2.1 函数(二)--- 区间的概念和映射
- 格式:ppt
- 大小:3.52 MB
- 文档页数:1
函数映射知识点归纳总结一、函数的定义与基本概念函数是数学中最基本的概念之一,在现代数学中函数被广泛应用到各个领域。
在实际应用中,函数是用来描述变量之间的关系的,它是一个很重要的工具。
1.1 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
在数学上,我们通常用字母 y=f(x) 来表示这一关系,其中 x 是自变量,y 是因变量,f(x) 表示函数关系。
当 x 取不同的值时,y 也会随之变化,这就是函数的基本概念。
1.2 函数的表示方法函数可以用不同的表达方式来表示,其中最常见的有函数图像、函数的解析式、函数的数值表以及函数的映射图等。
函数图像可以直观地表示函数的变化规律,函数的解析式可以用代数式来表示函数的关系,函数的数值表可以用一组数据来列举函数的取值,函数的映射图则可以用有向箭头来表示函数元素之间的映射关系。
1.3 函数的性质函数有很多重要的性质,比如定义域和值域、奇偶性、周期性、增减性、极值等。
这些性质对于研究函数的特性和行为非常重要,它们可以帮助我们更深入地了解函数的规律和特点。
二、常见函数的类型及特点在数学中有很多常见的函数类型,它们都具有各自特定的特点和规律。
了解这些函数类型的特点对于理解函数的本质和规律非常有帮助。
2.1 一次函数一次函数是最简单的函数类型之一,它的解析式可以写成 y=ax+b 的形式,其中 a 和 b 分别是函数的斜率和截距。
一次函数的图像是一条直线,斜率决定了直线的倾斜程度,截距则是直线与坐标轴的交点。
2.2 二次函数二次函数是一个抛物线函数,它的解析式可以写成 y=ax^2+bx+c 的形式,其中 a、b、c 是函数的系数。
二次函数的图像是一个开口朝上或者朝下的抛物线,a 的正负决定了抛物线的开口方向,b 和 c 则决定了抛物线的位置和形状。
2.3 指数函数指数函数是一个以底数为常数的幂函数,它的解析式可以写成 y=a^x 的形式,其中 a 是底数,x 是幂。
映射与函数知识点总结一、映射与函数的概念1.映射的定义:将一个集合中的每个元素都对应到另一个集合中的一些元素的规律称为映射。
对于给定的两个集合A和B,如果每个元素a∈A都有一个元素b∈B与之对应,那么就称集合A到集合B的映射。
记作f:A→B。
2.函数的定义:函数是一种特殊的映射,它满足每个元素a∈A只能对应一个元素b∈B的规律。
对于给定的两个集合A和B,如果每个元素a∈A都有唯一的元素b∈B与之对应,那么就称集合A到集合B的函数。
记作f:A→B。
3.定义域和值域:函数f的定义域是指所有可能作为函数输入的数的集合,通常用符号D(f)表示;函数f的值域是指函数所有可能的输出的数的集合,通常用符号R(f)表示。
二、映射与函数的性质1.单射:也称为一一对应,指当对于集合A中的不同元素a1和a2,它们在集合B中的对应元素f(a1)和f(a2)也不相同。
换句话说,每个元素a∈A都对应着集合B中唯一的元素。
2.满射:也称为映满函数,指函数的值域与集合B相同,即函数的所有可能的输出都在集合B中。
3.双射:即同时满足单射和满射的函数,也称为一一映射。
4.奇函数和偶函数:如果对于函数f的定义域中的每一个实数x,都有f(-x)=-f(x)成立,则称函数f是奇函数;如果对于函数f的定义域中的每一个实数x,都有f(-x)=f(x)成立,则称函数f是偶函数。
5.反函数:如果函数f的定义域和值域都是实数集,且对于函数f中的每一对实数(x,y),都有y=f(x),则存在一个函数g,使得对于函数g中的每一对实数(y,x),都有x=g(y)。
这样的函数g称为函数f的反函数。
三、映射与函数的应用1.函数关系式:映射与函数可以描述实际问题中的各种关系,如线性函数、二次函数、指数函数、对数函数等。
通过分析函数关系式,我们可以了解函数的性质和特点,从而应用到各种实际问题中。
2.函数的图像:通过绘制函数的图像,可以直观地表达函数的变化规律,了解函数的增减性、奇偶性、周期性等。
科 目数学 年级 高三 备课人 高三数学组 第 课时 2.1函数的解析式及定义域与值域考纲定位 理解函数的概念;掌握简单函数的定义域的求法;掌握求解析式的常用方法.疑难提示 1、要注意区间的正确表示,特别是分清开区间与闭区间的区别;2、简单函数的定义域和值域的求法;3、对符号()y f x =的理解及解析式的求法.【考点整合】1、函数的概念设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,其中x 的取值范围A 叫函数的 , 叫函数的值域,值域是 的子集.2、函数的三要素: 为函数的三要素.两函数相同,当且仅当3、函数的表示法有 , 和 .4、映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的元素y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个映射.5、函数定义域的求法:6、基本初等函数的值域:(一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数)【真题演练】1、(2011 浙江)设函数20()0x x f x x x -≤⎧=⎨>⎩若()4f a =,则实数a =( )A.-4或-2B.-4或2C.-2或4D.-2或22、(2012 江西)下列函数中,与函数31y x=定义域相同的函数是( ) A.1sin y x = B.ln x y x = C.x y xe = D.sin x y x= 3、(2012 江西)设函数211()lg 1x x f x x x ⎧+≤=⎨>⎩若((10))f f =( ) A.lg101 B.2 C.1 D.04、(2012 安徽)下列函数中,不满足(2)2()f x f x =的是( )A.()||f x x =B.()||f x x x =-C.()1f x x =+D.()f x x =-5、(2012 江苏)函数6()12log f x x =-的定义域为6、(2010 江苏)已知函数210()10x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是【经典例题】一、函数的定义域:例1、(1)函数(1)y x x x =-+的定义域为 ; (2)函数02lg(2)(1)12x y x x x -=+-+-的定义域为 ;(3)已知函数()y f x =的定义域是[0,4],则2(1)(3)y f x f x x =++-的定义域是变式训练:1、若函数(1)y f x =+的定义域是[-2,3),则(21)y f x =-的定义域是2、若函数1()x f x e x m=-+的定义域是R ,则实数m 的取值范围是 二、函数的值域例2、分别求下列函数的值域(1)1y x =+ (2)22y x x =-+ (3)22([0,3])y x x x =-+∈ (4)213x y x +=- (5) (6)21y x x =+-变式训练:求下列函数的值域(1)246([1,5))y x x x =-+∈ (2)(0)cx d y a ax b+=≠+其中 (3)21y x x =-- (4)22225(12)1x x y x x x ++=≤≤++三、函数的解析式例3、(1)已知二次函数()f x 的最小值为4,且(2)(0)6f f ==,求()f x 的解析式(2)已知2(1)f x x x +=+,求()f x 的解析式;(3)已知2()()32f x f x x +-=+,求()f x 的解析式(4)已知函数2y x x =+与函数()y g x =的图象关于点(-2,3)对称,求()g x 的解析式(5)设()f x 是R 上的函数,且满足(0)1f =,并且对任意实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的解析式变式训练:(1)已知2211()f x x x x +=+,求()f x ;(2)已知12()()3f x f x x+=,求()f x ;【作业】《胜券在握》P4页第1、2题;【上本作业】《胜券在握》P4页第3、4、5题.。
函数与映射的概念★知识梳理1.函数的概念 (1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个数x ,在集合B 中都有唯一确定的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为A x x f y ∈=),( (2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(称为函数)(x f y =的值域。
(2)函数的三要素:定义域、值域和对应法则 2.映射的概念设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为B A f →:★重、难点突破重点:掌握映射的概念、函数的概念,会求函数的定义域、值域 难点:求函数的值域和求抽象函数的定义域 重难点:1.关于抽象函数的定义域求抽象函数的定义域,如果没有弄清所给函数之间的关系,求解容易出错误 问题1:已知函数)(x f y =的定义域为][b a ,,求)2(+=x f y 的定义域[误解]因为函数)(x f y =的定义域为][b a ,,所以b x a ≤≤,从而222+≤+≤+b x a 故)2(+=x f y 的定义域是]2,2[++b a[正解]因为)(x f y =的定义域为][b a ,,所以在函数)2(+=x f y 中,b x a ≤+≤2, 从而22-≤≤-b x a ,故)2(+=x f y 的定义域是]2,2[--b a 即本题的实质是求b x a ≤+≤2中x 的范围问题2:已知)2(+=x f y 的定义域是][b a ,,求函数)(x f y =的定义域 [误解]因为函数)2(+=x f y 的定义域是][b a ,,所以得到b x a ≤+≤2,从而22-≤≤-b x a ,所以函数)(x f y =的定义域是]2,2[--b a[正解]因为函数)2(+=x f y 的定义域是][b a ,,则b x a ≤≤,从而222+≤+≤+b x a 所以函数)(x f y =的定义域是]2,2[++b a 即本题的实质是由b x a ≤≤求2+x 的范围 即)(x f 与)2(+x f 中x 含义不同1. 求值域的几种常用方法(1)配方法:对于(可化为)“二次函数型”的函数常用配方法,如求函数4cos 2sin 2+--=x x y ,可变为2)1(cos 4cos 2sin 22+-=+--=x x x y 解决(2)基本函数法:一些由基本函数复合而成的函数可以利用基本函数的值域来求,如函数)32(log 221++-=x x y 就是利用函数u y 21log =和322++-=x x u 的值域来求。
区间的知识点总结区间是数学中重要的概念,它是一段连续的数轴上的某些数的集合。
在数学分析、代数、几何以及其他数学领域中,区间都有着重要的应用。
本文将从区间的定义、性质、加法、乘法、补集等方面进行详细的总结。
一、区间的定义区间的定义是指在数轴上,某一段连续的区域所包含的所有实数。
在数学中,根据区间的长度和端点的性质,区间可以被分为以下几种类型:1. 闭区间:包含了区间的两个端点,用[a, b]表示,表示所有大于等于a且小于等于b的实数。
2. 开区间:不包含区间的两个端点,用(a, b)表示,表示所有大于a且小于b的实数。
3. 半开区间:一个端点包含在区间内,一个端点不包含在区间内,如[a, b)或(a, b]。
4. 无界区间:包含正无穷或负无穷的区间,如[a, +∞)或(-∞, b)。
二、区间的性质区间的性质是指对于区间中的元素,其满足的一些基本条件和规律。
区间的性质主要包括以下几点:1. 存在性:任意两个实数a、b,都可以构成一个区间。
2. 传递性:如果x属于区间I,且区间I包含在区间J中,则x也属于区间J。
3. 交集和并集:区间之间可以进行交集和并集的运算,得到新的区间。
4. 包含关系:对于两个区间,可以判断它们之间的包含关系。
三、区间的加法和乘法在数学运算中,区间之间存在着加法和乘法的运算规则。
具体来说,对于相同类型的区间,可以进行如下的加法和乘法运算:1. 加法:对于[a, b]和[c, d]两个闭区间,在数轴上就是两个区间[a, b]和[c, d]之间的并集。
2. 乘法:对于[a, b]和[c, d]两个闭区间,在数轴上就是两个区间[a, b]和[c, d]之间的交集。
这些运算规则对于区间之间进行运算提供了便利,使得我们可以在数学分析、代数等领域更方便地进行计算和推导。
四、区间的补集区间的补集是指给定一个区间,找出其对应的补集。
在数学中,补集是指和原集合不相交的所有元素的集合。
区间的补集可以通过以下几种方式给出:1. 对于闭区间[a, b],其补集为两个开区间(-∞, a)和(b, +∞)的并集。
2.1函数的概念及映射教学目标(考试要求)1、学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.2、了解构成函数的要素,会求一些简单函数的定义域和值域.3、了解映射的概念.4、学习函数的表示方法,会作简单函数的图象.教学重点、难点重点:函数的概念及表示方法,求函数的定义域.难点:映射,函数值域.☆要点一:映射的概念设A,B是两个非空的集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.这时,称y是x在映射f作用下的象,记作)(xf,x称作y的f,于是y=)(x原象.映射f也可记为B:)f→Ax→(xf其中A叫做映射f的定义域,由所有象)(xf构成的集合叫做映射f的值域.象、原象:给定一个集合A到集合B的映射,且B∈,,如果元素a和元素ba∈bA对应,则元素b叫做元素a的象,元素a叫做元素b的原象说明:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述.(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。
判断某“对应法则”是否为A→B的映射,主要表现为“一对一”及“多对一”的两种特殊对应;应特别注意:①A中任一元素在B中应有象,且象唯一;②B 中可以有空闲元素,即B中可以有元素没有原象.概括为:“有原必有象,而且象唯一”可以多对一,但是不能一对多。
●看下面的例子:设A ,B 分别是两个集合,为简明起见,设A ,B 分别是两个有限集求平方B B说明:(2)(3)(4)这三个对应的共同特点是:对于左边集合A 中的任何一个元素,在右边集合B 中都有唯一的元素和它对应◎映射的性质:①任意性:映射中的两个集合A,B 可以是数集、点集或由图形组成的集合等; ②有序性:映射是有方向的,A 到B 的映射与B 到A 的映射往往不是同一个映射; ③存在性:映射中集合A 的每一个元素在集合B 中都有它的象; ④唯一性:映射中集合A 的任一元素在集合B 中的象是唯一的;⑤封闭性:映射中集合A 的任一元素的象都必须是B 中的元素,不要求B 中的每一个元素都有原象,即A 中元素的象集是B 的子集.映射三要素:集合A 、B 以及对应法则f ,缺一不可;☆要点二:函数和区间的概念 ◎变量和常量在一个变化过程中,数值发生变化的量,我们称之为变量,而数值始终保持不变的量,我们称之为常量。