最大气泡压力法测定溶液的表面张力
- 格式:ppt
- 大小:211.50 KB
- 文档页数:16
最大气泡发测定溶液表面张力实验名称:最大气泡法测定溶液表面张力实验目的:1. 学习和掌握气泡法测定液面张力的实验原理和方法;2. 了解表面张力相关概念和公式;3. 掌握实验数据处理和分析方法。
实验原理:表面张力是液体表面所受到的分子间的一种力,它使液面趋于最小面积的状态。
根据杨氏定律,液体表面张力F的大小可表示为:F = γL其中γ为表面张力系数,L为液体表面的周长。
最大气泡法测定溶液表面张力,是将一根玻璃管塞在一溶液中,管口抬离液面后,通过吹气法在玻璃管内形成一个气泡,并逐渐加大压力,当气泡从玻璃管中抬出时,管口压力减小至最小值,并变为固定值。
此时气泡直径、管口边缘长度等数据均可用来计算出溶液的表面张力。
实验步骤:1.准备一根内径约为0.7~1mm的直玻璃管,两端均作过热处理并制成吸管型。
吸管要求口径尽量小,以便形成小的气泡。
2.用去离子水清洗玻璃管,再用酒精涂洗干净。
3.实验表面张力:(1)加入一定量的去离子水到三个试管中,分别加入0.1~0.3mL的酒精、苯、正丁醇。
(2)用吸球吸取被测溶液,直到牢固地充满了玻璃管,放在液面上,使液面把玻璃管口罩住,然后用手握住吸球以上提管子,使玻璃管口稍稍浮起,吸球松开,保证玻璃管内无气泡,玻璃管内液面刚好在液面之上。
(3)在玻璃管外侧,用一长管膜压力,直到液面在玻璃管上方,形成一气泡。
此时,按膜的位置调整气泡直径和液面周长的比值为0.9左右,再用一根呈45度角的玻璃管口吹气,增加气泡直径,同时测量管口长度、气泡直径和液面间的高度差,记录数据。
(4)重复2-3步骤不少于三次,取平均值,计算表面张力。
数据计算:1. 气泡直径d的平均值2. 玻璃管口边缘长度l的平均值3. 液面间高度差h的平均值4. 比值P = l/d5. 表面张力系数γ = πdP(ρgh+2ηv/d)/2实验结果:被测液体 | 气泡直径d/mm | 玻璃管口边长l/mm | 液面间高度差h/mm | P | γ/mN·m-1:---:|:---:|:---:|:---:|:---:|:---:去离子水 | 3.51 | 14.05 | 161.8 | 3.2 | 72.11酒精 | 2.12 | 8.73 | 116.5 | 4.11 | 21.44苯 | 2.40 | 9.57 | 197.6 | 4.0 | 34.74正丁醇 | 2.82 | 11.38 | 168.5 | 4.03 | 23.21结论:根据实验结果,不同液体的表面张力不同。
物理化学实验最大气泡压力法测定溶液表面张力C210 2010-04-12T=286.15K P=85.02kPa一、实验目的1.掌握最大气泡法测定溶液表面张力的原理和方法2.测水溶液的表面张力并计算定不同浓度正丁醇计算吸附量3.加深对表面张力、表面自由能、表面张力和吸附量关系的理解二、实验原理处于溶液表面的分子,受到不平衡的分子间力的作用而具有表面张力s.气泡最大压力法测定表面张力装置见实物;实验中通过滴水瓶滴水抽气使得体系压力下降,大气压与体系压力差△p逐渐把毛细管中的液面压至管口,形成气泡。
如果毛细管半径很小,则形成的气泡基本上是球形的;当气泡开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时曲率半径R和毛细管半径r相等,曲率半径达最小值,根据拉普拉斯公式得:附加压力达最大值ΔP max =σ/r min。
气泡进一步长大,R变大,附加压力则变小,直到气泡逸出。
加入表面活性物质时溶液的表面张力会下降,溶质在表面的浓度大于其在本体的浓度,此现象称为表面吸附现象;单位溶液表面积上溶质的过剩量称为表面吸附量Γ, Γ=-(c/RT)*( dσ/dc).对可形成单分子层吸附的表面活性物质,溶液的表面吸附量Γ与溶液本体浓度c之间的关系符合朗格谬尔吸附等温式: Γ=Γ∞*kc/1+kc朗格谬尔吸附等温式的线性形式为: c/Γ=c/Γ∞+1/kΓ∞Γ∞为饱和吸附时,单位溶液表面积上吸附的溶质的物质的量,则每个溶质分子在溶液表面上的吸附截面积为:A m=1/(N A*Γ∞)三、仪器与试剂恒温槽装置;数字式微压差计;抽气瓶l个;表面张力测定仪烧杯(1000mL);T形管1个;电导水;正丁醇(A.R.)及其不同浓度的标准溶液;四、实验步骤1.仪器常数的测定将表面张力测定仪清洗干净;在干净的表面张力测定仪中装入电导水,使毛细管上端塞子塞紧时,毛细管刚好与液面垂直相切;抽气瓶装满水,连接好后旋开下端活塞使水缓慢滴出;控制流速使气泡从毛细管平稳脱出(每个气泡4-6秒),记录气泡脱出瞬间数字微压差计的最大数值,取三次并求平均值。
最⼤泡压法测定溶液的表⾯张⼒(泡压法、滴重法、⽑细管升⾼法)表⾯张⼒的测定——最⼤⽓泡压⼒法、滴重法、⽑细管升⾼法⼀、实验原理:1.最⼤⽓泡压⼒法测定表⾯张⼒(装置如下图所⽰):其中,B是管端为⽑细管的玻璃管,与液⾯相切。
⽑细管中⼤⽓压为P0。
试管A中⽓压为P,当打开活塞E时,C中的⽔流出,体系压⼒P逐渐减⼩,逐渐把⽑细管液⾯压⾄管⼝,形成⽓泡。
当⽓泡在⽑细管⼝逐渐长⼤时,其曲率半径逐渐变⼩,⽓泡达最⼤时便会破裂。
此时⽓泡的曲率半径最⼩,即等于⽑细管半径r,⽓泡承受的压⼒差也最⼤△P=P0-P=2γ/r 此压⼒差可由压⼒计D读出,故γ=r△P/2若⽤同⼀⽀⽑细管测两种不同液体,其表⾯张⼒分别为γ1、γ2,压⼒计测得压⼒差分别为△P1、△P2则:γ1/γ2=△P1/△P2若其中⼀种液体的γ已知,例如⽔,则另⼀种液体的表⾯张⼒可由上式求得。
2.⽑细管⾝升⾼法(装置如下图所⽰):⽑细管法测定表⾯张⼒仪器⽑细管表⾯张⼒⽰意图当⼀根洁净的,⽆油脂的⽑细管浸进液体,液体在⽑细管内升⾼到h⾼度。
在平衡时,⽑细管中液柱重量与表⾯张⼒关系为:2πσrcosθ=πr2gdhσ=gdhr/2cosθ(1)如果液体对玻璃润湿,θ=0,cosθ=1(对于很多液体是这样情况),则:σ=gdhr/2 (2)式中σ为表⾯张⼒;g为重⼒加速度;d为液体密度;r为⽑细管半径。
上式忽略了液体弯⽉⾯。
如果弯⽉⾯很⼩,可以考虑为半球形,则体积应为:πr3 -2/3πr3 =1/3πr3从(2)可得:σ=gdr/2(h+1/3r)(3)更精确些,可假定弯⽉⾯为⼀椭圆球。
(3)式应变为:σ=gdhr/2(1+1/3(r/h)-0.1288(r/h)2+0.1312(r/h)3)(4)3. 滴重法(装置如右图所⽰):从图中可看出,当达到平衡时,从外半径为r的⽑细管滴下的液体重量应等于⽑细管周边乘以表⾯张⼒,即:mg=2πσr (5)式中m为液滴质量;r为⽑细管外半径;σ为表⾯张⼒;g为重⼒加速度。
实验七 溶液表面张力的测定——最大气泡压力法一. 实验目的1. 用最大气泡法测定不同浓度乙醇溶液的表面张力。
2. 了解表面张力的性质, 表面自由能的意义以及表面张力和吸附的关系。
3. 学会镜面法作切线的方法。
二. 实验原理用本法测定[乙醇, 水]溶液的数据对[σ, c], 作图将c-σ曲线在不同浓度的斜率 T 代入吉布斯等温吸附式:Γ=﹣c RT c σ∂⎛⎫ ⎪∂⎝⎭T 求出相应的吉布斯吸附量Γ;按朗格茂尔等温吸附变形公式:c 1c α∞∞=+ΓΓΓ C/Γc-C 直线斜率tg β求出饱和吸附量 , 进而得出乙醇分子横切面积S 和分子长度 , 结合直线截距得出吸附系数α:∞Γ=(tg β)-1以上个式中, c 为浓度;T 为绝对温度(K );σ为表面张力;Γ为吉布斯吸附量;M 为溶质摩尔质量;ρ为溶质密度;S 为分子截面积;δ为分子长;α为吸附系数;NA 为阿伏伽德罗数(6.02×1023/mol );R 为气体常数。
为了求以上参数, 关键是测σ。
表面张力及界面张力, 矢量。
源于凝聚相界面分子受力不平衡, 意为表面的单位长度收缩力。
σ也是在个条件下凝聚系表面相得热力学强度性质, 如果恒温、恒压下扩大单位表面积所需的可逆功, 故亦称为表面自由焓。
1. σ与凝聚相和表面共存接触相种类有关, 还与T,P 有关, 与凝聚相纯度和杂志种类有关。
浓度升高, 溶液的σ有增有减, 随溶质、溶剂而异, 表面活性剂是两亲分子, 他们的水溶液σ随浓度升高先剧降, 后微升, 在渐趋稳定。
σ随c 而变化的本质是溶液表面浓度对体相浓度的偏离, 此现象称为表面吸附。
表面吸附量Γ与浓度有关, 用吉布斯等温方程求出 为σ-c 曲线在指定浓度的斜率。
<0, Γ>0为正吸附, 表面浓度较体浓度高, 达饱和吸附时, Γ趋于饱和吸附量 , 此时两亲分子在溶液表面处于高度有序的竖立密集, 形成单分子膜。
,2. 若将兰格缪尔等温吸附式中的吸附量赋予吉布斯吸附量的特定意义, 则可从其变形式求出 设分子吸附层厚δ, δ即两亲分子长。
(情绪管理)最大气泡压力法测定溶液的表面张力最大气泡压力法测定溶液的表面张力壹、实验目的1.掌握最大气泡压力法测定表面张力的原理和技术。
2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。
二、基本原理在壹个液体的内部,任何分子周围的吸引力是平衡的。
可是在液体表面表面层中,每个分子都受到垂直于且指向液体内部的不平衡力。
所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能,通常把增大壹平方米表面所需的最大功A或增大壹平方米所引起的表面自由能的变化△G,称为单位表面的表面能,其单位为J·m-1;而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N·m-1。
如欲使液体表面面积增加ΔS时,所消耗的可逆功A应该是:壹A=ΔG=σΔS(1)液体的表面张力和温度有关,温度愈高,表面张力愈小。
根据能量最低原则,若溶质能降低溶剂的表面张力,则表面层中溶质的浓度应比溶液内部的浓度大,如果所加溶质能使溶剂的表面张力升高,那么溶质在表面层中的浓度应比溶液内部的浓度低。
这种表面浓度和溶液内部浓度不同的现象叫做溶液的表面吸附。
在壹定的温度和压力下,溶液表面吸附溶质的量和溶液的表面张力和加入的溶质量(即溶液的浓度)有关,它们之间的关系可用吉布斯(Gibbs)公式表示:Γ=-()T(2)式中:Γ为吸附量(mol·m-1);σ为表面张力(J·m-1);T为绝对温度(K);c为溶液浓度(mol.L -1);R为气体常数(8.314J.K—I·mol-1)。
()T表示在壹定温度下表面张力随溶液浓度而改变的变化率。
如果σ随浓度的增加而减小,也即()T<0,则Γ>0,此时溶液表面层的浓度大于溶液内部的浓度,称为正吸附作用。
如果σ随浓度的增加而增加即()T>0,则Γ<0,此时溶液表面层的浓度小于溶液本身的浓度,称为负吸附作用。
最大气泡压力法测定溶液的表面张力一、实验目的1.掌握最大气泡压力法测定表面张力的原理和技术。
2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。
二、基本原理在一个液体的内部,任何分子周围的吸引力是平衡的。
可是在液体表面表面层中,每个分子都受到垂直于并指向液体内部的不平衡力。
所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能,通常把增大一平方米表面所需的最大功A 或增大一平方米所引起的表面自由能的变化△G,称为单位表面的表面能,其单位为J ·m -1;而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N ·m -1。
如欲使液体表面面积增加ΔS 时,所消耗的可逆功A 应该是:一A =ΔG =σΔS (1)液体的表面张力与温度有关,温度愈高,表面张力愈小。
根据能量最低原则,若溶质能降低溶剂的表面张力,则表面层中溶质的浓度应比溶液内部的浓度大,如果所加溶质能使溶剂的表面张力升高,那么溶质在表面层中的浓度应比溶液内部的浓度低。
这种表面浓度与溶液内部浓度不同的现象叫做溶液的表面吸附。
在一定的温度和压力下,溶液表面吸附溶质的量与溶液的表面张力和加入的溶质量(即溶液的浓度)有关,它们之间的关系可用吉布斯(Gibbs)公式表示: Γ=-RT c (c∂∂σ)T (2) 式中:Γ为吸附量(mol ·m -1);σ为表面张力(J ·m -1);T 为绝对温度(K);c 为溶液浓度(mol .L -1);R 为气体常数(8.314J .K —I ·mol -1)。
(c∂∂σ)T 表示在一定温度下表面张力随溶液浓度而改变的变化率。
如果σ随浓度的增加而减小,也即(c∂∂σ)T <0,则Γ>0,此时溶液表面层的浓度大于溶液内部的浓度,称为正吸附作用。
如果σ随浓度的增加而增加即(c ∂∂σ)T >0,则Γ<0,此时溶液表面层的浓度小于溶液本身的浓度,称为负吸附作用。
最大气泡法测定液体表面张力目的要求了解表面张力的性质,表面自由能的意义以及表面张力和吸附的关系掌握用最大泡压法测定表面张力的原理和技术测定不同浓度乙醇水溶液的表面张力,计算表面吸附量和乙醇分子的横截面积实验原理1.在指定的温度下,纯液体的表面张力是一定的,一旦在液体中加入溶质成溶液时情况就不同了,溶液的表面张力不仅与温度有关,而且也与溶质的种类,溶液浓度有关。
这是由于溶液中部分溶质分子进入到溶液表面,是表面层分子组成发生了改变,分子间引力起了变化,因此表面张力也随着改变,根据实验结果,加入溶质以后在表面张力发生改变的同时还发生溶液表面层的浓度与内部浓度有所差别,有些溶液表面层浓度大于溶液内部浓度,有些恰恰相反,这种现象称为溶液的表面吸附作用。
实验原理按吉布斯吸附等温式:c d 1 d 1 RT dc RT d ln c式中:Г-代表溶质在单位面积表面层中的吸附量molm-2C-代表平衡时溶液浓度molL-1R1-气体常数8.314Jmol-1K-1T-吸附时的温度K。
从1式可看出,在一定温度时,溶液表面吸附,与平衡时溶液浓度C和表面张力随浓度变化率成正比关系。
实验原理当c T <0时,Г>0表示溶液表面张力随浓度增加而降低,则溶液表面发生正吸附,此时溶液表面层浓度大于溶液内部浓度。
当c >0时,Г<0表示溶液表面张力随浓度增加而增T 加,则溶液表面发生负吸附,此时溶液表面层浓度小于溶液内部浓度。
我们把能产生显著正吸附的物质即能显著降级溶液表面张力的物质,称为表面活性物质。
本实验用表面活性物质乙醇配制成一系列不同浓度的水溶液,分别测定这些溶液的表面张力σ,然后以σ对lnC作图得一曲线,求曲线上某一点的斜率可计算相当于该点浓度时溶液的表面吸附量。
实验原理2.本实验测定各溶液的表面张力采用气泡最大压力法,此法原理是当毛细管与液面接触时,往毛细管内加压或在溶液体系减压则可以在液面的毛细管出口处形成气泡。