,在外力的作用下将塑料件连接在一起的技术。
具体来说,超声波发生器会将电能转化成机械能,通过换能器将超声波传递到塑料件焊点。
当超声波遇到塑料面时,会产生剪切力和热量,使塑料面快速摩擦、热化并融化,再由外力压合,使塑料接头得以牢固地连接起来。
二、超声波塑料焊接工艺的应用超声波塑料焊接工艺可以应用于各种塑料产品的制造,如汽车、电子、医疗设备等。
特别是在电子行业中,超声波塑料焊接工艺被广泛应用于连接小型电子元件,因为它可以快速而精准地进行塑料连接,连接质量高且不损坏电子元件。
此外,超声波塑料焊接工艺也可应用于食品包装行业,如酸奶杯、密封袋等。
三、超声波塑料焊接工艺的优点1.快速精准:超声波塑料焊接工艺能够在短时间内完成连接工作,且连接质量高,不产生塑料渣和其他杂质。
2.无毒环保:超声波塑料焊接工艺没有采用粘合剂或其他有害化学物质,不会对环境造成污染。
3.节能省电:超声波塑料焊接工艺没有热损失,不需要额外的加热设备或大量的电能,具有节能省电的优点。
4.设计自由度高:由于超声波可以穿透一个物体,因此可以实现复杂的连接形状和各种不同的体积大小。
四、超声波塑料焊接工艺的局限性1.对焊接材料要求高:超声波塑料焊接工艺对焊接材料有一定的要求,只有符合材料特性才能保障连接质量。
2.焊接深度受限:由于超声波的穿透能力有限,因此对于较厚的材料,超声波可能会造成局部无法接触的情况。
3.受限于材料性质:超声波的焊接效果受材料性质的影响,如硬度、粘度等,在处理不同种类的塑料时可能收到一定程度的限制。
综上所述,超声波塑料焊接工艺是一种高效、快速、精准、环保的连接工艺,被广泛应用于各种塑料产品的制造。