基于通信的列车控制系统CBTC..
- 格式:ppt
- 大小:2.30 MB
- 文档页数:25
西南交大的课件第1节基于通信的列车控制系统概述《列控车载设备》、《列控地面设备》徐啸明,中国铁道出版社,2007《闭塞与列控》付世善,中国铁道出版社,20061.CBTC的发展前提和前景19世纪中叶出现火车之后,立即就有人研究如何控制火车安全运行问题。
早期,为了保证列车的安全,所以采用人骑马作为列车运行先导,以后又用过在一定距离设置导运人员,挥旗来表达列车可否安全前行。
1930年在英国开始第一次应用横木式带灯光的信号机,而美国在1932年采用在柱子上挂黑球或白球来对列车指示停车或通过。
1941年臂板信号才正式诞生在英国。
1932年莫尔斯电报机发明后,很快就引人到铁路。
1941年英国人提出闭塞电报机专利,并于1951年在英国铁路获得普及应用。
1976年发明了电话,又为铁路应用构成电话闭塞,这种方法至今在特殊情况下,如地震、洪水后等应急时尚有应用。
除了上述两种方法,还有应用路签机和路牌机方法,1979年英国人泰尔(Tyres)发明电气路牌机,即两相邻车站各有一个路牌机,它们之间有电气联接,两站之间有列车运行,一定要领到一个路牌才能作为运行的凭证。
而在平时,在一个时间内只允许有一个路牌从中取出,以此保证行车安全。
1999年英国人韦布和汤姆森( Webb and Thomson)发明了电气路签机,它工作原理与电气路牌机相似,即平时在一组路签机中只能取出一枚路签供运行的列车司机作为行车凭证。
从宏观来分析,列车运行控制系统实际上包含下列几个部分:1. 车站的列车运行控制系统它一般以车站联锁来表达。
在一个车站内,将车站内的道岔,进站、出站、调车信号机,车站主干线、车站股道等三大部分之间按一定联锁关系构成系统,为列车创造行车进路或调车进路,它既要保证行车安全,又要保证行车效率。
2. 区间的列车运行控制系统它是指列车在所有车站与车站之间运行的控制系统,其目的是保证它们的安全运行、提高行车效率和提供信息。
3. 驼峰编组站运行控制系统从逻辑控制使用来区分,上述三方面系统是各自独立的,即它们的硬件系统和软件系统都独立,它们的研究开发、设计、生产、使用等可以彼此不相干。
简述cbtc的原理CBTC(Communication Based Train Control,基于通信的列车控制系统)是一种先进的列车控制系统,与传统的列车信号系统相比,具有许多优势,如提高运营的安全性、准确性和容量。
CBTC系统通过使用无线通信技术和先进的计算机算法,实现了对地铁列车的实时控制和监控。
CBTC系统由车载单元(On-Board Unit,OBU)、地面设备单元(Ground Base Unit,GBU)和控制中心单元(Control Center Unit,CCU)组成。
车载单元安装在列车上,用于接收和发送控制指令以及实时传输列车运行信息。
地面设备单元安装在轨道和车站上,用于检测和传输列车位置信息。
控制中心单元是CBTC 系统的大脑,用于计算列车的运行参数和控制信号。
CBTC系统的工作原理可以简述为以下几个步骤:1. 列车识别和位置检测:车载单元通过无线通信技术与地面设备单元进行通信,获取实时的列车位置信息。
地面设备单元使用传感器和信号发射器来检测列车位置,这些设备通常布置在列车进出站口、弯道和轨道交叉口等关键位置上。
车载单元收到位置信息后,将其反馈给控制中心单元。
2. 列车控制和监控:控制中心单元根据接收到的列车位置信息,计算出列车的速度、加速度和制动力等参数,并生成相应的控制指令。
这些指令通过车载单元发送给列车上的牵引系统和制动系统,实现对列车的实时控制和调度。
同时,控制中心单元还会实时监控列车的运行状态,如速度、距离和车门状态等,以确保列车的安全运行。
3. 列车间通信和协同运行:CBTC系统还支持列车之间的通信和协同运行。
通过车载单元和地面设备单元之间的无线通信,列车可以相互感知和识别,并共享位置和速度等信息。
这就使得列车之间可以实施间隔距离自适应控制,即根据列车前后的距离和速度自动调整安全间隔,从而提高列车运行的稳定性和容量。
4. 系统安全和可靠性:CBTC系统具有高度的安全性和可靠性。
基于通信的列车控制系统(CBTC)摘要:基于通信的列车控制系统CBTC是一种采用先进的通信、计算机、控制技术相结合的列车控制系统。
本文介绍了该系统的结构、特点及功能。
关键词:基于通信列车控制城市轨道交通中,基于通信的列车控制系统CBTC(Communication Based Train Contrl)是一种采用先进的通信、计算机、控制技术相结合的列车控制系统。
典型的基于通信的列车控制系统(CBTC)的结构框图如图所示。
由图可见,整个CBTC系统包括CBTC地面设备(含联锁)和CBTC车载设备,地面和车载设备通过“数据通信网络”连接起来,构成系统的核心。
CBTC设备和ATS设备共同构成了基于通信的移动闭塞ATC系统。
列车控制系统(CBTC)的结构框图一、系统结构西门子的CBTC系统由VICOS、SICAS、TRAINGUARD MT三个子系统组成。
它们分为中央层、轨旁层、通信层、车载层四个层级,分级实现ATC功能。
中央层分为中央级和车站级。
在中央级,实现集中的线路运行控制;在车站级,为车站控制和后备模式的功能,提供给车站操作员工作站(LOW)和列车进路计算机(TRC)。
轨旁层沿着线路分布,由SICAS计算机联锁、TRAINGUARD MT系统、信号机、计轴器和应答器等组成,共同执行所有的联锁和轨旁ATP功能。
通信层在轨旁和车载设备之间提供连续式或点式通信。
车载层完成TRAINGUARD MT的车载ATP和ATO功能。
二、系统功能系统的功能包括ATS功能、联锁功能、ATP/ATO功能、列车检测功能、试车线功能、培训和模拟功能。
1.ATS功能ATS除了自动进路排列(ARS)功能、自动列车调整(ATR)功能、列车监督和追踪(TMT)、时刻表(TIT)、控制中心人机接口(HMI)和报告、报警与文档等主要功能外,还改进和增加了以下功能:在CTC通信级使用双向通信通道;在ATS后备模式下车站级可以输入车次号;适应移动闭塞的控制要求;TRC(列车进路计算机)取代RTU的自动进路排列功能;提供独立的冗余局域网段;在ATS显示列车状态信息;与MCS(主控系统)的接口;与车辆段联锁的接口;提供操作日志(含故障信息)的归档功能;设两个控制中心;车辆段调度员ATS工作站进行出库列车自动预先通知,在规定时间无列车在车辆段转换轨时自动报警。
简述CBTC的基本原理及其应用1. 概述CBTC(Communication-Based Train Control)是一种基于通信的列车控制系统,采用了现代化的通信技术和计算机技术,用于实现列车的自动控制和监控。
CBTC不仅可以提高铁路运输的安全性和效率,还能提供更高水平的列车运行灵活性和可靠性。
本文将简要介绍CBTC的基本原理以及其应用领域。
2. CBTC的基本原理CBTC系统由车载设备和地面设备两部分组成,通过无线通信进行数据传输和指令下达。
其基本原理包括以下几个方面:2.1. 区间划分CBTC系统将线路划分为多个区间,每个区间包含一个或多个用于监控和控制列车运行的设备。
实时监测每个区间的信号状态和列车位置,以保持列车之间的安全间距。
2.2. 列车定位通过车载设备和地面设备之间的无线通信,CBTC系统可以实时获取列车的位置信息。
车载设备利用传感器获取列车的坐标和速度等数据,并传输给地面设备进行处理和记录。
2.3. 数据处理和分析地面设备通过接收和处理来自车载设备传输的数据,实时计算列车的运行状态和预测列车的行为。
根据列车位置和速度等信息,地面设备可以动态调整列车的运行模式,以确保列车的安全和效率。
2.4. 通信与指令下达CBTC系统通过无线通信传输数据和指令,地面设备可以向车载设备发送运行指令,包括限速命令、信号控制等。
车载设备接收到指令后,根据指令进行相应的列车运行控制。
这种双向通信保证了列车与地面系统的实时互动。
3. CBTC的应用领域CBTC系统广泛应用于各种铁路运输环境中,具有以下几个主要应用领域:3.1. 地铁和轻轨系统CBTC系统在地铁和轻轨系统中的应用最为广泛。
由于CBTC能够提供更高水平的列车运行灵活性和可靠性,因此可以帮助地铁和轻轨系统提高运行效率,并减少拉车间距,增加运输能力。
3.2. 高速铁路CBTC系统也被广泛应用于高速铁路系统。
通过实时监测列车运行状态和调整列车运行模式,CBTC可以提高高速列车的安全性和稳定性。
简述CBTC的基本原理及应用1. 什么是CBTC?CBTC(Communications-Based Train Control),即基于通信的列车控制系统,是一种先进的铁路列车控制系统。
与传统的列车控制系统相比,CBTC采用了更先进的通信技术,并能够提供更高的列车运行安全性和运行效率。
2. CBTC的基本原理CBTC的基本原理是通过无线通信技术实现列车之间、列车与基站之间的实时双向通信,从而实现列车的精确定位和安全控制。
CBTC系统主要由以下几个核心组件组成:•车载单元(On-Board Unit,OBU):在每辆列车上安装的CBTC系统的一部分,用于接收和发送控制信息,并实现列车的自动操作。
•车站设备(Station Equipment):包括基站设备和区域控制器,用于与车载单元进行通信,并对列车进行控制和监控。
•通信信道:CBTC系统采用无线通信技术,通过专用的通信信道传输控制信息。
•位置检测系统:通过安装在列车和轨道上的位置检测设备,实现对列车位置的精确定位。
•控制算法:CBTC系统使用先进的控制算法来实时计算列车的运行速度和位置,确保列车安全运行。
CBTC的基本工作流程如下:1.列车通过位置检测设备实时获取位置信息,并将数据传输给车载单元。
2.车载单元根据位置信息和控制算法,计算列车的运行速度和位置,并发送给车站设备。
3.车站设备接收到车载单元发送的数据,根据实时的运行情况,对列车进行控制和监控。
4.列车根据车载单元发送的指令,实现自动操作,包括加速、减速、停车等操作。
3. CBTC的应用CBTC系统在现代铁路运输中得到了广泛的应用,主要包括以下几个方面:3.1. 提高运行效率通过CBTC系统,铁路运输可以实现更高的运行效率。
由于CBTC系统能够实时计算列车的运行速度和位置,列车之间的安全间隔可以大大缩短,从而可以提高铁路线路的运行能力。
同时,CBTC系统还可以实现列车的自动操作,减少了人为因素对列车运行的影响,进一步提高了运行效率。
简述CBTC技术摘要:移动闭塞是基于通信技术的列车控制(简称CBTC)系统,该系统是利用通信技术实现“车地通信”并实时地传递“列车定位”信息。
系统通过建立车地之间连续、双向、高速的通信,使列车命令和状态可以在车辆和地面之间进行实时可靠的交换,并确定列车的准确位置及列车间的相对距离,保证列车的安全间隔。
本文阐述了轨道电路的缺点及CBTC技术的特性。
关键词:移动闭塞CBTC轨道电路CBTC起源及特性随着计算机技术、通信技术、自动控制技术的发展,综合以上技术产生了“基于通信的列车控制系统”(Communication-based Train Control,简称CBTC)。
CBTC相比传统的铁路信号系统有着诸多特性,比如:1、以无线通信系统代替,减少电缆铺设、轨旁设备,降低维护成本。
2、可以实现车辆与控制中心的双向通信,大幅度提高了列车区间通过能力。
3、信息传输流量大、效率高、速度快,容易实现移动自动闭塞系统。
4、容易适应各种车型、不同车速、不同运量、不同牵引方式的列车,兼容性强。
5、可以将信息分类传输,集中发送和集中处理,提高调度中心工作效率。
6、便于既有线改造升级。
CBTC技术组成CBTC技术包括:1、无线通信技术,2、移动闭塞技术,3列车定位技术。
由于CBTC是基于无线通信的列车控制系统,自然离不开通信技术的支持。
无线通信的种类很多,常见的有基于OFDM(正交频分复用技术)通信、扩展频谱通信、跳频技术、WLAN(无线局域网)技术。
移动闭塞是实现CBTC的关键技术之一,CBTC是这种闭塞方式的应用系统。
它与固定闭塞相比,其最显著的特点是取消了以信号机分隔的固定闭塞区间。
列车在线路上运营的间隔距离由列车在线路上的实际位置和运行情况确定,闭塞区间随列车的形势,不断变化,故称为移动闭塞。
列车定位技术有很多种:1、轨道电路定位,2、计轴定位,3信标定位(分有源、无源两种,往往两种会同时使用),4、多普勒雷达测速定位等定位方式。