卫星变轨问题
- 格式:ppt
- 大小:906.00 KB
- 文档页数:8
第八讲:卫星变轨问题和双星问题一、卫星相遇问题两颗卫星在同一轨道平面内同向绕地球做匀速圆周运动,a 卫星的角速度为ωa ,b 卫星的角速度为ωb .若某时刻两卫星正好同时通过地面同一点正上方,相距最近,如图甲所示.当它们转过的角度之差Δθ=π,即满足ωa Δt -ωb Δt =π时,两卫星第一次相距最远,如图乙所示.当它们转过的角度之差Δθ=2π,即满足ωa Δt -ωb Δt =2π时,两卫星再次相距最近.二、卫星变轨问题1.变轨分析(1)卫星在圆轨道上稳定运行时, G Mmr 2=m v 2r=mω2r =m ⎝⎛⎭⎫2πT 2r . (2)当卫星的速度突然增大时,G Mm r 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大.当卫星进入新的轨道稳定运行时,由v =GMr可知其运行速度比原轨道时减小,但重力势能、机械能均增加.(3)当卫星的速度突然减小时,G Mm r 2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,例题、如图所示,北斗导航系统中的两颗工作卫星均绕地心做匀速周运动,且轨道半径为r ,某时刻工作卫星1、2分别位于轨道上的A 、B 两个位置,若两卫星均沿顺时针方向运行,地球表面的重力加速度为g ,地球半径为R ,不计卫星间的相互作用力。
下列判断正确的是( )例题、如图所示,三个质点a 、b 、c 质量分别为m 1、m 2、M ,(M >>m 1,M >>m 2).a 、b 在同一平面内绕c 沿逆时针方向做匀速圆周运动,它们的周期之比T a :T b =1:k .(k >1,为正整数)从图示位置开始,在b 运动一周的过程中,则( )A .a 、b 距离最近的次数为k 次B .a 、b 距离最近的次数为k+1次C .a 、b 、c 共线的次数为2k 次轨道半径变小.当卫星进入新的轨道稳定运行时,由v =GMr可知其运行速度比原轨道时增大,但重力势能、机械能均减小.2.三个运行物理量的大小比较(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点速率分别为v A 、v B .在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v3>v B .(2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,经过B 点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T2=k 可知T 1<T 2<T 3. 三、多星模型1.定义绕公共圆心转动的两个星体组成的系统,我们称之为双星系统.如图所示.A .这两颗卫星的加速度大小相等,均为22gR rB .卫星1出A 位置运动到B 位置所需的时间是3rr R gC .这两颗卫星的机械能一定相等D .卫星1向后喷气就一定能够追上卫星22.特点(1)各自所需的向心力由彼此间的万有引力提供,即 Gm 1m 2L2=m 1ω21r 1, Gm 1m 2L 2=m 2ω22r 2. (2)两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2. (3)两颗星的半径与它们之间的距离关系为:r 1+r 2=L . 3.两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.针对训练题型1:相遇问题1.如图所示,A 和B 两行星绕同一恒星C 做圆周运动,旋转方向相同,A 行星的周期为T 1,B 行星的周期为T 2,某一时刻两行星相距最近,则( )A .经过T 1+T 2两行星再次相距最近B .经过两行星再次相距最近C .经过两行星相距最远D .经过两行星相距最远【解答】解:根据万有引力提供向心力,列出等式:=mω2rω=所以ωA>ωBA行星的周期为T1,B行星的周期为T2,所以T1=T2=两行星相距最近时,两行星应该在同一半径方向上。
卫星变轨问题知识点总结
卫星变轨是指卫星在轨道上偏离原有轨道进行调整的过程,用于满足不同的需求,如太阳同步轨道、地球静止轨道等。
以下是卫星变轨问题的几个知识点总结:
1. 变轨方式:变轨主要有化学推进剂变轨和电推进剂变轨两种方式。
前者通常采用火箭发动机进行推进,后者则利用电磁力进行推进。
2. 变轨方法:变轨方法通常包括单次变轨、多次变轨、连续变轨等几种。
其中单次变轨是指通过一次加速或减速达到目标轨道;多次变轨是分数次进行变轨,实现最终目标轨道;连续变轨则是通过对卫星进行定期推进来维持轨道的稳定。
3. 变轨技术:变轨技术主要包括贴近飞行、引力助推、轨道选择等。
贴近飞行需要精确掌握卫星的运动状态,以便在飞行过程中进行微调;引力助推则是利用行星或月球等天体的引力来实现变轨;轨道选择则是根据具体任务需求选择不同的轨道。
4. 变轨误差:变轨过程中存在着各种误差,如发动机性能波动、气象条件变化等。
这些误差会影响卫星的运行轨迹,需要对其进行修正和控制。
5. 动力学方程:卫星的运动状态可以通过动力学方程描述。
动力学方程包括万有引力、空气阻力、电磁效应等多个因素,并可通过数值积分方法求解得到卫星的运动状态。
总之,卫星变轨是卫星运行中重要的环节之一,需要精确掌握
变轨技术和动力学方程,保证卫星能够按照预定轨道稳定运行,实现各种任务目标。
专题5.3 三种特殊的卫星及卫星的变轨问题、天体的追击相遇问题一、近地卫星、赤道上物体及同步卫星的运行问题1.近地卫星、同步卫星、赤道上的物体的比较比较内容赤道表面的物体近地卫星同步卫星向心力来源万有引力的分力万有引力向心力方向指向地心重力与万有引力的关系重力略小于万有引力重力等于万有引力线速度v1=ω1R v2=GMRv3=ω3(R+h)=GMR+hv1<v3<v2(v2为第一宇宙速度)角速度ω1=ω自ω2=GMR3ω3=ω自=GMR+h3ω1=ω3<ω2向心加速度a1=ω21R a2=ω22R=GMR2a3=ω23(R+h) =GMR+h2a1<a3<a2卫星的轨道半径r是指卫星绕天体做匀速圆周运动的半径,与天体半径R的关系为r=R+h(h为卫星距离天体表面的高度),当卫星贴近天体表面运动(h≈0)时,可认为两者相等。
【示例1】(多选)如图,地球赤道上的山丘e、近地资源卫星p和同步通信卫星q均在赤道平面上绕地心做匀速圆周运动。
设e、p、q的圆周运动速率分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则( )A.v1>v2>v3B.v1<v3<v2C.a1>a2>a3D.a1<a3<a2【答案】BD【解析】由题意可知:山丘与同步卫星角速度、周期相同,由v=ωr,a=ω2r可知v1<v3、a1<a3;对同步卫星和近地资源卫星来说,满足v =GM r 、a =GMr2,可知v 3<v 2、a 3<a 2。
故选项B 、D 正确。
【示例2】(多选)同步卫星离地心距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球的半径为R ,则下列比值正确的是( )A.a 1a 2=rRB.a 1a 2=r 2R2 C.v 1v 2=r R D.v 1v 2=R r【答案】: AD【示例3】(2016·四川理综·3)国务院批复,自20XX 年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( ) A.a 2>a 1>a 3 B.a 3>a 2>a 1 C.a 3>a 1>a 2 D.a 1>a 2>a 3【答案】 D【解析】 由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a =ω2r ,r 2>r 3,则a 2>a 3;由万有引力定律和牛顿第二定律得,G Mmr2=ma ,由题目中数据可以得出,r 1<r 2,则a 2<a 1;综合以上分析有,a 1>a 2>a 3,选项D 正确.【示例4】.有a 、b 、c 、d 四颗地球卫星,a 在地球赤道上未发射,b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图,则有( )A .a 的向心力由重力提供B .c 在4 h 内转过的圆心角是π6C .b 在相同时间内转过的弧长最长D .d 的运动周期有可能是20 h 【答案】 C二、 卫星的变轨问题 1.三种情境2.变轨问题的三点注意(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上的运行速度变化由v =GMr判断。
卫星变轨问题正常运行时速率、周期、加速度的比较。
1. 速度的比较。
卫星做匀速圆周运动,在同一个轨道上其环绕速率是不变的,不同轨道上环绕速率不同,高轨低速,所有轨道速度;卫星做椭圆运动,其速率是变化的,离地心越近,速率越大,离地心越远,速率越小,即近大远小,其运行速率。
在同一点,离心速度大于圆周速度,圆周速度大于近心速度。
简单讲就是,内小外大。
由此可以判断,在上图中, 。
2. 周期的比较。
比较半径或半长轴。
半径越大,周期越大。
所以有:.3. 加速度的比较。
正常运行时的加速度比较,可由来判断。
4. 向外变轨加速,向内变轨减速。
题目练习:1:某卫星在A 点短时间开动小型发动机进行变轨,从圆形轨道Ⅰ进入椭圆道Ⅱ,B 为轨道Ⅱ上的一点,如图所示。
下列说法中正确的有 A .在轨道Ⅱ上经过A 的速率大于经过B 的速率 B .在轨道Ⅱ上经过A 的速率小于在轨道Ⅰ上经过A 点的速率C .在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运动的周期D .在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度2:某宇宙飞船由运载火箭先送入近地点为A 、远地点为B 的椭圆轨道,在B 点实施变轨后,再进入预定圆轨道,如图4所示。
已知飞船在预定圆轨道上飞行n 圈所用时间为t ,近地点A 距地面高度为h 1,地球表面重力加速度为g ,地球半径为R 。
求:图4v 2v 3 v 4v 1 Q P Ⅰ Ⅲ Ⅱ B 轨道Ⅰ 轨道Ⅱ(1)飞船在近地点A的加速度a A为多大?(2)远地点B距地面的高度h2为多少?3.探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比()A.轨道半径变小B.向心加速度变小C.线速度变小D.角速度变小4.如图2所示,宇宙飞船A在低轨道上飞行,为了给更高轨道的空间站B输送物资,它可以采用喷气的方法改变速度,从而达到改变轨道的目的,则以下说法正确的是()图2A.它应沿运行速度方向喷气,与B对接后运行周期变小B.它应沿运行速度的反方向喷气,与B对接后运行周期变大C.它应沿运行速度方向喷气,与B对接后运行周期变大D.它应沿运行速度的反方向喷气,与B对接后运行周期变小5.某宇宙飞船在月球上空以速度v绕月球做圆周运动。
r 3 GM专题八、卫星变轨问题问题分析卫星环绕地球做匀速圆周运动时所需向心力由地球对它的万有引力提供,稳定运行时,其线速度、角速度、周期、向心加速度均为定值,且仅与轨道半径有关而与卫星质量无关;如果卫星所受万有引力不刚好提供向心力, 其运行速率及轨道半径均要发生变化,即发生变轨运动:若使卫星速率减小,则万有引力大于所需向心力,轨道半径将减小;若使卫星速率增大,则万有引力小于所需向心力,轨道半径将增大。
Mmv 224 2Gr2=m=mω r = mrT 2r =ma 向=mg ,解得 v =, ω= ,a =g = GM ,T =2π, 向r 2由于卫星的线速度决定着卫星的动能,即 E k = 1 2mv 2, 而卫星高度越高,其具有的重力势能也就越大,对于上述 规律可以简记为:高轨低速小动能,高轨高势大周期.具体含义是卫星的运行轨道越高,卫星的线速度、角速度、向心加速度、卫星所在位 置处的重力加速度,就越小;卫星的动能越小,卫星的重力势能就越大,卫星运行周 期也越大,反之则反.李老师温馨提示:在遇到卫星轨道转移问题时,椭圆轨道和圆周轨道的相切点的线速度时,要牢记内小外大,其含义是,内轨道的线速度小,外轨道的线速度大!如图所示,M 点是轨道 2 和 3 的相切点,2 是内轨道,3 是外轨道,则有 v 2<v 3, 原因是对于卫星沿轨道 3 圆周运动通过 M 点时,满足 GMm v 2=m 2 ,而轨道 2 由远地点 M 点向近地点 N 点运动r 2r时做近心运动,满足 GMm v 2>m 2 ;卫星沿轨道 1 圆周运动通过 N 点,满足 G r 2rMm v 2=m 1 r2 r,而轨道 2 由远地点 N点向近地点 M 点运动时做离心运动,满足 GMm r 2 v 2 <m 2 ,则有 v 1<v 2。
r这个规律同样适合于玻尔理论,氢原子能级问题!卫星变轨的实质两类变轨 离心运动 近心运动 变轨起因 卫星速度突然增大卫星速度突然减小万有引力与向心力 的大小关系GMm <mv 2r2rGMm >mv 2r2r变轨结果转变为椭圆轨道运动或在较大半径 圆轨道上运动转变为椭圆轨道运动或在较小半径圆 轨道上运动GM rGM r 33 2 MN1在处理下列实际问题中,请你先用上述 14 个文字进行判断,可以做到秒杀答案,然后再详细参考一下解析!【调研 1】(2013·新课标全国Ⅰ)2012 年 6 月 18 日,“神州九号”飞船与“天宫一号”目标飞行器在离地面343km 的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气, 下面说法正确的是 ()A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B .如不加干预,在运行一段时间后,“天宫一号”的动能可能会增加C. 如不加干预,“天宫一号”的轨道高度将缓慢降低D. 航天员在“天宫一号”中处于失重状态,说明航天员不受地球引力作用【解析】第一宇宙速度为最大环绕速度,天宫一号的线速度一定小于第一宇宙速度,故 A 选项错误;根据万有引力提供向心力,有 G Mm=m v r 2 r,解得v ,得轨道高度降低,卫星的线速度增大,故动能将增大,所以 B 选项正确;卫星由于摩擦阻力做功,利用控制变量,假设轨道高度不变,只能是速度减小,提供的引力大于卫星所需要的向心力,故卫星将做近心运动,即轨道半径将减小,故 C 项正确;航天员在“天宫一号”中处于失重状态,而这恰好是航天员受地球引力全部用于做圆周运动的向心力导致的完全失重状态,D 选项错误. 答案 BC【调研2】2008 年9 月25 日至28 日我国成功实施了“神舟”七号载人航天飞行并实现了航天员首次出舱.飞船先沿椭圆轨道飞行,后在远地点 343 千米处点火加速,由椭圆轨道变成高度为 343 千米的圆轨道,在此圆轨道上飞船运行周期约为 90 分钟.下列判断正确的是 ( )A. 飞船变轨前后的机械能相等B. 飞船在圆轨道上时航天员出舱前后都处于失重状态C. 飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D. 飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度【解析】飞船点火变轨,前后的机械能不守恒,所以 A 项不正确.飞船在圆轨道上时万有引力来提供向心力,航天员出舱前后都处于失重状态,B 项正确.飞船在此圆轨道上运动的周期 90 分钟小于同步卫星运动 的周期 24 小时,根据 T =2π,可知,飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度,C 项正ω确.飞船变轨前通过椭圆轨道远地点时只有万有引力来提供加速度,变轨后沿圆轨道运动也是只有万有引力来提供加速度,所以相等,D 项不正确. 答案 BC【调研 3】探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与2变轨前相比( )GM rGM r A .轨道半径变小 B .向心加速度变小 C .线速度变小D .角速度变小【解析】 由开普勒定律知,对绕同一中心天体的所有卫星,轨道的半长轴的三次方跟公转周期的二次方的R 32π比值都相等,即 T 2 =k ,知周期减小,则半径减小,A 选项正确;由ω= T,知角速度增大,D 选项错误;根据 G Mm =ma ,得 a = GM r 2 r 2 ,半径减小,向心加速度变大,B 选项错误;由 G Mm r 2 v 2 =m ,解得线速度 v = , r得轨道高度降低,卫星的线速度增大,C 选项错误. 答案 A【调研 4】“神舟十号”与“天宫一号”已 5 次成功实现交会对接。
2023届高三物理一轮复习多维度导学与分层专练专题30 卫星的变轨问题、天体追及相遇问题、双星和多星问题导练目标 导练内容目标1 卫星的变轨问题 目标2 天体追及相遇问题 目标3双星和多星问题一、卫星的变轨问题 1.两类变轨简介两类变轨离心运动近心运动示意图变轨起因 卫星速度突然增大卫星速度突然减小万有引力与 向心力的 大小关系 G Mmr 2<m v 2rG Mmr 2>m v 2r2.变轨前后各运行物理参量的比较(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v1、v3,在轨道Ⅰ上过A点和B点时速率分别为v A、v B。
在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B。
(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A 点,卫星的加速度都相同,同理,经过B点加速度也相同。
(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3。
(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒。
若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3。
①在A点,由圆周Ⅰ变至椭圆Ⅰ时,发动机向后喷气,推力做正功,动能增加、势能不变、机械能增加;②在B点,由椭圆Ⅰ变至圆周Ⅰ时,发动机向后喷气,推力做正功,动能增加、势能不变、机械能增加;反之也有相应的规律。
【例1】2013年12月6日,“嫦娥三号”携带月球车“玉兔号”运动到地月转移轨道的P点时做近月制动后被月球俘获,成功进入环月圆形轨道Ⅰ上运行,如图所示。
在“嫦娥三号”沿轨道Ⅰ经过P点时,通过调整速度使其进入椭圆轨道Ⅰ,在沿轨道Ⅰ经过Q点时,再次调整速度后又经过一系列辅助动作,成功实现了其在月球上的“软着陆”。
人造卫星的发射过程要经过多次变轨方可到达预定轨道,在赤道上顺着地球自转方向发射卫星到圆点点火加速,速度变大,进入椭圆轨道Ⅱ再次点火加速进入圆轨道Ⅲ卫星变轨问题分析方法速度大小的分析方法.①卫星做匀速圆周运动经过某一点时,其速度满足以此为依据可分析卫星在两个不同圆轨道上的②卫星做椭圆运动经过近地点时,卫星做离心运动,m v2.以此为依据可分析卫星沿椭圆轨r道和沿圆轨道通过近地点时的速度大小(即加速离心.发射“嫦娥三号”的速度必须达到第三宇宙速度.在绕月圆轨道上,卫星周期与卫星质量有关.卫星受月球的引力与它到月球中心距离的平方成反比.在绕月轨道上,卫星受地球的引力大于受月球的引力明白第三宇宙速度是指被发射物体能够脱离太阳系的最小发射速度,而“嫦娥三号”没有脱离太阳的引力范要熟记万有引力的表达式并清楚是万有引力提供卫星做圆如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步卫星圆,到达远地点Q时再次变轨,进入同步卫星轨设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道点的速率为v2,沿转移轨道刚到达远地点,在同步卫星轨道上的速率为v4,则下列说法正确的是点变轨时需要加速,Q点变轨时要减速点变轨时需要减速,Q点变轨时要加速D.v2>v1>v4>v3练2发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示,卫星分别在1、2、3轨道上正常运行时,以下说法正确的是()A.卫星在轨道3上的运行速率大于在轨道1上的运行速率B.卫星在轨道3上的角速度大于在轨道1上的角速度C.卫星在轨道1上运动一周的时间大于它在轨道2上运动一周的时间D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度反思总结卫星变轨问题关键词转化二、有关宇宙航行的几个问题辨析辨析1.发射速度与运行速度的比较(1)发射速度在地面以某一速度发射一个物体,发射后不再对物体提供动力,在地面离开发射装置时的速度称为发射速度,三个宇宙速度都是指发射速度.(2)运行速度运行速度是指做圆周运动的人造卫星稳定飞行时的线速度,对于人造地球卫星,轨道半径越大,则运行速度越小.(3)有的同学这样认为:沿轨道半径较大的圆轨道运行的卫星的发射速度大,发射较为困难;而轨道半径较小的卫星发射速度小,发射较为容易.这种观点是片面的.因为高轨卫星的发射难易程度与发射速度没有多大关系,如果我们在地面上以7.9km/s 的速度水平发射一个物体,则这个物体可以贴着地面做圆周运动而不落到地面;如果速度增大,则会沿一个椭圆轨道运动.速度越大,椭圆轨道的半长轴就越大;如果这个速度达到11.2km/s,则这个物体可以摆脱地球的引力.可见,无论以多大速度发射一个物体或卫星,都不会使之成为沿较大的圆轨道做圆周运动的人造卫星,高轨卫星的发射过程是一个不断加速变轨的过程,并不是在地面上给一个发射速度就可以的.【典例2】(多选)如图所示,在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则()A.该卫星的发射速度必定大于11.2km/sB.卫星在同步轨道Ⅱ上的运行速度大于7.9km/sC.在椭圆轨道上,卫星在P点的速度大于在Q点的速度D.卫星在Q点通过加速实现由轨道Ⅰ进入轨道Ⅱ辨析2.分清三个不同(1)重力和万有引力的向心加速度等于重力加速度g 的运动周期有可能是20小时如图所示,地球赤道上的山丘e,近地资源卫星均在赤道平面上绕地心做匀速圆周运动.设、v3,向心加速度分别为v2<v33<a2已知地球赤道上的物体随地球自转的线速度大小为近地卫星线速度大小为,地球同步卫星线速度大小为设近地卫星距地面高度不计,同步卫星距地面高度约为地倍.则下列结论正确的是(。
第3课时专题强化:卫星变轨问题双星模型目标要求 1.会处理人造卫星的变轨和对接问题。
2.掌握双星、多星系统,会解决相关问题。
3.会应用万有引力定律解决星球“瓦解”和黑洞问题。
考点一卫星的变轨和对接问题1.卫星发射模型(1)为了节省能量,在赤道上顺着地球自转方向先发射卫星到圆轨道Ⅰ上,卫星在轨道Ⅰ上做匀速圆周运动,有G Mmr12=mv2r1,如图所示。
(2)在A点(近地点)点火加速,由于速度变大,所需向心力变大,G Mmr12<mv A2r1,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在椭圆轨道B点(远地点),G Mmr22>mv B2r2,将做近心运动,再次点火加速,使GMmr22=mv B′2r2,进入圆轨道Ⅲ。
思考若使在轨道Ⅲ运行的宇宙飞船返回地面,应如何操作?________________________________________________________________________2.变轨过程分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在椭圆轨道Ⅱ上过A点和B 点时速率分别为v A、v B,四个速度关系为v A>v1>v3>v B。
(2)向心加速度在A 点,轨道Ⅰ上和轨道Ⅱ上的向心加速度关系a ⅠA ________a ⅡA ,在B 点,轨道Ⅱ上和轨道Ⅲ上的向心加速度关系a ⅡB ________a ⅢB ,A 、B 两点向心加速度关系a A ________a B 。
(均选填“>”“=”或“<”)(3)周期卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期T 1、T 2、T 3的关系为T 1<T 2<T 3。
(4)机械能在一个确定的圆(椭圆)轨道上机械能______。
若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E 1、E 2、E 3,从轨道Ⅰ到轨道Ⅱ和从轨道Ⅱ到轨道Ⅲ都需要点火加速,则机械能关系为____________。
卫星变轨问题分析一:理论说明:卫星变轨问题“四个”物理量的规律分析1.速度:如图所示,设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.2.加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.3.周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.4.机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.二、基础训练1、[变轨中运行参量和能量分析](多选)2012年6月18日,神舟九号飞船与天宫一号目标飞行器在离地面343 km的近圆轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气,下面说法正确的是()A.为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B.如不加干预,在运行一段时间后,天宫一号的动能可能会增加C.如不加干预,天宫一号的轨道高度将缓慢降低D.航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用2、[变轨中运行参量的分析](多选)如图所示,搭载着“嫦娥二号”卫星的“长征三号丙”运载火箭在西昌卫星发射中心点火发射,卫星由地面发射后,进入地月转移轨道,经多次变轨最终进入距离月球表面100 km,周期为118 min 的工作轨道,开始对月球进行探测.下列说法正确的是()A.卫星在轨道Ⅲ上的运动速度比月球的第一宇宙速度小B.卫星在轨道Ⅲ上经过P点的速度比在轨道Ⅰ上经过P点时大C.卫星在轨道Ⅲ上运动周期比在轨道Ⅰ上短D.卫星在轨道Ⅰ上的机械能比在轨道Ⅱ上多3、[变轨中运行参量的分析]2013年12月2日凌晨1时30分,嫦娥三号月球探测器搭载长征三号乙火箭发射升空.这是继2007年嫦娥一号、2010年嫦娥二号之后,我国发射的第3颗月球探测器,也是首颗月球软着陆探测器.嫦娥三号携带有一台无人月球车,重3吨多,是我国设计的最复杂的航天器.如图5所示为其飞行轨道示意图,则下列说法正确的是()A.嫦娥三号的发射速度应该大于11.2 km/sB.嫦娥三号在环月轨道1上P点的加速度大于在环月轨道2上P点的加速度C.嫦娥三号在环月轨道2上运动周期比在环月轨道1上运行周期小D.嫦娥三号在动力下降段中一直处于完全失重状态4.北斗导航系统又被称为“双星定位系统”,具有导航、定位等功能.“北斗”系统中两颗工作卫星1和2均绕地心O做匀速圆周运动,轨道半径均为r,某时刻两颗工作卫星分别位于轨道上的A、B两位置,如图5所示.若卫星均顺时针运行,地球表面处的重力加速度为g,地球半径为R,不计卫星间的相互作用力.以下判断正确的是().A.两颗卫星的向心加速度大小相等,均为R2g r2B.两颗卫星所受的向心力大小一定相等C.卫星1由位置A运动到位置B所需的时间可能为7πr3RrgD.如果要使卫星1追上卫星2,一定要使卫星1加速5、(多选)在完成各项任务后,“神舟十号”飞船于2013年6月26日回归地球.如图所示,飞船在返回地面时,要在P点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q为轨道Ⅱ上的一点,M为轨道Ⅰ上的另一点,关于“神舟十号”的运动,下列说法中正确的有()A.飞船在轨道Ⅱ上经过P的速度小于经过Q的速度B.飞船在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过M的速度C.飞船在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运动的周期D.飞船在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上经过M的加速度6.2013年6月13日13时8分,搭载聂海胜、张晓光、王亚平3名航天员的“神舟十号”飞船与“天宫一号”目标飞行器在离地面343 km的近圆轨道上成功进行了我国载人空间交会对接.对接轨道所在空间存在极其稀薄的大气,下列说法正确的是()A.为实现对接,两者运行速度的大小都应等于第一宇宙速度B.对接前,“神舟十号”欲追上“天宫一号”,必须在同一轨道上点火加速C.由于稀薄空气,如果不加干预,天宫一号将靠近地球D.当航天员王亚平站在“天宫一号”内讲课不动时,她受平衡力作用。
变轨(参考答案)一、选择题1. 【答案】 ABC【解析】 航天飞机在轨道Ⅱ上从远地点A 向近地点B 运动的过程中万有引力做正功,所以航天飞机经过A 点的速度小于航天飞机经过B 点的速度,A 正确;航天飞机在A 点减速后才能做向心运动,从圆形轨道Ⅰ进入椭圆轨道Ⅱ,所以在轨道Ⅱ上经过A 点的动能小于在轨道Ⅰ上经过A 点的动能,B 正确;根据开普勒第三定律R 3T 2=k ,因为轨道Ⅱ的半长轴小于轨道Ⅰ的半径,所以航天飞机在轨道Ⅱ上的运动周期小于在轨道Ⅰ上的运动周期,C 正确;根据牛顿第二定律F =ma ,因航天飞机在轨道Ⅱ和轨道Ⅰ上A 点的万有引力相等,所以在轨道Ⅱ上经过A 点的加速度等于在轨道Ⅰ上经过A 点的加速度,D 错误。
2. 【答案】B【解析】2、3轨道在B 点相切,卫星在3轨道相对于2轨道是做离心运动的,卫星在3轨道上的线速度大于在2轨道上B 点的线速度,因卫星质量相同,所以卫星在3轨道上的机械能大于在2轨道上的机械能,A 错误;以OA 为半径作一个圆轨道4与2轨道相切于A 点,设卫星在4轨道上的速率为v 4,则v 4<v A ,又因v 1<v 4,所以v 1<v A ,B 正确;加速度是万有引力产生的,只需要比较卫星到地心的高度即可,应是a A >a 1>a 3,C 错误;2轨道的半长轴为R ,OB =1.6R,3轨道上的线速度v 3=5GM 8R ,又因v B <v 3,所以v B <5GM 8R ,D 错误. 3. 【答案】BC【解析】设地球质量为M ,由万有引力提供向心力得,在轨道Ⅰ上有G Mm R 2=mg ,在轨道Ⅲ上有G Mm (R +h )2=ma ,所以a =(R R +h )2g ,A 错误;又因a =v 2R +h ,所以v =gR 2R +h,B 正确;卫星由轨道Ⅱ变轨到轨道Ⅲ需要加速做离心运动,所以卫星在轨道Ⅲ上运行时经过P 点的速率大于在轨道Ⅱ上运行时经过P 点的速率,C 正确;尽管卫星从轨道Ⅰ变轨到轨道Ⅲ要在P 、Q 点各加速一次,但在圆形轨道上稳定运行时的速度v =GM r ,由动能表达式知卫星在轨道Ⅲ上的动能小于在轨道Ⅰ上的动能,D 错误.4. 【答案】C【解析】若该彗星在近日点所在的圆周上做匀速圆周运动,根据万有引力定律及牛顿第二定律有GMm (R +h 1)2=mv 2R +h 1,解得v = GM R +h 1,由于该彗星在近日点做离心运动,故该彗星在近日点的速率大于GM R +h 1,A 正确;设该彗星在近日点和远日点的速率分别为v 1、v 2,根据开普勒第二定律,取极短时间Δt ,有12(R +h 1)v 1Δt =12(R +h 2)v 2Δt ,解得v 1v 2=R +h 2R +h 1,B 正确,C 错误;根据G Mm r2=ma 可知,该彗星在近日点的加速度大小a 1=GM (R +h 1)2,在远日点的加速度大小a 2=GM (R +h 2)2,则该彗星在近日点和远日点的加速度大小之比为(R +h 2)2(R +h 1)2,D 正确。
[方法点拨] (1)卫星在运行中的变轨有两种情况,即离心运动和向心运动:①当v 增大时,所需向心力m v 2r 增大,卫星将做离心运动,轨道半径变大,由v = GM r知其运行速度要减小,但重力势能、机械能均增加.②当v 减小时,向心力m v 2r减小,因此卫星将做向心运动,轨道半径变小,由v = GM r知其运行速度将增大,但重力势能、机械能均减少.(2)低轨道的卫星追高轨道的卫星需要加速,同一轨道后面的卫星追赶前面的卫星需要先减速后加速.1.(卫星变轨中速度、加速度的比较)如图1所示,假设月球半径为R ,月球表面的重力加速度为g 0,飞船在距月球表面高度为3R 的圆形轨道Ⅰ上运动,到达轨道的A 点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B 再次点火进入近月轨道Ⅲ绕月球做圆周运动.则( )图1A .飞船在轨道Ⅰ上的运行速度为14g 0R B .飞船在A 点处点火时,速度增加C .飞船在轨道Ⅰ上运行时通过A 点的加速度大于在轨道Ⅱ上运行时通过A 点的加速度D .飞船在轨道Ⅲ上绕月球运行一周所需的时间为2πR g 02.(卫星变轨时速度的变化)“嫦娥一号”探月卫星由地面发射后,由发射轨道进入停泊轨道,然后再由停泊轨道调速后进入地月转移轨道,再次调速后进入工作轨道,开始绕月球做匀速圆周运动,对月球进行探测,其奔月路线简化后如图2所示.若月球半径为R ,卫星工作轨道距月球表面高度为H .月球表面的重力加速度为g 6(g 为地球表面的重力加速度),则下列说法正确的是( )图2 A.卫星从停泊轨道进入地月转移轨道时速度减小B.卫星在工作轨道上运行的周期为T=2π6(R+H)3gR2C.月球的第一宇宙速度为gRD.卫星在停泊轨道运行的速度大于地球的第一宇宙速度3.(变轨对接问题)“神舟十号”与“天宫一号”的交会对接,如图3所示,圆形轨道1为“天宫一号”运行轨道,圆形轨道2为“神舟十号”运行轨道,在实现交会对接前,“神舟十号”要进行多次变轨,则()图3A.“神舟十号”在圆形轨道2的运行速率大于7.9 km/sB.“天宫一号”的运行速率小于“神舟十号”在轨道2上的运行速率C.“神舟十号”从轨道2要先减速才能与“天宫一号”实现对接D.“天宫一号”的向心加速度大于“神舟十号”在轨道2上的向心加速度4.(变轨时运动与能量分析)“嫦娥五号”作为我国登月计划中第三期工程的“主打星”,将于2017年前后在海南文昌卫星发射中心发射,登月后从月球起飞,并以“跳跃式返回技术”返回地面,完成探月工程的重大跨越——带回月球样品.“跳跃式返回技术”是指航天器在关闭发动机后进入大气层,依靠大气升力再次冲出大气层,降低速度后再进入大气层.如图4所示,虚线为大气层的边界.已知地球半径为R,d点距地心距离为r,地球表面重力加速度为g.则下列说法正确的是()图4A .“嫦娥五号”在b 点处于完全失重状态B .“嫦娥五号”在d 点的加速度大小等于gr 2R 2 C .“嫦娥五号”在a 点和c 点的速率相等D .“嫦娥五号”在c 点和e 点的速率相等5.有研究表明,目前月球远离地球的速度是每年3.82±0.07 cm.则10亿年后月球与现在相比( )A .绕地球做圆周运动的周期变小B .绕地球做圆周运动的加速度变大C .绕地球做圆周运动的线速度变小D .地月之间的引力势能变小6.“天宫一号”目标飞行器在离地面343 km 的圆形轨道上运行,其轨道所处的空间存在极其稀薄的大气.下列说法正确的是( )A .如不加干预,“天宫一号”围绕地球的运动周期将会变小B .如不加干预,“天宫一号”围绕地球的运动动能将会变小C .“天宫一号”的加速度大于地球表面的重力加速度D .航天员在“天宫一号”中处于完全失重状态,说明航天员不受地球引力作用7.已知地球半径为R ,地球表面处的重力加速度为g ,引力常量为G ,若以无限远处为零引力势能面,则质量分别为M 、m 的两个质点相距为r 时的引力势能为-GMm r.一飞船携带一探测器在半径为3R 的圆轨道上绕地球飞行,某时刻飞船将探测器沿运动方向弹出,若探测器恰能完全脱离地球的引力范围,即到达距地球无限远时的速度恰好为零,则探测器被弹出时的速度为( )A. gR 3B. 2gR 3C.gRD.2gR8.如图5,卫星绕地球沿椭圆轨道运动,A 、C 为椭圆轨道长轴端点,B 、D 为椭圆轨道短轴端点,关于卫星的运动,以下说法不正确的是( )图5A .A 点的速度可能大于7.9 km/sB .C 点的速度一定小于7.9 km/sC .卫星在A 点时引力的功率最大D .卫星由C 运动到A 万有引力的平均功率大于卫星由B 运动到D 万有引力的平均功率9.(多选)2015年12月10日,我国成功将中星1C 卫星发射升空,卫星顺利进入预定转移轨道.如图6所示是某卫星沿椭圆轨道绕地球运动的示意图,已知地球半径为R ,地球表面的重力加速度为g ,卫星远地点P 距地心O 的距离为3R .则( )图6A .卫星在远地点的速度大于3gR 3B .卫星经过远地点时速度最小C .卫星经过远地点时的加速度大小为g 9D .卫星经过远地点时加速,卫星将不能再次经过远地点答案精析1.D [据题意,飞船在轨道Ⅰ上运动时有:G Mm (4R )2=m v 24R ,经过整理得:v =GM 4R ,而GM =g 0R 2,代入上式计算得v =g 0R 4,所以A 选项错误;飞船在A 点处点火使速度减小,飞船做靠近圆心的运动,所以飞船速度减小,B 选项错误;据a =GM (4R )2可知,飞船在两条运行轨道的A 点距地心的距离均相等,所以加速度相等,所以C 选项错误;飞船在轨道Ⅲ上运行时有:G Mm R 2=mR 4π2T 2,经过整理得T =2πR g 0,所以D 选项正确.] 2.B [卫星从停泊轨道进入地月转移轨道时做离心运动,故卫星速度一定增大,A 项错;卫星在工作轨道上做圆周运动,万有引力充当向心力,即:GMm (R +H )2=m (2πT )2(R +H ),又月球表面物体所受万有引力近似等于重力,即:GMm ′R 2=16m ′g ,解两式得:T =2π6(R +H )3gR 2,B 项正确;月球的第一宇宙速度为 16gR ,C 项错;地球的第一宇宙速度是环绕地球做圆周运动的最大速度,所以卫星在停泊轨道的运动速度一定小于地球的第一宇宙速度,D 项错.] 3.B [卫星绕地球做圆周运动,向心力由万有引力提供,故有G mM r 2=m v 2r=ma .线速度v = GM r,知卫星轨道高度越大线速度越小,而第一宇宙速度是绕地球做圆周运动的最大速度,A 项错误;线速度v = GM r,“天宫一号”轨道半径大,故其线速度小于“神舟十号”的线速度,B 项正确;“神舟十号”与“天宫一号”实施对接,需要“神舟十号”抬升轨道,即“神舟十号”开动发动机加速做离心运动使轨道高度抬升与“天宫一号”实现对接,故“神舟十号”是要加速而不是减速,C 项错误;向心加速度a =GM r2知,“天宫一号”的轨道半径大,故其向心加速度小,D 项错误.]4.D [由“嫦娥五号”运动轨迹可知,飞船在b 点的加速度方向与所受万有引力方向相反,处于超重状态,A 项错;由万有引力定律和牛顿第二定律得,飞船在d 点的加速度a =GM r2,又由万有引力与重力关系mg =GMm R 2,解得a =gR 2r2,B 项错;a 点到c 点过程中,万有引力做功为零,但大气阻力做负功,由动能定理可知,动能变化量不为零,故初、末速率不相等,C 项错;而从c 点到e 点过程中,所经空间无大气,万有引力做功也为零,所以动能不变,D 项正确.]5.C [对月球进行分析,根据万有引力提供向心力有:GMm r 2=m (2πT)2r ,得:T = 4π2r 3GM ,由于半径变大,故周期变大,A 项错误;根据GMm r 2=ma ,有:a =GM r 2,由于半径变大,故加速度变小,B 项错误;根据GMm r 2=m v 2r,则:v =GM r ,由于半径变大,故线速度变小,C 项正确;由于月球远离地球,万有引力做负功,故引力势能变大,D 项错误.]6.A [根据万有引力提供向心力有GMm r 2=m 4π2r T 2,解得:T = 4π2r 3GM,卫星由于摩擦阻力作用,轨道高度将降低,则周期减小,A 项正确;根据GMm r 2=m v 2r解得:v = GM r 得轨道高度降低,卫星的线速度增大,故动能将增大,B 项错误;根据GMm r 2=ma ,得a =GM r2,“天宫一号”的轨道半径大于地球半径,则加速度小于地球表面重力加速度,C 项错误;完全失重状态说明航天员对悬绳或支持物体的压力为0,而地球对他的万有引力提供他随“天宫一号”围绕地球做圆周运动的向心力,D 项错误.]7.B [由题设条件可知,探测器被弹出后到达距地球无限远时机械能为零,设探测器被弹出时的速度为v ,由机械能守恒定律可得12m v 2-GMm 3R =0;根据万有引力定律可得GMm ′R 2=m ′g ,联立可得v = 2gR 3,选项B 正确,A 、C 、D 错误.] 8.C [贴近地球表面做圆周运动的线速度为7.9 km/s ,因为卫星在A 点做离心运动,速度可能大于7.9 km/s ,A 项正确;在C 点绕地球做匀速圆周运动的线速度小于7.9 km/s ,欲使卫星在C 点进入圆周运动轨道,卫星需加速,可知C 点的速度一定小于7.9 km/s ,B 项正确;在A 点万有引力的方向与速度方向垂直,则引力功率为零,C 项错误;卫星从C 点到A 点的运动过程中,引力做正功,从B 点到D 点的运动过程中,引力做功为零,可知卫星由C 点运动到A 点万有引力的平均功率大于卫星由B 点运动到D 点万有引力的平均功率,D 项正确.]9.BC [对地球表面的物体有GMm 0R2=m 0g ,得GM =gR 2,若卫星沿半径为3R 的圆周轨道运行时有GMm (3R )2=m v 23R ,运行速度为v = GM 3R =3gR 3,从椭圆轨道的远地点进入圆轨道需加速,因此,卫星在远地点的速度小于3gR 3,A 错误;卫星由近地点到远地点的过程中,万有引力做负功,速度减小,所以卫星经过远地点时速度最小,B 正确;卫星经过远地点时的加速度a =GM (3R )2=g 9,C 正确;卫星经过远地点时加速,可能变轨到轨道半径为3R 的圆轨道上,所以卫星还可能再次经过远地点,D 错误.]。
卫星变轨问题1.变轨问题概述(1)稳定运行卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mm r 2=m v 2r. (2)变轨运行卫星变轨时,先是线速度大小v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.①当卫星减速时,卫星所需的向心力F 向=m v 2r减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变轨.①当卫星加速时,卫星所需的向心力F 向=m v 2r增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变轨.2.实例分析(1)飞船对接问题①低轨道飞船与高轨道空间站对接时,让飞船合理地加速,使飞船沿椭圆轨道做离心运动,追上高轨道空间站完成对接(如图甲所示).①若飞船和空间站在同一轨道上,飞船加速时无法追上空间站,因为飞船加速时,将做离心运动,从而离开这个轨道.通常先使后面的飞船减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度,如图乙所示.丙(2)卫星的发射、变轨问题 如图丙,发射卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMm r 2=m v 2r,进入圆轨道3做圆周运动. 【题型1】如图所示为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( )A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度【题型2】如图所示,我国发射“神舟十号”飞船时,先将飞船发送到一个椭圆轨道上,其近地点M距地面200 km,远地点N距地面340 km.进入该轨道正常运行时,通过M、N点时的速率分别是v1和v2,加速度大小分别为a1和a2.当某次飞船通过N点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km的圆形轨道,开始绕地球做匀速圆周运动,这时飞船的速率为v 3,加速度大小为a3,比较飞船在M、N、P三点正常运行时(不包括点火加速阶段)的速率和加速度大小,下列结论正确的是()A.v1>v3>v2,a1>a3>a2B.v1>v2>v3,a1>a2=a3C.v1>v2=v3,a1>a2>a3D.v1>v3>v2,a1>a2=a3【题型3】我国已掌握“半弹道跳跃式高速再入返回技术”,为实现“嫦娥”飞船月地返回任务奠定基础。
卫星的变轨问题、天体追及相遇问题一、卫星的变轨、对接问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如右图所示。
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道 Ⅰ上。
(2)在A 点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅰ。
(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅰ。
2.卫星的对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.二、变轨前、后各物理量的比较1.航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新圆轨道上的运行速度由v =GM r判断。
(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。
(3)航天器经过不同轨道的相交点时,加速度相等,外轨道的速度大于内轨道的速度。
2.卫星变轨的实质 两类变轨离心运动 近心运动 变轨起因卫星速度突然增大 卫星速度突然减小 受力分析 G Mm r 2<m v 2rG Mm r 2>m v 2r 变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动 3.变轨过程各物理量分析(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v 1、v 3,在轨道Ⅰ上过A 点和B 点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.三、卫星的追及与相遇问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA-ωB)t=2nπ(n=1,2,3,…)。