超声波焊接工艺特点
- 格式:docx
- 大小:21.08 KB
- 文档页数:5
一、超声波金属焊接基础知识1、原理超声波金属焊接是利用高频振动波传递到两个需焊接的金属表面,在加压的情况下,使两个金属表面相互摩擦而形成分子层之间的熔合,其优点在于快速、节能、熔合强度高、导电性好、无火花、接近冷态加工;缺点是所焊接金属件不能太厚(一般小于或等于5mm)、焊点位不能太大、需要加压。
2、焊接优点:1)、焊接材料不熔融,不脆弱金属特性。
2)、焊接后导电性好,电阻系数极低或近乎零.3)、对焊接金属表面要求低,氧化或电镀均可焊接。
4)、焊接时间短,不需任何助焊剂、气体、焊料.5)、焊接无火花,环保安全。
3、超声波金属焊接适用产品:1)、镍氢电池镍氢电池镍网与镍片互熔与镍片互熔。
.2)、锂电池、聚合物电池铜箔与镍片互熔,铝箔与铝片互熔。
3)、电线互熔,偏结成一条与多条互熔。
4)、电线与名种电子元件、接点、连接器互熔。
5)、名种家电用品、汽车用品的大型散热座、热交换鳍片、蜂巢心的互熔。
6)、电磁开关、无熔丝开关等大电流接点,异种金属片的互熔。
7)、金属管的封尾、切断可水、气密.4、振幅参数振幅对于需要焊接的材料来说是一个关键参数,相当于铬铁的温度,温度达不到就会熔接不上,温度过高就会使原材料烧焦或导致结构破坏而强度变差。
因为每一间公司选择的换能器不同,换能器输出的振幅都有所不同,经过适配不同变比的变幅杆及焊头,能够校正焊头的工作振幅以符合要求,通常换能器的输出振幅为10—20μm,而工作振幅一般为30μm左右,变幅杆及焊头的变比同变幅杆及焊头的形状,前后面积比等因素有关,形状来说如指数型变幅、函数型变幅、阶梯型变幅等,对变比影响很大,前后面积比与总变比成正比。
贵公司选用的是不同公司品牌的焊接机,最简单的方法是按已工作的焊头的比例尺寸制作,能保证振幅参数的稳定。
5、频率参数任何公司的超声波焊接机都有一个中心频率,例如20KHz、40 KHz等,焊接机的工作频率主要由换能器(Transducer)、变幅杆(Booster)、和焊头(Horn)的机械共振频率所决定,发生器的频率根据机械共振频率调整,以达到一致,使焊头工作在谐振状态,每一个部份都设计成一个半波长的谐振体。
超声波焊接超声波焊是一种快捷,干净,有效的装配工艺,用来装配处理热塑性朔料配件,及一些合成构件的方法。
目前被运用的朔胶制品与之间的粘结,朔胶制品与金属配件的粘结及其它非朔胶材料之间的粘结!它取代了溶剂粘胶机械坚固及其它的粘接工艺是一种先进的装配技术!超声波焊接不但有连接装配功能而且具有防潮、防水的密封效果一、超声波的优点:1,节能2,无需装备散烟散热的通风装置3,成本低,效率高4,容易实现自动化生产!目前工厂常用的超声波焊接机二、超声波焊接机的工作原理!超声波焊接装置是通过一个电晶体功能设备将当前50/60Hz的电频转变成20KHz或40KHz 的电能高频电能,供应给转换器。
转换器将电能转换成用于超声波的机械振动能,调压装置负责传输转变后的机械能至超声波焊接机的焊头。
焊头是将机械振动能直接传输至需压合产品的一种声学装置!!振动通过焊接工作件传给粘合面振动磨擦产生热能使塑胶熔化,振动会在熔融状态物质到达其介面时停止,短暂保持压力可以使熔化物在粘合面固化时产生个强分子键,整个周期通常是不到一秒种便完成,但是其焊接强度却接近是一块连着的材料!!三、超声波焊接的应用领域目前被运用的朔胶制品与之间的粘结,朔胶制品与金属配件的粘结及其它非朔胶材料之间的粘结!四、超声波焊接的工艺焊接:指的是广义的将两个热塑性塑料产品熔接的过程。
当超音停止振动时,固体材料熔化,完成焊接。
其接合点强度接近一整块的连生材料,只要产品的接合面设计得匹配,完全密封是绝对没有什么问题的,碟合:熔化机械锁形成一个材质不同的塑料螺栓的过程。
嵌入:将一个金属元件嵌入塑料产品的预留孔内。
具有强度高,成型周期短安装快速的优点!!类似于模具设计中的嵌件!弯曲/生成音波将配件的一部分熔化再组成一个塑料的突起部位或塑料管或其它挤出配件。
这种方式的优势在于处理的快速,较小的内压,良好的外观及对材料本性的克服。
点悍点焊是对没有预留也或能源控制的两个热塑塑料组件的局部焊接。
超声波焊接在防水产品中的应用及设计优化随着科技的发展,超声波焊接技术在工业生产中得到了广泛的应用。
在一些特殊的领域中,比如防水产品的制造中,超声波焊接技术更是发挥着重要的作用。
本文将针对超声波焊接在防水产品中的应用及设计优化进行探讨,希望能为相关领域的从业者提供一定的参考。
1. 超声波焊接技术超声波焊接是利用超声波在焊件表面产生的振动来达到焊接目的的一种焊接技术。
它是利用超声波的振动传递到焊接件的焊接面上,使焊接面发生相对振动,经过短暂的时间产生的摩擦使得焊接面的温度升高,从而实现焊接。
超声波焊接具有焊接速度快、焊接强度高、热影响区小等优点,因此在防水产品的生产中得到了广泛应用。
2. 防水产品的超声波焊接应用随着人们对产品防水性能的要求越来越高,防水产品的生产也成为了一个重要的领域。
例如手机壳、手表表带、防水袋等产品,都需要通过焊接来保证其防水性能。
超声波焊接技术正是在这些产品的生产中得到了广泛的应用。
利用超声波焊接技术,可以在不损坏产品外观的情况下,将产品的零部件焊接在一起,从而保证产品的防水性能。
超声波焊接具有焊接速度快、适用范围广、焊接强度高等特点。
在防水产品的生产中,正是这些特点使得超声波焊接技术得到了广泛的应用。
在手机壳的生产中,超声波焊接可以快速且精确地焊接产品的零部件,从而保证产品的完整性和防水性能。
而且,超声波焊接技术可以减少产品在生产过程中的热变形和热影响区,从而提高产品的质量和稳定性。
1. 材料选择优化在防水产品的生产中,材料的选择是至关重要的。
为了保证产品的防水性能,需要选择适合超声波焊接的材料。
一般来说,熔点低、导热性好、具有一定硬度和韧性的材料更适合超声波焊接。
在设计防水产品的时候,需要充分考虑材料的选择,以便更好地实现超声波焊接。
2. 结构设计优化在设计防水产品的零部件结构时,需要充分考虑超声波焊接的特点,合理设计焊接接头的形状和位置。
避免设计过大的焊接接头,以免影响产品的外观和防水性能。
超声波焊接与电烙铁焊接工艺的优缺点超声波焊接:
优点:1、防水板超声波焊接机体积小,不占空间;操作简单,携带方便,即插即用。
2、超声波焊机不向工件引入高温热源只是在静压力及弹性振动能的配合浸染下,将机器动能转酿成工件间摩擦功形变能和随之而发生的温升,使用安全,工作稳定可靠。
3、工作效率高、焊接牢固、无污染、环保又节能。
缺点:1、静压的时间与静压力量不好掌握,静压时间过长容易出现焊穿与出现熊猫眼现象。
静压时间稍短,又达不到焊牢的作用。
采用垫隔热纸后,能很好的解决焊穿与出现熊猫眼现象,但是垫隔热纸后热熔垫圈透光性不好,容易焊偏。
电烙铁焊接:
优点:1、采用垫隔热纸(必需)焊接,一个热熔垫圈只需焊接一次,焊接稳定牢固。
缺点:1、电烙铁焊枪使用前需预热25分钟左右,耽误时间。
2、电烙铁温度过高,使用时一般都达到了350℃以上,操作不当也很容易焊穿防水板。
3、挂板平台上防水板与土工布都是易燃材料,电烙铁放置不当极易发生火灾。
4、工作时间稍长,焊柄发热烫手,工人操作不便。
塑料复合薄膜超声波焊接工艺研究
随着塑料包装行业的发展,塑料复合薄膜成为了极具潜力的包装材料。
然而,复合薄膜的加工和连接一直是制约其应用的难点之一。
传统的焊接方法如热封、高频焊等存在着一系列问题,如加热不均匀、连接强度不稳定等缺陷。
而超声波焊接由于其无需加热、加压,且连接点强度高、速度快的特点,成为了复合薄膜的理想连接方法。
超声波焊接的工艺参数主要包括振动频率、振幅、焊接压力和焊接时间等。
其中,振动频率是超声波焊接的关键参数,对焊接质量的影响最大。
振幅和焊接压力影响焊接过程中的物理变形和热传导,而焊接时间则对焊点强度和外观质量有较大的影响。
因此,合理地选择和调整这些参数是确保超声波焊接质量的关键。
除了工艺参数的控制外,复合薄膜的选材也非常重要。
不同的塑料材料具有不同的熔点和熔化特性,因此,选用相近熔点和熔化特性的材料进行复合,能够有效提高超声波焊接的焊接质量。
总之,超声波焊接是一种可靠的复合薄膜连接方法,其工艺参数的精确控制和选材的科学匹配能够确保焊接强度和外观质量。
未来,随着超声波焊接技术的发展和完善,复合薄膜的应用前景将会更加广阔。
- 1 -。
超声波焊接要求超声波焊接是一种常用的焊接方法,它利用超声波的能量来实现金属材料的焊接。
超声波焊接具有焊接速度快、无需额外材料、操作简便等优点,被广泛应用于各个领域。
超声波焊接的原理是利用超声波振动产生的高频机械能,通过将焊接接头置于振动系统中,使接头产生高频振动。
这种振动会在接头与工件之间产生摩擦热,使金属接触面温度升高,达到熔化点后迅速冷却固化,从而实现焊接。
超声波焊接具有以下几个特点:1. 高效快速:超声波焊接的焊接速度非常快,可以在几十毫秒内完成焊接。
这对于大批量生产来说非常有利,可以提高生产效率。
2. 焊接强度高:超声波焊接可以实现金属材料的固态焊接,焊缝强度高于传统的熔融焊接方法。
焊接接头的质量稳定可靠,不易出现焊接缺陷。
3. 无需额外材料:超声波焊接不需要额外的焊接材料,只要将要焊接的金属接头紧密贴合即可。
这样既避免了焊接材料对焊接质量的影响,又节约了成本。
4. 适用范围广:超声波焊接适用于多种金属材料的焊接,包括铝、铜、钢等。
不仅可以焊接相同材料的接头,还可以焊接不同材料的接头。
5. 环保节能:超声波焊接不需要额外的焊接材料,减少了对环境的污染。
同时,由于焊接速度快,节约了能源。
超声波焊接在多个行业得到了广泛应用。
在汽车制造领域,超声波焊接被用于车身焊接、零部件组装等工艺。
在电子行业,超声波焊接被用于电路板的连接和封装。
在医疗器械领域,超声波焊接被用于医疗器械的组装等工艺。
然而,超声波焊接也存在一些局限性。
首先,焊接接头的形状和尺寸对焊接质量有影响,较大和复杂形状的接头可能不适合超声波焊接。
其次,焊接接头的表面要求较高,需要保持光洁和平整,以确保焊接的质量。
此外,超声波焊接设备的成本较高,对于中小企业来说可能不太容易承担。
超声波焊接是一种高效快速、环保节能的焊接方法。
它在多个行业得到了广泛应用,为生产和制造提供了便利。
随着技术的不断发展,相信超声波焊接将会在更多领域展现其优势,为工业生产做出更大贡献。
超声波焊接的工艺特点超声波焊接的焊点,应有高的接合强度和合格的表面质量,除了表面不能有明显的挤压坑和焊点边缘的凸出以外,还应注意与上声极接触处的焊点表面情况,不允许有裂纹和局部未熔合,因此,超声波焊接的形式选择、接头设计和焊接参数选择非常重要。
一、超声波焊接特点1)可焊接的材料范围广,可用于同种金属材料、特别是高导电、高导热性的材料(如金、银、铜、铝等)和一些难熔金属的焊接,也可用于性能相差悬殊的异种金属材料(如导热、硬度、熔点等)、金属与非金属、塑料等材料的焊接,还可以实现厚度相差悬殊以及多层箔片等特殊结构的焊接。
2)焊件不通电,不需要外加热源,接头中不出现宏观的气孔等缺陷,不生成脆性金属间化合物,不发生像电阻焊时易出现的熔融金属的喷溅等问题。
3)焊缝金属的物理和力学性能不发生宏观变化,其焊接接头的静载强度和疲劳强度都比电阻焊接头的强度高,且稳定性好。
4)被焊金属表面氧化膜或涂层对焊接质量影响较小,焊前对焊件表面准备工作比较简单。
5)形成接头所需电能少,仅为电阻焊的5%;焊件变形小。
6)不需要添加任何粘结剂、填料或溶剂,具有操作简便、焊接速度快、接头强度高、生产效率高等优点。
超声波焊接的主要缺点是受现有设备功率的限制,因而与上声极接触的焊件厚度不能太厚,接头形式只能采用搭接接头,对接接头还无法应用。
二、超声波焊接的分类超声波焊接分类按照超声波弹性振动能量传入焊件的方向,超声波焊接的基本类型可以分为两类:一类是振动能量由切向传递到焊件表面而使焊接界面产生相对摩擦,这种方法适用于金属材料的焊接;另一类是振动能量由垂直于焊件表面的方向传入焊件,主要是用于塑料的焊接。
常见的金属超声波焊接可分为点焊、环焊、缝焊及线焊;近年来,双振动系统的焊接和超声波对焊也有一定的应用。
(1)点焊点焊是应用最广的一种焊接形式,根据振动能量的传递方式,可以分为单侧式、平行两侧式和垂直两侧式。
振动系统根据上声极的振动方向也可以分为纵向振动系统、弯曲振动系统以及介于两者之间的轻型弯曲振动系统。
超声波焊接的原理及应用1.塑料焊接:超声波焊接可以用于塑料零件的连接,例如汽车零件、电子产品、医疗器械等。
由于超声波焊接的效率高、速度快,可以实现自动化生产,因此得到了广泛应用。
2.金属焊接:超声波焊接也可以用于金属零件的连接。
与传统焊接方法相比,超声波焊接无需使用钎焊材料,可以减少焊接时间和能源消耗,同时具有高强度、耐腐蚀等优点,适用于汽车、飞机等高要求的金属焊接领域。
3.化妆品和药品包装:超声波焊接可以用于包装材料的密封和焊接。
它可以实现快速、牢固的密封,确保产品的质量和安全性。
4.电子产品制造:超声波焊接可以用于电子产品的组装和连接。
由于超声波焊接无需使用电阻、电流等电热的焊接方式,因此可以避免对电子元件的损坏,适用于封装电池、芯片、电路板等高频电子产品的制造。
5.医疗器械制造:超声波焊接也广泛应用于医疗器械的制造过程中。
例如,可以用于制造医用输液器、输血管、雾化器等产品。
1.高效率:超声波焊接可以在很短的时间内完成焊接过程,提高生产效率。
2.无需外加材料:超声波焊接无需在焊接过程中使用外加材料,减少了生产成本。
3.精确控制:超声波焊接可以通过调整振动频率和振动幅度来控制焊接的效果,实现精确控制。
4.焊接强度高:超声波焊接可以实现材料的冷焊接,焊接强度高,焊接接头牢固。
5.环保:超声波焊接无需使用焊接剂,减少了有害气体的排放,是一种环保的焊接方法。
然而,超声波焊接也存在一些限制。
首先,对于较大尺寸和较厚的材料,超声波焊接效果不佳。
其次,焊接面积过大或夹杂有灰尘、油脂等杂质时,超声波焊接效果可能不理想。
总的来说,超声波焊接是一种高效、环保的焊接方法,广泛应用于塑料、金属、电子、医疗器械等行业,对于提高生产效率、降低生产成本具有重要意义。
但在具体应用过程中,需要根据材料的特点和焊接要求来选择合适的超声波焊接参数和工艺。
超声波焊接的焊点,应有高的接合强度和合格的表面质量,除了表面不能有明显的挤压坑和焊点边缘的凸出以外,还应注意与上声极接触处的焊点表面情况,不允许有裂纹和局部未熔合,因此,超声波焊接的形式选择、接头设计和焊接参数选择非常重要。
一、超声波焊接特点1) 可焊接的材料范围广,可用于同种金属材料、特别是高导电、高导热性的材料(如金、银、铜、铝等)和一些难熔金属的焊接,也可用于性能相差悬殊的异种金属材料(如导热、硬度、熔点等)、金属与非金属、塑料等材料的焊接,还可以实现厚度相差悬殊以及多层箔片等特殊结构的焊接。
2) 焊件不通电,不需要外加热源,接头中不出现宏观的气孔等缺陷,不生成脆性金属间化合物,不发生像电阻焊时易出现的熔融金属的喷溅等问题。
3) 焊缝金属的物理和力学性能不发生宏观变化,其焊接接头的静载强度和疲劳强度都比电阻焊接头的强度高,且稳定性好。
4) 被焊金属表面氧化膜或涂层对焊接质量影响较小,焊前对焊件表面准备工作比较简单。
5) 形成接头所需电能少,仅为电阻焊的5%;焊件变形小。
6) 不需要添加任何粘结剂、填料或溶剂,具有操作简便、焊接速度快、接头强度高、生产效率高等优点。
超声波焊接的主要缺点是受现有设备功率的限制,因而与上声极接触的焊件厚度不能太厚,接头形式只能采用搭接接头,对接接头还无法应用。
二、超声波焊接的分类超声波焊接分类按照超声波弹性振动能量传入焊件的方向,超声波焊接的基本类型可以分为两类:一类是振动能量由切向传递到焊件表面而使焊接界面产生相对摩擦,这种方法适用于金属材料的焊接;另一类是振动能量由垂直于焊件表面的方向传入焊件,主要是用于塑料的焊接。
常见的金属超声波焊接可分为点焊、环焊、缝焊及线焊;近年来,双振动系统的焊接和超声波对焊也有一定的应用。
(1)点焊点焊是应用最广的一种焊接形式,根据振动能量的传递方式,可以分为单侧式、平行两侧式和垂直两侧式。
振动系统根据上声极的振动方向也可以分为纵向振动系统、弯曲振动系统以及介于两者之间的轻型弯曲振动系统。
超声焊接工艺
超声波焊接是一种新型的焊接方法,其原理是利用超声能量使焊件表面的分子产生振动,使分子在界面处发生摩擦,产生热量使材料熔化,从而形成焊接。
利用超声波焊接,可以获得比较稳定的焊接效果。
超声焊接的原理与传统的机械振动焊接基本相同。
超声焊接方法与传统机械振动焊接方法相比有其独特之处:
(1)在焊接过程中,焊件不受传统机械振动焊接方法中因
金属和非金属材料之间的粘接而产生的振动和摩擦的影响。
因此,超声焊接设备在工作时不会产生任何机械振动,从而保证了其与传统机械振动焊接方法基本相同的优点。
(2)在超声焊接过程中,焊件之间不需加压或施加一定压
力即可实现连接。
因此,超声焊接设备不仅可以用于一般固体材料(如塑料、金属、陶瓷、玻璃等)的连接,而且还可以用于液体或气体材料的连接。
这对于航空航天、化工医药和电子等工业中需要进行压力密封、化学腐蚀和化学吸附等操作的场合是非常有用的。
(3)超声焊连接不仅能实现固体材料的连接,而且还可以
实现液体及气体材料的连接。
—— 1 —1 —。
超声波焊不牢的原因-回复超声波焊接是一种常见的焊接技术,用于将材料或零部件进行固定连接。
然而,有时焊接结果可能不牢固,导致焊接部位易断裂或脱离。
本文将逐步分析超声波焊接不牢的原因,并探讨可能的解决方案。
1. 超声波焊接简介超声波焊接是一种固态焊接方法,利用超声波振动产生的剪切作用,将焊接界面的两个材料粘接在一起。
焊接头的振动产生热量,使材料软化并形成结合。
通常,焊接头由一个金属插头组成,可定义焊接区域,以便精确的焊接连接。
2. 超声波焊接不牢的原因2.1 材料选择和厚度超声波焊接适用于焊接不同类型的材料,如金属、塑料和复合材料。
然而,材料的选择和厚度对焊接牢固性起着至关重要的作用。
如果材料选择不当或厚度不匹配,焊接接头的强度可能会受到影响,从而导致焊点松动或断裂。
2.2 温度控制超声波焊接的一项重要参数是振动头的温度控制。
如果温度过高或过低,都会对焊接结果产生负面影响。
过高的温度可能导致材料的熔化或变形,从而减弱焊接点的强度。
过低的温度则可能导致焊接不充分,无法实现牢固的连接。
2.3 焊接头设计焊接头的设计和形状也对焊接结果起着重要作用。
焊接头应能提供均匀的振动,并紧密贴合于焊接材料。
如果焊接头设计不当,可能导致焊接不均匀或接触不良,从而影响焊点的强度。
2.4 工艺参数超声波焊接涉及许多工艺参数,如振动频率、振幅、焊接时间和焊接压力。
这些参数的选择与材料的特性以及焊接要求密切相关。
如果参数不正确选择或调整不当,焊接结果可能不牢固。
例如,过高或过低的焊接压力都可能对焊接材料施加过大或过小的力,从而影响焊接点的强度。
3. 解决超声波焊接不牢的方法3.1 优化材料选择和厚度正确选择焊接材料以及控制焊接材料的厚度,以确保焊接结果的牢固性。
深入了解材料的特性,并调整焊接参数以适应不同的材料组合。
3.2 优化温度控制确保焊接头的温度在合适的范围内,并及时检测温度变化。
通过调整参数控制和检测系统来优化温度控制,确保焊接过程中的温度与材料要求相匹配。
超声波焊接的焊点,应有高的接合强度和合格的表面质量,除了表面不能有明显的挤压坑和焊点边缘的凸出以外,还应注意与上声极接触处的焊点表面情况,不允许有裂纹和局部未熔合,因此,超声波焊接的形式选择、接头设计和焊接参数选择非常重要。
一、超声波焊接特点1) 可焊接的材料范围广,可用于同种金属材料、特别是高导电、高导热性的材料(如金、银、铜、铝等)和一些难熔金属的焊接,也可用于性能相差悬殊的异种金属材料(如导热、硬度、熔点等)、金属与非金属、塑料等材料的焊接,还可以实现厚度相差悬殊以及多层箔片等特殊结构的焊接。
2) 焊件不通电,不需要外加热源,接头中不出现宏观的气孔等缺陷,不生成脆性金属间化合物,不发生像电阻焊时易出现的熔融金属的喷溅等问题。
3) 焊缝金属的物理和力学性能不发生宏观变化,其焊接接头的静载强度和疲劳强度都比电阻焊接头的强度高,且稳定性好。
4) 被焊金属表面氧化膜或涂层对焊接质量影响较小,焊前对焊件表面准备工作比较简单。
5) 形成接头所需电能少,仅为电阻焊的5%;焊件变形小。
6) 不需要添加任何粘结剂、填料或溶剂,具有操作简便、焊接速度快、接头强度高、生产效率高等优点。
超声波焊接的主要缺点是受现有设备功率的限制,因而与上声极接触的焊件厚度不能太厚,接头形式只能采用搭接接头,对接接头还无法应用。
二、超声波焊接的分类超声波焊接分类按照超声波弹性振动能量传入焊件的方向,超声波焊接的基本类型可以分为两类:一类是振动能量由切向传递到焊件表面而使焊接界面产生相对摩擦,这种方法适用于金属材料的焊接;另一类是振动能量由垂直于焊件表面的方向传入焊件,主要是用于塑料的焊接。
常见的金属超声波焊接可分为点焊、环焊、缝焊及线焊;近年来,双振动系统的焊接和超声波对焊也有一定的应用。
(1)点焊点焊是应用最广的一种焊接形式,根据振动能量的传递方式,可以分为单侧式、平行两侧式和垂直两侧式。
振动系统根据上声极的振动方向也可以分为纵向振动系统、弯曲振动系统以及介于两者之间的轻型弯曲振动系统。
功率500W以下的小功率焊机多采用轻型结构的纵向振动;千瓦以上的大功率焊机多采用重型结构的弯曲振动系统;而轻型弯曲振动系统适用于中小功率焊机,它兼有上述两种振动系统的优点。
(2)环焊环焊方法如图5所示,主要用于一次成形的封闭形焊缝,能量传递采用的是扭转振动系统。
焊接时,耦合杆4带动上声极5作扭转振动,振幅相对于声极轴线呈对称分布,轴心区振幅为零,边缘位置振幅最大。
该类焊接方法最适合于微电子器件的封装工艺,有时环焊也用于对气密性要求特别高的直线焊缝的场合,用来代替缝焊。
由于环焊的一次焊缝的面积较大,需要有较大的功率输入,因此常常采用多个换能器的反向同步驱动方式。
(3)缝焊与电阻焊中的缝焊类似,超声波缝焊实质上是由局部相互重叠的焊点形成一条连续焊缝。
缝焊机的振动系统按其滚轮振动状态可分为纵向振动、弯曲振动以及扭转振动三种形式(图6)。
其中最常见的是纵向振动形式,只是滚轮的尺寸受到驱动功率的限制。
缝焊可以获得密封的连续焊缝,通常焊件被夹持在上下滚轮之间,在特殊情况下可采用平板式下声极。
(4)线焊它是点焊方法的一种延伸,利用线状上声极,在一个焊接循环内形成一条狭窄的直线状焊缝,声极长度就是焊缝的长度,现在可以达到150mm,这种方法最适用于金属薄箔的封口。
(5)双超声波振动系统的点焊:上下两个振动系统的频率分别为27kHz和20kHz(或15kHz),上下振动系统的振动方向相互垂直,焊接时二者作直交振动。
当上下振动系统的电源各为3kW时,可焊铝件的厚度达10mm,焊点强度达到材料本身的强度。
双超声波振动系统多用于集成电路和晶体管细导线的焊接,虽然焊接方法与点焊基本相同,但焊接设备复杂,要求设备的控制精度高,以便实现焊点的高质量和高可靠性焊接。
(6)超声波对焊超声波对焊主要用于金属的对接,是近年来开发的一种新方法。
焊接设备由上、下振动系统、提供接触压力的液压源和焊件夹持装置等部分组成。
左边焊件的一端由夹具固定,另一端夹在上、下振动系统之间作超声振动;右焊件端面与左端面对接,并由夹具夹紧,接触压力加在右侧焊件上。
焊接时,在超声振动的作用下即可把两个焊件在端面焊接在一起。
应注意,焊接装置的上、下振动系统的振动相位必须相反,上振动系统可以是无源的。
采用频率为27kHz的该类焊接装置可以焊接6~10mm厚的铝板、6mm厚的铜板和铝板的焊接。
目前可以实现6mm厚、100~400mm宽铝板的对接。
三、超声波焊接头设计1.焊点设计超声波焊接时,要求焊点强度必须达到一定的要求,需要设计出一种合理的焊点结构,同时还要保持外形尽可能美观。
焊点分布如图10所示,对焊点与板材边缘的距离没有限制,可以沿边缘布置焊点,焊点之间的距离可以任意选定,可以重叠和重复焊接(修补),每行之间的距离也可以根据需要任选,不存在电阻点焊时的分流问题。
2.焊接界面设计为了在焊接过程中使能量集中,缩短焊接时间,提高焊接质量,焊接界面的设计非常重要,主要有以下几种形式。
(2)台阶式界面为了提高焊接力,可设计成图12所示的台阶式焊接界面(W为板宽),三角形凸缘可以使凸缘材料熔化之后流入预留的孔隙,能产生较大的切应力及拉力强度,这种设计还可以避免外表面上产生的焊接痕迹。
(3)凹凸插接式界面,待焊材料设计成带有三角形凸缘的凹凸形式,两焊件之间应留有间隙,凸形焊件壁应有一定的斜度,以便塑料件容易拼合,同时让熔融的材料有流动的空间,不致溢出外面。
在超声波焊的接头设计中应注意控制焊件的谐振问题。
当上声极向焊件引入超声振动时,如果焊件沿振动方向的自振频率与引入的超声振动频率相等或相近,就有可能引起焊件的谐振,其结果往往造成已焊焊点的脱落,严重时可导致焊件的疲劳断裂。
解决上述问题的简单方法就是改变焊件与声学系统振动方向的相对位置,或者改变焊件的自振频率。
四、超声波焊接参数选择超声波焊的主要参数有振动频率?振幅A、静压力F及焊接时间t,此外还应考虑超声波功率的选择以及各参数之间的相互影响。
在超声波焊接中,点焊应用得最普遍,下面以点焊为例讨论各参数对焊接质量的影响。
1.超声波振动频率? 振动频率主要是指谐振频率的数值和谐振频率精度。
振动频率一般在15~75kHz之间。
频率的选择应考虑被焊材料的物理性能和厚度,焊件较薄的选用比较高的振动频率;焊件较厚、焊接材料的硬度及屈服强度较低时选用较低的振动频率。
这是由于在维持声功能不变的前提下,提高振动频率可以降低振幅,因而可降低薄件因交变应力引起的疲劳破坏。
振动频度对焊点抗剪强度有影响,材料越硬、厚度越大时,频率的影响越明显。
应注意,随着频率的提高,高频振荡能量在声学系统中的损耗将增大,因此大功率超声波点焊机的频率比较低,一般在15~20kHz范围内。
振动频率的精度是保证焊点质量稳定的重要因素,由于超声波焊接过程中机械负荷的多变性,会出现随机的失谐现象,造成焊接质量不稳定。
2.振幅A 振幅是超声波焊接工艺中基本的参数之一,它决定着摩擦功率的大小,关系到焊接面氧化膜的去除、接合面的摩擦产热、塑性变形区域的大小及塑性流动层的状况等。
因此,根据被焊材料的性质及其厚度正确选择振幅的数值是获得高可靠接头的前提。
振幅的选用范围一般为5~25μm,小功率超声波焊机一般具有高的振动频率,但振幅范围较低。
低硬度的焊接材料或较薄的焊件应选用较低的振幅;随着材料硬度及厚度的提高,所选用的振幅也应相应提高。
这是因为振幅的大小对应着焊件接触表面相对移动速度的大小,而焊接区的温度、塑性流动以及摩擦功的大小又由该相对移动速度所确定。
对于具体的焊件,存在一个合适的振幅范围。
图15为铝镁合金在不同振幅值下焊点强度的试验结果。
当振幅A为17μm时,焊点抗剪强度最大,振幅减小,强度随之降低。
当振幅小于6μm时,已经不能形成接头,即使增加振动作用的时间也无效果。
这是因为振幅值过小,焊件间相对移动速度过小所致。
当振幅值超过17μm时,焊点强度反而下降,这主要与金属材料内部及表面的疲劳破坏有关,因此振幅过大,由上声极传递到焊件的振动剪力超过了它们之间的摩擦力,声极与工件之间发生相对的滑动摩擦,并产生大量的热和塑性变形,导致上声极嵌入焊件,使有效接合截面减少所致。
超声波焊机的换能器材料和聚能器结构决定了焊机振幅的大小,当它们确定以后,要改变振幅,一般是通过调节起声波发生器的电参数来实现。
此外,振幅值的选择与其他参数有关,应综合考虑。
必须指出,在合适的振幅范围内,采用偏大的振幅可大大缩短焊接时间,提高焊接生产效率。
3.静压力F 静压力的作用是通过声极使超声振动有效地传递给焊件,超声波焊接时所需静压力的大小根据材料类型的不同而异。
静压力与焊点抗剪力之间的关系如图16所示。
当静压力过低时,由于超声波几乎没有被传递到焊件,不足以在两焊件界面产生一定的摩擦功,超声波能量几乎全部损耗在上声极与焊件之间的表面滑动方面,因此不可能形成有效的连接。
随着静压力的增加,改善了振动的传递条件,使焊区温度升高,材料的变形抗力下降,塑性流动的程度逐渐加剧;另外,由于压应力的增加,接触处塑性变形的面积及连接面积增加,因而接头的强度增加。
当静压力达到一定数值后再增加压力,接头强度不再提高或反而下降。
这是因为当静压力过大时,振动能量不能合理地利用,使摩擦力过大,造成焊件间的相对摩擦运动减弱,甚至会使振幅值有所降低,导致了焊件间的连接面积不再增加或有所减小,加之材料压溃造成接头的实际接合截面减少,使焊点强度降低。
在其他焊接条件不变的情况下,选用偏高的静压力,可以在较短的焊接时间内得到同样强度的焊点,这是因为偏高的静压力能在振动早期较低的温度下产生塑性变形所致。
同时,选用偏高的静压力,能在较短的时间内达到最高的温度,缩短了焊接时间。
4.焊接时间t 焊接时间对接头质量有很大影响,焊接时间太短时,表面的氧化膜来不及被破坏,只形成几个凸点间的接触,则接头强度过低,甚至不能形成接头。
随着焊接时间的延长,焊点强度迅速提高,在一定的焊接时间内强度值不降低。
但当超声波焊接时间超过一定值以后,焊点强度反而下降,这是由于焊件的热输入量过大,塑性区扩大,上声极陷入焊件,除了降低焊点的截面积以外,还容易引起焊点表面和内部产生裂纹。
从图17中还可以看出,对于不同的静压力,获得接头最佳强度所需的焊接时间不同,增大静压力的数值,可在某种程度上缩短焊接时间。
5.焊接功率P 超声波焊接时,功率的选择主要取决于焊件的厚度和材料的硬度,由于在实际应用中超声波功率的测量尚有困难,因此常常用振幅来表示功率的大小,超声波功率与振幅的关系可由下式确定: P=μSFυ=μSF2Aω/π=4μSFA? (1)式中 P——超声波功率; F——静压力; S——焊点面积;υ——相对速度; A——振幅;μ——摩擦系数;ω——角频率(ω=2π?); ?——振动频率。