江西省赣州市信丰县信丰中学2017-2018学年高三数学一课一练试题一 Word版含答案
- 格式:doc
- 大小:452.51 KB
- 文档页数:4
信丰中学2016级高二年级上学期第一次月考数学试题命题人:胡上生 肖照慧 曹丽萍 审题人:杨小员 郭玉林 谢路遥一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1。
已知四个条件:①0b a ;②0a b ;③0a b ;④0a b 。
能推出11a b 成立的有( )A .1个B .2个C .3个D .4个2。
已知等差数列{}n a 的前n 项和为n S ,若4518a a =-,则8S =( )A . 18B .36C .54D .723。
若直线()()2130a x a y ++--=与直线()()12320a x a y -+++=互相垂直,则a 的值为( )A . 1B . —1 C. 1± D .32-4。
直线20mx y m --+=恒过定点A ,若直线l 过点A 且与220x y +-=平行,则直线l 的方程为( )A 。
240x y +-= B.240x y ++= C 。
230x y -+= D 。
230x y --=5。
已知点(),P x y 的坐标满足条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩,则22(2)x y +-的最小值为( )A。
8 CD.16.若ABC ∆的内角A B C 、、的对边分别为a b c 、、,且sin sin sin sin a A c C C b B +=,则B 等于()A.6πB.4πC.3πD 。
34π7。
已知向量(,1)a λ=,(2,1)b λ=+,若a b a b +=-,则实数λ的值为( )A 。
—1B 。
1C 。
-2 D.28。
若直线0x y +=与圆22()1x y a +-=相切,则a 的值为( )A 。
1B 。
1±CD.9.若直线1(0,0)xya b a b +=>>过点(1,1),则a b +的最小值等于 ( )A.2 B 。
3 C.4 D.510。
信丰中学2017-2018学年第一学期高三数学(理科)周考一试题命题人:温日明审题人:高三数学备课组一.选择题:本大题共12小题,每小题5分,共60分.1.下列说法中,正确的个数是()①“若a2<b2,则a<b”的否命题为假命题;②“全等三角形面积相等”的逆命题为真命题;③“若a>1,则ax2﹣2ax+a+3>0的解集为R”的逆否命题为假命题;④已知a,b,m∈R,命题“若am2<bm2,则a<b”为真命题;⑤“x>3”是“x>2”的必要不充分条件.A.1个B.2个C.3个D.4个2.已知A={x|x ≥k},B={x|31x+<1},若A⊆B,则实数k的取值范围为()A.(1,+∞)B.(﹣∞,﹣1)C.(2,+∞)D.[2,+∞)3.若4cos5α=-,α是第三像限的角,则1tan21tan2αα+-=()A.﹣B.C.2 D.﹣24.已知a>0,b>0,若不等式313ma b a b--≤+恒成立,则m的最大值为()A.4 B.16 C.9 D.35. 设456log12,log15,log18a b c===,则()A.c b a>>B.b c a>>C.a c b>>D.a b c>>6.已知函数f(x )=sin (2x+12π), f ′(x )是f (x )的导函数,则函数y=2f (x)+f ′(x )的一个单调递减区间是( ) A .[,] B .[﹣,] C .[﹣,]D .[﹣,]7.在下面的四个图像中,其中一个图像是函数f(x )=13x 3+ax 2+(a 2﹣1)x+1(a∈R)的导函数y=f ′(x )的图像,则f (1)等于( )A .B .C .﹣D .﹣或8.已知函数f (x)=sin (ωx+φ)(ω>0,|φ|<2π)的最小正周期为π,且其图像向左平移3π个单位后得到函数g(x )=cosωx 的图像,则函数f (x )的图像( )A .关于直线x=对称B .关于直线x=对称C .关于点(,0)对称D .关于点(,0)对称9.设x ,y 满足约束条件4312x y xx y ≥⎧⎪≥⎨⎪+≤⎩,则231x y x +++的取值范围是()A .[1,5]B .[2,6]C .[2,10]D .[3,11]10.已知定义在(0,+∞)上的单调函数f(x ),对∀x∈(0,+∞),都有f [f (x )﹣lnx]=e+1,则函数g (x )=f (x )﹣ f ′(x )﹣e 的零点所在区间是( )A .(1,2)B .(2,3)C .(,1)D .(0,) 11。
乙甲963502499872641130信丰中学2017届高三下学期周考九文科数学试题一、选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{320}A x N x =∈->,2{4}B x x =≤, 则AB =( )A 。
{21}x x -≤<B 。
{2}x x ≤ C. {0,1} D. {1,2} 2.若i (12i)i a t +=+⋅(i 为虚数单位,,a t R ∈),则t a +等于( )A 。
1- B. 0 C 。
1 D. 23.某人到甲、乙两市各7个小区调查空置房情况,调查得到的小区空置房的套数绘成了如图的茎叶图,则调查中甲市空置房套数的中位数与乙市空置房套数的中位数之差为( ) A. 4 B 。
3 C. 2 D 。
1 4.命题“1x ∀>,11()22x<”的否定是( ) A. 1x ∀>,11()22x≥ B 。
1x ∀≤,11()22x ≥ C. 01x ∃>,011()22x ≥D. 01x ∃≤,011()22x ≥5.执行如右图程序框图,输出的S 为( )A 。
17 B. 27 C 。
47 D 。
676.已知函数()sin f x x x =-,则不等式(2)(12)0f x f x ++-< 的解集是( )A. 1(,)3-∞- B. 1(,)3-+∞ C 。
(3,)+∞ D 。
(,3)-∞7.已知等腰梯形ABCD 中AB //CD ,24,60AB CD BAD ==∠=︒, 双曲线以,A B 为焦点,且经过,C D 两点,则该双曲线的离心率 等于( )A 。
23C 。
531 8.已知直线,m n 与平面,,αβγ满足,,,m n n αβαβαγ⊥=⊥⊂,则下列判断一定正确的是( )A 。
//,m γαγ⊥B 。
//,n βαγ⊥ C. //,βγαγ⊥ D. ,m n αγ⊥⊥ 9.《九章算术》卷第六《均输》中,有问题“今有竹九节,下三节容量四升,上四节容量三升.问中间..二节欲均容,各多少?”其中“欲均容"的意思是:使容量变化均匀,即由下往上均匀变细.在这个问题中的中间..两节容量和是( )DC B AA. 61166升 B 。
2017-2018学年江西省赣州市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,在每一小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣x﹣2≤0,x∈R},B={x|lg(x+1)<1,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}2.已知复数z=1+i,则=()A.2 B.﹣2 C.2i D.﹣2i3.执行如图的程序框图(N∈N*),那么输出的p是()A.B.C.D.4.离心率为2的双曲线E的一个焦点到一条渐近线的距离为1,则E的标准方程可以是()A.3x2﹣y2=1 B.=1 C.x2﹣3y2=1 D.5.已知数列{a n}满足:a1=2,且对任意n,m∈N*,都有a m+n=a m•a n,S n是数列{a n}的前n项和,则=()A.2 B.3 C.4 D.56.设点(x,y)在平面区域E内,记事件A“对任意(x,y)∈E,有2x﹣y≥1”,则满足事件A发生的概率P(A)=1的平面区域E可以是()A.B.C.D.7.已知函数y=f(x)的图象为如图所示的折线ABC,则dx=()A.2 B.﹣2 C.1 D.﹣18.甲、乙、丙3名教师安排在10月1日至5日的5天中值班,要求每人值班一天且每天至多安排一人.其中甲不在10月1日值班且丙不在10月5日值班,则不同的安排方法有()种.A.36 B.39 C.42 D.459.在三棱锥P﹣ABC中,底面ABC是等腰三角形,∠BAC=120°,BC=2,PA⊥平面ABC,若三棱锥P﹣ABC的外接球的表面积为8π,则该三棱锥的体积为()A.B.C.D.10.已知抛物线C:y2=8x的焦点为F,准线为l,过F的直线与C交于A、B两点,与l交于点P,若|AF|=3|FB|,则|PF|=()A.7.5 B.7 C.8.5 D.811.某几何体的主视图和左视图如图(1),它的俯视图的直观图是矩形O1A1B1C1如图(2),其中O1A1=6,O1C1=2,则该几何体的侧面积为()A.48 B.64 C.96 D.12812.对于函数f(x),g(x)满足:对任意x∈R,都有f(x2﹣2x+3)=g(x),若关于x的方程g(x)+sin x=0只有5个根,则这5个根之和为()A.5 B.6 C.8 D.9二、填空题:本大题共4小题,每小题5分1,3,5.13.如图,在边长为2的正六边形ABCDEF中,则=______.14.设θ为第二象限角,若,则sinθ+cosθ=______.15.在一组样本数据(x1,y1),(x2,y2),…,(x6,y6)的散点图中,若所有样本点(x i,y i)(i=1,2,…,6)都在曲线y=bx2﹣附近波动.经计算x i=11,y i=13,x i2=21,则实数b的值为______.16.在等差数列{a n}中,首项a1=3,公差d=2,若某学生对其中连续10项迸行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为______.三、解答题:解答须写出文字说明、证明过程和演算步骤.17.在△ABC,角A、B、C所对的边分别为a、b、c,已知cosB+(cosA﹣2sinA)cosC=0.(Ⅰ)求cosC的值;(Ⅱ)若a=,AB边上的中线CM=,求sinB及△ABC的面积.18.某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,分别测出它们的高度如下(单位:cm)甲:19 20 21 23 25 29 32 33 37 41乙:10 24 26 30 34 37 44 46 47 48(Ⅰ)用茎叶图表示上述两组数据,并对两块地抽取树苗的高度进行比较,写出两个统计结论;(Ⅱ)苗圃基地分配这20株树苗的栽种任务,小王在苗高大于40cm的5株树苗中随机的选种3株,记X是小王选种的3株树苗中苗高大于45cm的株数,求X的分布列与数学期望EX.19.在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°.(Ⅰ)求证:平面A1BD⊥平面A1AC;(Ⅱ)若BD=D=2,求平面A1BD与平面B1BD所成角的大小.20.设椭圆C:=1(a>b>0)的焦点F1,F2,过右焦点F2的直线l与C相交于P、Q两点,若△PQF1的周长为短轴长的2倍.(Ⅰ)求C的离心率;(Ⅱ)设l的斜率为1,在C上是否存在一点M,使得?若存在,求出点M的坐标;若不存在,说明理由.21.设函数f(x)=e x+ln(x+1)﹣ax.(Ⅰ)当a=2时,证明:函数f(x)在定义域内单调递增;(Ⅱ)当x≥0时,f(x)≥cosx恒成立,求实数a的取值范围.请考生在第22、23、24两题中任选一题做答[选修4-1:几何证明选讲]22.如图,在正△ABC中,点D、E分别在边BC,AC上,且BD=BC,CE=CA,AD,BE相交于点P.求证:(Ⅰ)四点P、D、C、E共圆;(Ⅱ)AP⊥CP.[选修4-4:坐标系与参数方程]23.在平面直角坐标系中,已知曲线C1:=1(0<a<2),曲线C2:x2+y2﹣x﹣y=0,Q是C2上的动点,P是线段OQ延长线上的一点,且P满足|OQ|•|OP|=4.(Ⅰ)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,化C2的方程为极坐标方程,并求点P的轨迹C3的方程;(Ⅱ)设M、N分别是C1与C3上的动点,若|MN|的最小值为,求a的值.[选修4-5:不等式选讲]24.设a、b为正实数,且+=2.(1)求a2+b2的最小值;(2)若(a﹣b)2≥4(ab)3,求ab的值.2017-2018学年江西省赣州市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每一小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣x﹣2≤0,x∈R},B={x|lg(x+1)<1,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【考点】交集及其运算.【分析】分别解不等式,再求它们的交集即可.【解答】解:集合A={x|x2﹣x﹣2≤0,x∈R}=[﹣1,2],∵lg(x+1)<1=lg10,∴﹣1<x<9,∴B={0,1,2,3,4,5,6,7,8},∴A∩B={0,1,2},故选:D2.已知复数z=1+i,则=()A.2 B.﹣2 C.2i D.﹣2i【考点】复数代数形式的乘除运算.【分析】把复数z=1+i代入要求的式子,应用复数相除的法则化简得到结果.【解答】解:∵复数z=1+i,∴===2,故选:A.3.执行如图的程序框图(N∈N*),那么输出的p是()A.B.C.D.【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量p的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体,k=1,p=A11,满足继续循环的条件,k=2;第二次执行循环体,k=2,p=A22,满足继续循环的条件,k=3;第三次执行循环体,k=3,p=A33,满足继续循环的条件,k=4;…第N次执行循环体,k=N,p=A N N,满足继续循环的条件,k=N+1;第N+1次执行循环体,k=N+1,p=A N+1N+1,不满足继续循环的条件,故输出的p值为A N+1N+1,故选:C4.离心率为2的双曲线E的一个焦点到一条渐近线的距离为1,则E的标准方程可以是()A.3x2﹣y2=1 B.=1 C.x2﹣3y2=1 D.【考点】双曲线的简单性质.【分析】对照选项,可设双曲线的方程为﹣=1(a,b>0),运用离心率公式和点到直线的距离公式,解方程可得a,b,进而得到双曲线的方程.【解答】解:可设双曲线的方程为﹣=1(a,b>0),由题意可得e==2,一个焦点(c,0)到一条渐近线y=x的距离为1,可得=b=1,又c2=a2+1,解得a=,即有双曲线的方程为﹣y2=1.故选:A.5.已知数列{a n}满足:a1=2,且对任意n,m∈N*,都有a m+n=a m•a n,S n是数列{a n}的前n项和,则=()A.2 B.3 C.4 D.5【考点】数列的求和.【分析】通过在a m+n=a m•a n中令m=1,结合a1=2数列{a n}是首项、公比均为2的等比数列,进而计算可得结论.【解答】解:∵对任意n,m∈N*,都有a m+n=a m•a n,∴对任意nN*,都有a n+1=a1•a n,又∵a1=2,∴a n+1=2a n,∴数列{a n}是首项、公比均为2的等比数列,∴S n==2(2n﹣1),∴==5,故选:D.6.设点(x,y)在平面区域E内,记事件A“对任意(x,y)∈E,有2x﹣y≥1”,则满足事件A发生的概率P(A)=1的平面区域E可以是()A.B.C.D.【考点】几何概型.【分析】根据条件若事件A发生的概率P(A)=1,则等价为面区域E都在直线2x﹣y=1的下方区域即可.【解答】解:若满足事件A发生的概率P(A)=1,则2x﹣y≥1对应的平面区域在平面区域E内,A.平面区域E不都在直线2x﹣y=1的下方区域,不满足条件.B.平面区域E都在直线2x﹣y=1的下方区域,满足条件.C平面区域E不都在直线2x﹣y=1的下方区域,不满足条件..D.平面区域E不都在直线2x﹣y=1的下方区域,不满足条件..故选:B7.已知函数y=f(x)的图象为如图所示的折线ABC,则dx=()A.2 B.﹣2 C.1 D.﹣1【考点】定积分.【分析】先根据图象求出f(x)的表达式,在分段求出定积分.【解答】解:当0≤x≤1,f(x)=x﹣1,当﹣1≤x<0时,f(x)=﹣x﹣1,则dx=(x+1)(x﹣1)dx+(x+1)(﹣x﹣1)dx=(x2﹣1)dx﹣(x2+2x+1)dx=()|﹣()|=﹣1+(﹣+1﹣1)=﹣1,故选:D.8.甲、乙、丙3名教师安排在10月1日至5日的5天中值班,要求每人值班一天且每天至多安排一人.其中甲不在10月1日值班且丙不在10月5日值班,则不同的安排方法有()种.A.36 B.39 C.42 D.45【考点】排列、组合的实际应用.【分析】根据甲,可以分两类,第一类,甲在10月5日值班,第二类,甲不在10月5日值班,根据分类计数原理可得答案.【解答】解:第一类,甲在10月5日值班,则乙丙在剩下的4天各选择一天,故有A42=12种,第二类,甲不在10月5日值班,则甲再10月2,3,4天选择一天,丙在除了10月5日的三天中选择一天,乙在剩下的三天中选择梯田,故有3×3×3=27种,根据分类计数原理可得,共有12+27=39种,故选:B.9.在三棱锥P﹣ABC中,底面ABC是等腰三角形,∠BAC=120°,BC=2,PA⊥平面ABC,若三棱锥P﹣ABC的外接球的表面积为8π,则该三棱锥的体积为()A.B.C.D.【考点】棱柱、棱锥、棱台的体积.【分析】由题意画出图形,设出底面三角形的外心G,找出三棱锥P﹣ABC的外接球的球心O,通过求解直角三角形得到三棱锥的高,则答案可求.【解答】解:如图,取BC中点为E,连接AE,∵底面ABC是等腰三角形,∠BAC=120°,BC=2,∴△ABC的外心G在AE上,设为G,取AB中点F,连接GF,在Rt△AEB中,由BE=1,∠BAE=60°,得AF==,又在Rt△AFG中,得,过G作PA的平行线与PA的中垂线HO交于O,则O为三棱锥P﹣ABC的外接球的球心,即R=OA,由4πR2=8π,得R=,∵PA⊥平面ABC,∴OG⊥AG,在Rt△AGO中,求得OG=,∴三棱锥P﹣ABC的高PA=2OG=,则三棱锥的体积为V=.故选:B.10.已知抛物线C:y2=8x的焦点为F,准线为l,过F的直线与C交于A、B两点,与l交于点P,若|AF|=3|FB|,则|PF|=()A.7.5 B.7 C.8.5 D.8【考点】抛物线的简单性质.【分析】设直线AB的方程为:y=k(x﹣2),与抛物线方程联立化为:k2x2﹣(4k2+8)x+4k2=0,由|AF|=3|FB|,可得x A+2=3(x B+2),再利用根与系数的关系可得k,即可得出.【解答】解:设直线AB的方程为:y=k(x﹣2),联立,化为:k2x2﹣(4k2+8)x+4k2=0,∴x A+x B=,x A x B=4.∵|AF|=3|FB|,∴x A+2=3(x B+2),联立解得:k=.∴P.∴|PF|==8.故选:D.11.某几何体的主视图和左视图如图(1),它的俯视图的直观图是矩形O1A1B1C1如图(2),其中O1A1=6,O1C1=2,则该几何体的侧面积为()A.48 B.64 C.96 D.128【考点】由三视图求面积、体积.【分析】由已知中的三视图可得该几何体是一个四棱柱,计算出底面的周长和高,进而可得几何体的侧面积.【解答】解:由已知中的三视图可得该几何体是一个四棱柱,∵它的俯视图的直观图是矩形O1A1B1C1,O1A1=6,O1C1=2,∴它的俯视图的直观图面积为12,∴它的俯视图的面积为:24,∴它的俯视图的俯视图是边长为:6的菱形,棱柱的高为4故该几何体的侧面积为:4×6×4=96,故选:C.12.对于函数f(x),g(x)满足:对任意x∈R,都有f(x2﹣2x+3)=g(x),若关于x的方程g(x)+sin x=0只有5个根,则这5个根之和为()A.5 B.6 C.8 D.9【考点】根的存在性及根的个数判断.【分析】根据条件,先判断g(x)关于x=1对称,然后利用函数与方程之间的关系转化为两个函数的交点问题进行求解即可.【解答】解:∵y=x2﹣2x+3的对称轴为x=1,∴由f(x2﹣2x+3)=g(x)得g(x)关于x=1对称,由g(x)+sin x=0得g(x)=﹣sin x,作出函数y=﹣sin x的图象,若程g(x)+sin x=0只有5个根,则其中一个根x=1,其余四个根两两关于x=1对称,则关于对称的根分别为x1,和x2,x3和x4,则,,则x1+x2=2,x3+x4=2,则这5个根之和为2+2+1=5,故选:A.二、填空题:本大题共4小题,每小题5分1,3,5.13.如图,在边长为2的正六边形ABCDEF中,则=﹣2.【考点】平面向量数量积的运算.【分析】根据图形,,而,且,这样即可求出的值,即得出的值.【解答】解:==2•2cos120°=﹣2.故答案为:﹣2.14.设θ为第二象限角,若,则sinθ+cosθ=﹣.【考点】两角和与差的正弦函数;两角和与差的正切函数.【分析】由条件利用同角三角函数的基本关系求得sin(θ+)的值,再利用两角差的正弦公式求得要求式子的值.【解答】解:∵θ为第二象限角,若>0,∴θ+为第三象限角,由=,sin(θ+)<0,cos(θ+)<0, +=1,求得sin(θ+)=﹣,则sinθ+cosθ=2sin(θ+)=﹣,故答案为:﹣.15.在一组样本数据(x1,y1),(x2,y2),…,(x6,y6)的散点图中,若所有样本点(x i,y i)(i=1,2,…,6)都在曲线y=bx2﹣附近波动.经计算x i=11,y i=13,x i2=21,则实数b的值为.【考点】线性回归方程.【分析】求出各对应点的坐标,代人曲线方程,可以求出实数b的值.【解答】解:根据题意,把对应点的坐标代人曲线y=bx2﹣的方程,即y1=b﹣,y2=b﹣,…,y6=b﹣,∴y1+y2+…+y6=b(++…+)﹣×6;又y i=13,x i2=21,∴13=b×21﹣6×,解得b=.故答案为:.16.在等差数列{a n }中,首项a 1=3,公差d=2,若某学生对其中连续10项迸行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为 200 . 【考点】等差数列的前n 项和.【分析】先排除不是遗漏掉首项与末项,从而设9项为a n ,a n+1,a n+2,…,a n+m ﹣1,a n+m+1,a n+m+2,…,a n+9,从而可得10(2n +1)+90﹣2(m +n )﹣1=185,从而求得. 【解答】解:若遗漏的是10项中的第一项或最后一项,则185=9•a 中,故a 中=20(舍去);故设9项为a n ,a n+1,a n+2,…,a n+m ﹣1,a n+m+1,a n+m+2,…,a n+9, 其中(0<m <9,m ∈N *)故10a n +×2﹣a m+n =185,即10(2n +1)+90﹣2(m +n )﹣1=185, 故m=9n ﹣43, 故n=5,m=2; 故10×a 5+×2=110+90=200;故答案为:200.三、解答题:解答须写出文字说明、证明过程和演算步骤.17.在△ABC ,角A 、B 、C 所对的边分别为a 、b 、c ,已知cosB +(cosA ﹣2sinA )cosC=0. (Ⅰ)求cosC 的值;(Ⅱ)若a=,AB 边上的中线CM=,求sinB 及△ABC 的面积. 【考点】余弦定理;三角函数中的恒等变换应用. 【分析】(Ⅰ)由三角函数恒等变换的应用化简已知可得sinAsinC ﹣2sinAcosC=0,由sinA ≠0,可得tanC=2,利用同角三角函数基本关系式即可求cosC 的值. (Ⅱ)由,两边平方得b 2+2b ﹣3=0,解得b ,由余弦定理可解得c 的值,即可求得sinB ,利用三角形面积公式即可求△ABC 的面积. 【解答】(本题满分为12分) 解:(Ⅰ)因为cosB=﹣cos (A +C )=﹣cosAcosC +sinAsinC ,… 又已知cosB +(cosA ﹣2sinA )cosC=0, 所以sinAsinC ﹣2sinAcosC=0,…因为sinA ≠0,所以sinC ﹣2cosC=0,… 于是tanC=2,…所以.…(Ⅱ)因为,…两边平方得b 2+2b ﹣3=0,解得b=1,…在△ABC 中,由余弦定理得c 2=a 2+b 2﹣2abcosC=4,所以c=2,…由此可知△ABC 是直角三角形,故,…可得:△ABC 的面积.…18.某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,分别测出它们的高度如下(单位:cm)甲:19 20 21 23 25 29 32 33 37 41乙:10 24 26 30 34 37 44 46 47 48(Ⅰ)用茎叶图表示上述两组数据,并对两块地抽取树苗的高度进行比较,写出两个统计结论;(Ⅱ)苗圃基地分配这20株树苗的栽种任务,小王在苗高大于40cm的5株树苗中随机的选种3株,记X是小王选种的3株树苗中苗高大于45cm的株数,求X的分布列与数学期望EX.【考点】离散型随机变量的期望与方差;茎叶图;离散型随机变量及其分布列.【分析】(Ⅰ)由已知作出两组数据茎叶图,利用茎叶图能求出结果.(Ⅱ)由题意得X=1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(Ⅰ)由已知作出两组数据茎叶图:由茎叶图得到:(1)乙品种树苗的平均高度大于甲品种树苗的平均高度.(或:乙品种树苗的高度普遍大于甲品种树苗的高度).(2)乙品种树苗的高度较甲品种树苗的高度更分散.(或:甲品种树苗的高度较乙品种树苗的高度更集中(稳定).(3)甲品种树苗的高度的中位数为27mm,乙品种树苗的高度的中位数为35.5mm.(4)甲品种树苗的高度基本上是对称的,而且大多集中在中间(均值附近).乙品种树苗的高度不对称,其分布不均匀.(注:以上四点答对任意两点均给分)…(Ⅱ)由题意得X=1,2,3,,,,…EX==.…19.在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°.(Ⅰ)求证:平面A1BD⊥平面A1AC;(Ⅱ)若BD=D=2,求平面A1BD与平面B1BD所成角的大小.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(Ⅰ)推导出△A1AB和△A1AD均为正三角形,A1O⊥BD,AC⊥BD,由此能证明平面A1BD⊥平面A1AC.(Ⅱ)以O为原点,OA,OB,OA1所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出平面A1BD与平面B1BD所成角的大小.【解答】证明:(Ⅰ)因为AA1=AB=AD,∠A1AB=∠A1AD=60°,所以△A1AB和△A1AD均为正三角形,于是A1B=A1D…设AC与BD的交点为O,则A1O⊥BD…又ABCD是菱形,所以AC⊥BD…而A1O∩AC=O,所以BD⊥平面A1AC…而BD⊂平面A1BD,故平面A1BD⊥平面A1AC…解:(Ⅱ)由A1B=A1D及,知A1B⊥A1D…又由A1D=AD,A1B=AB,BD=BD,得△A1BD≌△ABD,故∠BAD=90°…于是,从而A1O⊥AO,结合A1O⊥BD得A1O⊥底面ABCD…如图,以O为原点,OA,OB,OA1所在直线分别为x,y,z轴,建立空间直角坐标系,则A(1,0,0),B(0,1,0),D(0,﹣1,0),A1(0,0,1),,…设平面B1BD的一个法向量为,由得,令x=1,得…平面A1BD的一个法向量为,设平面A1BD与平面B1BD所成角为θ,则…解得θ=45°,故平面A1BD与平面B1BD所成角的大小为45°.…20.设椭圆C:=1(a>b>0)的焦点F1,F2,过右焦点F2的直线l与C相交于P、Q两点,若△PQF1的周长为短轴长的2倍.(Ⅰ)求C的离心率;(Ⅱ)设l的斜率为1,在C上是否存在一点M,使得?若存在,求出点M的坐标;若不存在,说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)由椭圆的焦点F1,F2,过右焦点F2的直线l与C相交于P、Q两点,△PQF1的周长为短轴长的2倍,得到,由此能求出椭圆C的离心率.(Ⅱ)设椭圆方程为,直线的方程为y=x﹣c,代入椭圆方程得,由此利用韦达定理、椭圆性质、向量知识,结合已知条件能求出不存在点M,使成立.【解答】解:(Ⅰ)∵椭圆C:=1(a>b>0)的焦点F1,F2,过右焦点F2的直线l与C相交于P、Q两点,△PQF1的周长为短轴长的2倍,△PQF1的周长为4a…∴依题意知,即…∴C 的离心率…(Ⅱ)设椭圆方程为,直线的方程为y=x ﹣c ,代入椭圆方程得…设P (x 1,y 1),Q (x 2,y 2),则,…设M (x 0,y 0),则①…由得…代入①得…因为,,所以②…而…从而②式不成立. 故不存在点M ,使成立…21.设函数f (x )=e x +ln (x +1)﹣ax .(Ⅰ)当a=2时,证明:函数f (x )在定义域内单调递增;(Ⅱ)当x ≥0时,f (x )≥cosx 恒成立,求实数a 的取值范围. 【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)当a=2时,f (x )的定义域为(﹣1,+∞),,记,则,分类讨论,即可证明:函数f (x )在定义域内单调递增;(Ⅱ)由(Ⅰ)知f'(x )在(0,+∞)上递增,分类讨论,利用当x ≥0时,f (x )≥cosx 恒成立,求实数a 的取值范围.【解答】(Ⅰ)证明:f (x )的定义域为(﹣1,+∞),…记,则当x >0时,e x >1,,此时g'(x )>0…当x <0时,e x <1,,此时g'(x <0…所以f'(x)在(﹣1,0)上递减,在(0,+∞)上递增,…故f'(x)≥f'(0)=0,从而f(x)在(﹣1,+∞)上递增…(Ⅱ)解:,由(Ⅰ)知f'(x)在(0,+∞)上递增,所以当a≤2时,f'(x)≥f'(0)=2﹣a≥0,所以f(x)在[0,+∞)上递增…故f(x)≥f(0)=1≥cosx恒成立…当a>2时,记φ(x)=f(x)﹣cosx,则记,则当x>1时,…显然0≤x<1时,h'(x)>0,从而φ'(x)在[0,+∞)上递增…又φ'(0)=2﹣a<0,则存在x0∈(0,+∞),使得φ'(x0)=0…所以φ(x)在(0,x0)上递减,所以当x∈(0,x0)时,φ(x)<φ(x0)=0,即f(x)<cosx,不符合题意…综上,实数a的取值范围是a≤2…请考生在第22、23、24两题中任选一题做答[选修4-1:几何证明选讲]22.如图,在正△ABC中,点D、E分别在边BC,AC上,且BD=BC,CE=CA,AD,BE相交于点P.求证:(Ⅰ)四点P、D、C、E共圆;(Ⅱ)AP⊥CP.【考点】圆內接多边形的性质与判定.【分析】(I)由已知条件推导出△ABD≌△BCE,由此能证明四点P,D,C,E共圆.(II)连结DE,由正弦定理知∠CED=90°,由四点P,D,C,E共圆知,∠DPC=∠DEC,由此能证明AP⊥CP.【解答】证明:(I)在△ABC中,由BD=,CE=,知:△ABD≌△BCE,…∴∠ADB=∠BEC,即∠ADC+∠BEC=π.所以四点P,D,C,E共圆.…(II)如图,连结DE.在△CDE中,CD=2CE,∠ACD=60°,由正弦定理知∠CED=90°.…由四点P,D,C,E共圆知,∠DPC=∠DEC,所以AP⊥CP.…[选修4-4:坐标系与参数方程]23.在平面直角坐标系中,已知曲线C1:=1(0<a<2),曲线C2:x2+y2﹣x﹣y=0,Q是C2上的动点,P是线段OQ延长线上的一点,且P满足|OQ|•|OP|=4.(Ⅰ)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,化C2的方程为极坐标方程,并求点P的轨迹C3的方程;(Ⅱ)设M、N分别是C1与C3上的动点,若|MN|的最小值为,求a的值.【考点】双曲线的简单性质.【分析】(Ⅰ)由x=ρcosθ,y=ρsinθ代入曲线C2,运用三角函数的恒等变换可得极坐标方程;设Q(ρ',θ),P(ρ,θ),代入极坐标方程,化简整理可得所求点P的轨迹C3的方程;(Ⅱ)设M(acosθ,sinθ),运用点到直线的距离公式,结合辅助角公式和正弦函数的值域,可得最小值,解方程可得a的值.【解答】解:(Ⅰ)由x=ρcosθ,y=ρsinθ,代入曲线C2:x2+y2﹣x﹣y=0,即为ρ2﹣ρ(sinθ+cosθ)=0,可得C2的极坐标方程为,设Q(ρ',θ),P(ρ,θ),则,由|OQ|•|OP|=4得ρ'•ρ=4,从而,即有ρ(sinθ+cosθ)=4,故C3的直角坐标方程为x+y=4;(Ⅱ)设M(acosθ,sinθ),则M到直线C3的距离,所以=,解得.[选修4-5:不等式选讲]24.设a、b为正实数,且+=2.(1)求a2+b2的最小值;(2)若(a﹣b)2≥4(ab)3,求ab的值.【考点】基本不等式.【分析】(1)根据基本不等式得出ab(a=b时等号成立),利用a2+b2≥2ab=(a=b时等号成立)求解即可.(2)根据+=2.∴a,代入得出(a+b)2﹣4ab≥4(ab)3,即(2)2﹣4ab≥4(ab)3求解即可得出ab=1【解答】解:(1)∵a、b为正实数,且+=2.∴a、b为正实数,且+=2≥2(a=b时等号成立).即ab(a=b时等号成立)∵a2+b2≥2ab=(a=b时等号成立).∴a2+b2的最小值为1,(2)∵且+=2.∴a∵(a﹣b)2≥4(ab)3,∴(a+b)2﹣4ab≥4(ab)3即(2)2﹣4ab≥4(ab)3即(ab)2﹣2ab+1≤0,(ab﹣1)2≤0,∵a、b为正实数,∴ab=12017-2018学年9月16日。
2017-2018学年度10月同步练习高三数学(理)试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息\r\n2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、选择题(本题共27道小题,每小题0分,共0分)1.已知函数f(x)=(其中e为自对数的底数),则y=f(x)的图象大致为()A.B.C.D.答案及解析:1.C【考点】函数的图象.【专题】函数的性质及应用.【分析】构造函数,令分母为g(x),研究函数g(x)的单调性和值域情况,从而得出函数f(x)图象分布情况,判断选项.【解答】解:令g(x)=e x﹣2x﹣1,g′(x)=e x﹣2,∴g(x)在(﹣∞,ln2)上单调递减,在(ln2,+∞)h 上单调递增,又∵g(ln2)=1﹣2ln2<0,∴g(x)有两个实数解,∵g(0)=0,g(1)=e﹣3<0,g(2)=e2﹣5>0,∴x1=0,x2∈(1,2),且当x<0时,g(x)>0,∴f(x)>0,当x1<x<x2时,g(x)<0,∴f(x)<0,当x>x2时,g(x)>0,∴f(x)>0,∴只有选项C符合.故选:C.【点评】本题考查函数图象的分布情况,即:定义域、单调性,正负性,属于中档题.2.已知函数f(x)是定义域为R的偶函数,且f(x+1)=,若f(x)在[﹣1,0]上是减函数,记a=f(log0.52),b=f(log24),c=f(20.5),则()A.a>b>c B.a>c>b C.b>c>a D.b>a>c答案及解析:2.B【考点】奇偶性与单调性的综合.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】确定函数是周期为2的周期函数,f(x)在[0,1]上单调递增,并且a=f(log0.52)=f(log22)=f(1),b=f(log24)=f(2)=f(0),c=f(20.5),即可比较出a,b,c的大小.【解答】解:∵f(x+1)=,∴f(x+2)=f(x),∴函数是周期为2的周期函数;∵f(x)为偶函数,f(x)在[﹣1,0]上是减函数,∴f(x)在[0,1]上单调递增,并且a=f(log0.52)=f(log22)=f(1),b=f(log24)=f(2)=f(0),c=f(20.5).∵0<1<20.5,∴b<c<a.故选:B.【点评】考查偶函数的定义,函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,1]上,根据单调性去比较函数值大小.3.已知函数,x1、x2、x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值()A.一定等于零B.一定大于零C.一定小于零D.正负都有可能答案及解析:3.B【考点】57:函数与方程的综合运用.【分析】先判断奇偶性和单调性,先由单调性定义由自变量的关系得到函数关系,然后三式相加得解.【解答】解:函数,f(﹣x)=﹣f(x),函数f(x)是奇函数,根据同增为增,可得函数f(x)是增函数,∵x1+x2>0,x2+x3>0,x3+x1>0,∴x1>﹣x2,x2>﹣x3x3>﹣x1,∴f(x1)>f(﹣x2,f(x2)>f(﹣x3),f(x3)>f(﹣x1)∴f(x1)+f(x2)>0,f(x2)+f(x3)>0,f(x3)+f(x1)>0,三式相加得:f(x1)+f(x2)+f(x3)>0,故选:B.4.已知函数f(x)=lnx﹣x3与g(x)=x3﹣ax的图象上存在关于x轴的对称点,则实数a的取值范围为()A.(﹣∞,e)B.(﹣∞,e] C.D.答案及解析:4.D【考点】57:函数与方程的综合运用.【分析】由题意可知f(x)=﹣g(x)有解,即y=lnx与y=ax有交点,根据导数的几何意义,求出切点,结合图象,可知a的范围.【解答】解:函数f(x)=lnx﹣x3与g(x)=x3﹣ax的图象上存在关于x轴的对称点,∴f(x)=﹣g(x)有解,∴lnx﹣x3=﹣x3+ax,∴lnx=ax,在(0,+∞)有解,分别设y=lnx,y=ax,若y=ax为y=lnx的切线,∴y′=,设切点为(x0,y0),∴a=,ax0=lnx0,∴x0=e,∴a=,结合图象可知,a≤故选:D.5.函数f(x)=ln|x+cosx|的图象为()A.B.C. D.答案及解析:5.A【考点】3O:函数的图象.【分析】利用特殊点,结合排除法,可得结论、【解答】解:由题意,x=0,f(0)=0,排除C,D;x=,f()=ln||>0,排除B,故选A.6.设函数f(x)的定义域为D,若f(x)满足条件:存在[a,b]⊆D(a<b),使f(x)在[a,b]上的值域也是[a,b],则称为“优美函数”,若函数为“优美函数”,则t的取值范围是()A.B.(0,1) C. D.答案及解析:6.D【考点】34:函数的值域.【分析】由题意得,函数是增函数,构造出方程组,利用方程组的解都大于0,求出t的取值范围.【解答】解:为增函数,存在[a,b]⊆D(a<b),使f(x)在[a,b]上的值域也是[a,b],则,即∴a,b是方程为4x﹣2x+t=0的两个不等的根,设2x=m,∴m2﹣m+t=0有两个不等的实根,且两根都大于0,∴,解得0<t,故选:D.7.若函数f(x)=sin2x+asinx+b(a,b∈R)在[﹣,0]上存在零点,且0≤b﹣2a≤1,则b 的取值范围是()A.[﹣,0] B.[﹣3,﹣2] C.[﹣2,0] D.[﹣3,0]答案及解析:7.D【考点】52:函数零点的判定定理.【分析】讨论零点个数,列出不等式组,作出平面区域,得出b的取值范围.【解答】解:设sinx=t,则t∈[﹣1,0],∴关于t的方程t2+at+b=0在[﹣1,0]上有解,令g(t)=t2+at+b,(1)若g(t)在[﹣1,0]上存在两个零点,则,无对应的平面区域,(2)若g(t)在[﹣1,0]上存在1个零点,则g(﹣1)g(0)≤0,∴,作出平面区域如图所示:解方程组得A(﹣2,﹣3).∴b的范围是[﹣3,0].故选D.8.设x、y、z均为负数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z答案及解析:8.D【考点】4H:对数的运算性质.【专题】11 :计算题;35 :转化思想;4H :作差法;51 :函数的性质及应用.【分析】令2x=3y=5z=t,则0<t<1,x=,y=,z=,利用作差法能求出结果.【解答】解:∵x、y、z均为负数,且2x=3y=5z,∴令2x=3y=5z=t,则0<t<1,x=,y=,z=,∴2x﹣3y=﹣=>0,∴2x>3y;同理可得:2x﹣5z<0,∴2x<5z,∴3y<2x<5z.故选:D.9.函数y=的图象可能是()A.B.C.D.答案及解析:9.B【考点】3O:函数的图象.【专题】35 :转化思想;44 :数形结合法;51 :函数的性质及应用.【分析】根据函数奇偶性以及单调性,逐一判断各个选项是否正确,从而得出结论.【解答】解:∵函数y=,则该函数为奇函数,故它的图象关于原点对称,故排除A、C.当x>0时,函数为y=ln|x|,在(0,+∞)上单调递增,故排除D,故选:B.10.下列函数中,既是偶函数又在(0,+∞)上单调递减的函数是()A.y=2x3B.y=|x|+1 C.y=﹣x2+4 D.y=2|x|答案及解析:10.C【考点】函数单调性的判断与证明;函数奇偶性的判断.【分析】在A中,y=2x3是奇函数,在(0,+∞)上单调递增;在B中,y=|x|+1在(0,+∞)上单调递增;在C中,y=﹣x2+4偶函数,在(0,+∞)上单调递减;在D中,y=2|x|在(0,+∞)上单调递增.【解答】解:在A中,y=2x3是奇函数,在(0,+∞)上单调递增,故A错误;在B中,y=|x|+1是偶函数,在(0,+∞)上单调递增,故B错误;在C中,y=﹣x2+4偶函数,在(0,+∞)上单调递减,故C正确;在D中,y=2|x|偶函数,在(0,+∞)上单调递增,故D错误.故选:C.11.已知函数f(x)=,若f(f(0))=3a,则实数a等于()A.4 B.2 C.D.答案及解析:11.A【考点】函数的值.【分析】由已知得f(0)=20+1=2,f(f(0))=f(2)=22+2a=3a,由此能求出实数a.【解答】解:∵函数f(x)=,f(f(0))=3a,∴f(0)=20+1=2,f(f(0))=f(2)=22+2a=3a,解得a=4.∴实数a等于4.故选:A.12.x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]在R上为()A.奇函数B.偶函数C.增函数D.周期函数答案及解析:12.D【考点】函数的周期性;函数单调性的判断与证明;函数奇偶性的判断.【专题】计算题;新定义.【分析】依题意,可求得f(x+1)=f(x),由函数的周期性可得答案.【解答】解:∵f(x)=x﹣[x],∴f(x+1)=(x+1)﹣[x+1]=x+1﹣[x]﹣1=x﹣[x]=f(x),∴f(x)=x﹣[x]在R上为周期是1的函数.故选:D.【点评】本题考查函数的周期性,理解题意,得到f(x+1)=f(x)是关键,属于基础题.13.方程log2x+x=2的解所在的区间为()A.(0.5,1)B.(1,1.5)C.(1.5,2)D.(2,2.5)答案及解析:13.B【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】判断f(x)=log2x+x﹣2,在(0,+∞)上单调递增.根据函数的零点存在性定理得出:f(1)•f(1.5)<0,可得出f(x)的零点在(1,1.5)区间内,即可得出答案.【解答】解:设f(x)=log2x+x﹣2,在(0,+∞)上单调递增.∵f(1)=0+1﹣2=﹣1<0,f(1.5)=log 21.5﹣0.5=log21.5﹣log2>0∴根据函数的零点存在性定理得出:f(x)的零点在(1,1.5)区间内∴方程log2x+x=2的解所在的区间为(1,1.5)故选:B.【点评】本题考查了函数的单调性,函数零点的判断,方程解所在的区间,属于中档题,但是难度不大,常规题目.14.函数f(x)的导函数f′(x),对∀x∈R,都有f′(x)>f(x)成立,若f(2)=e2,则不等式f(x)>e x的解是()A.(2,+∞)B.(0,1) C.(1,+∞)D.(0,ln2)答案及解析:14.A【考点】6B:利用导数研究函数的单调性.【分析】构造函数g(x)=,利用导数可判断g(x)的单调性,再根据f(ln2)=2,求得g(ln2)=1,继而求出答案【解答】解:∵∀x∈R,都有f′(x)>f(x)成立,∴f′(x)﹣f(x)>0,于是有()′>0,令g(x)=,则有g(x)在R上单调递增,∵不等式f(x)>e x,∴g(x)>1,∵f(2)=e2,∴g(2)==1,∴x>2,故选:A.15.已知定义在(0,+∞)上的函数f(x)的导函数f'(x)满足,且,其中e为自然对数的底数,则不等式的解集是()A. B.(0,e) C. D.答案及解析:15.B【考点】6B:利用导数研究函数的单调性;63:导数的运算;67:定积分.【分析】根据题意,令g(x)=xf(x),分析可得g′(x)=[xf(x)]′=,对g(x)求积分可得g(x)的解析式,进而可得f(x)的解析式,再令h(x)=f(x)﹣x,对其求导可得h′(x)=f′(x)﹣1<0,分析可得函数h(x)=f(x)﹣x在(0,+∞)上递减,将不等式变形可得f(x)﹣x>﹣e=f(e)﹣e,结合函数的单调性分析可得答案.【解答】解:根据题意,令g(x)=xf(x),则有g′(x)=[xf(x)]′=,则g(x)=(lnx)2+C,即xf(x)=(lnx)2+C,则有f(x)=(lnx)2+,又由,即f(e)=+=,解可得C=,故f(x)=(lnx)2+,令h(x)=f(x)﹣x,则h′(x)=f′(x)﹣1=<0,故函数h(x)=f(x)﹣x在(0,+∞)上递减,不等式,即f(x)﹣x>﹣e=f(e)﹣e,则有0<x<e,即不等式的解集为(0,e);故选:B.16.若函数在(0,2)上存在两个极值点,则a的取值范围是()A.(﹣∞,﹣)B.(﹣∞,﹣)C.(﹣∞,﹣)∪(﹣,﹣)D.(﹣e,﹣)∪(1,+∞)答案及解析:16.C【考点】6D:利用导数研究函数的极值.【分析】由题意可知:f′(x)=a(x﹣1)e x+﹣在(0,2)上有两个零点,a(x﹣1)e x+=0,有两个根,即可求得a=﹣,根据函数的单调性即可求得a的取值范围.【解答】解:函数f(x)=a(x﹣2)e x+lnx+在(0,2)上存在两个极值点,等价于f′(x)=a(x﹣1)e x+﹣在(0,2)上有两个零点,令f′(x)=0,则a(x﹣1)e x+=0,即(x﹣1)(ae x+)=0,∴x﹣1=0或ae x+=0,∴x=1满足条件,且ae x+=0(其中x≠1且x∈(0,2));∴a=﹣,其中x∈(0,1)∪(1,2);设t(x)=e x•x2,其中x∈(0,1)∪(1,2);则t′(x)=(x2+2x)e x>0,∴函数t(x)是单调增函数,∴t(x)∈(0,e)∪(e,4e2),∴a∈(﹣∞,﹣)∪(﹣,﹣).故选C.17.若存在两个正实数x,y,使得等式3x+a(2y﹣4ex)(lny﹣lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围是()A.(﹣∞,0)B.C.D.答案及解析:17.D【考点】函数恒成立问题.【专题】函数思想;转化法;函数的性质及应用.【分析】根据函数与方程的关系将方程进行转化,利用换元法转化为方程有解,构造函数求函数的导数,利用函数极值和单调性的关系进行求解即可.【解答】解:由3x+a(2y﹣4ex)(lny﹣lnx)=0得3x+2a(y﹣2ex)ln=0,即3+2a(﹣2e)ln=0,即设t=,则t>0,则条件等价为3+2a(t﹣2e)lnt=0,即(t﹣2e)lnt=﹣有解,设g(t)=(t﹣2e)lnt,g′(t)=lnt+1﹣为增函数,∵g′(e)=lne+1﹣=1+1﹣2=0,∴当t>e时,g′(t)>0,当0<t<e时,g′(t)<0,即当t=e时,函数g(t)取得极小值为:g(e)=(e﹣2e)lne=﹣e,即g(t)≥g(e)=﹣e,若(t﹣2e)lnt=﹣有解,则﹣≥﹣e,即≤e,则a<0或a≥,故选:D.【点评】本题主要考查不等式恒成立问题,根据函数与方程的关系,转化为两个函数相交问题,利用构造法和导数法求出函数的极值和最值是解决本题的关键.综合性较强.18.已知x=2是函数f(x)=x3﹣3ax+2的极小值点,那么函数f(x)的极大值为()A.15 B.16 C.17 D.18答案及解析:18.D【考点】利用导数研究函数的极值.【专题】计算题;导数的综合应用.【分析】求出导数,由题意得,f′(2)=0,解出a,再由单调性,判断极大值点,求出即可.【解答】解:函数f(x)=x3﹣3ax+2的导数f′(x)=3x2﹣3a,由题意得,f′(2)=0,即12﹣3a=0,a=4.f(x)=x3﹣12x+2,f′(x)=3x2﹣12=3(x﹣2)(x+2),f′(x)>0,得x>2或x<﹣2;f′(x)<0,得﹣2<x<2,故x=2取极小值,x=﹣2取极大值,且为﹣8+24+2=18.故选D.【点评】本题考查导数的应用:求极值,同时考查运算能力,属于基础题.19.若函数f(x)=x3﹣3x在(a,6﹣a2)上有最小值,则实数a的取值范围是()A.(﹣,1) B.[﹣,1)C.[﹣2,1)D.(﹣2,1)答案及解析:19.C【考点】6E:利用导数求闭区间上函数的最值.【专题】53 :导数的综合应用.【分析】根据题意求出函数的导数,因为函数 f(x)在区间(a,6﹣a2)上有最小值,所以f′(x)先小于0然后再大于0,所以结合二次函数的性质可得:a<1<5﹣a2,进而求出正确的答案.【解答】解:由题意可得:函数 f(x)=x3﹣3x,所以f′(x)=3x2﹣3.令f′(x)=3x2﹣3=0可得,x=±1;因为函数 f(x)在区间(a,6﹣a2)上有最小值,其最小值为f(1),所以函数f(x)在区间(a,6﹣a2)内先减再增,即f′(x)先小于0然后再大于0,所以结合二次函数的性质可得:a<1<6﹣a2,且f(a)=a3﹣3a≥f(1)=﹣2,且6﹣a2﹣a>0,联立解得:﹣2≤a<1.故选:C.20.设函数f(x)在R上可导,其导函数f′(x)且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(﹣2)和极小值f(2)B.函数f(x)有极大值f(﹣2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(﹣2)D.函数f(x)有极大值f(2)和极小值f(1)答案及解析:20.A【考点】利用导数研究函数的极值.【专题】常规题型;综合法;导数的概念及应用.【分析】结合函数图形,对x分区间讨论f(x)与0大小关系,从而推导出f(x)在区间上的单调性即可;【解答】解:由图形推导可知:当x<﹣2时,y>0,1﹣x>0⇒f'(x)>0,故f(x)在(﹣∞,﹣2)上单调递增;当﹣2<x<1时:y<0,1﹣x>0⇒f'(x)<0,故f(x)在(﹣2,1)上单调递减;当1<x<2时:y>0,1﹣x<0⇒f'(x)<0,故f(x)在(1,2)上单调递减;当x>2时:y<0,1﹣x<0⇒f'(x)>0,故f(x)在(2,+∞)上单调递增;故函数f(x)在x=﹣2时取得极大值,在x=2时取得极小值;故选:A.【点评】本题主要考查了导函数与原函数图形的关系,以及数学结合与分析推理等知识点,属中等题.21.f(x)=是定义在(﹣∞,+∞)上是减函数,则a的取值范围是()A.[,)B.[0,] C.(0,)D.(﹣∞,]答案及解析:21.A【考点】函数单调性的性质.【分析】由题意可得3a﹣1<0、﹣a<0、且﹣a≤3a﹣1+4a,解由这几个不等式组成的不等式组,求得a的范围.【解答】解:由题意可得,求得≤a<,故选:A.22.在平面直角坐标系中,如果不同的两点A(a,b),B(﹣a,b)在函数y=f(x)的图象上,则称(A,B)是函数y=f(x)的一组关于y轴的对称点((A,B)与(B,A)视为同一组),则函数f(x)=关于y轴的对称点的组数为()A.0 B.1 C.2 D.4答案及解析:22.C【考点】分段函数的应用.【分析】在同一坐标系内,作出(x>0),y2=|log3x|(x>0)的图象,根据定义,可知函数f(x)=关于y轴的对称点的组数,就是图象交点的个数.【解答】解:由题意,在同一坐标系内,作出(x>0),y2=|log3x|(x>0)的图象,根据定义,可知函数f(x)=关于y轴的对称点的组数,就是图象交点的个数,所以关于y轴的对称点的组数为2故选C23.函数f(x)=落在区间(﹣3,5)的所有零点之和为()A.2 B.3 C.4 D.5答案及解析:23.C【考点】函数零点的判定定理.【分析】由题意别作出函数y=与y=的图象,由图得交点的个数和函数图象的对称性,并利用对称性求出函数f(x)的所有零点之和.【解答】解:由f(x)==0得,,分别作出函数y=与y=的图象如图:则函数y=与y=的图象关于(1,0)点成中心对称,由图象可知两个函数在区间(﹣3,5)上共有4个交点,它们关于(1,0)点成中心对称,不妨设关于点(1,0)对称的两个点A、B的横坐标是a、b,则=1,即a+b=2,所以所有交点横坐标之和为2(a+b)=4,即所有零点之和为4,故选:C.【点评】本题考查了函数的零点与函数图象交点的转化,掌握数形结合的思想方法和函数的对称性是解题的关键.24.设定义域为R的函数f(x)=,则当a<0时,方程f2(x)+af(x)=0的实数解的个数为()A.4 B.5 C.6 D.7答案及解析:24.D【考点】根的存在性及根的个数判断.【分析】根据对数函数的图象画出f(x)的函数图象,将方程f2(x)+af(x)=0化为:f(x)=0或f(x)=﹣a,由a的范围和图象判断出方程解的个数.【解答】解:画出函数f(x)=的图象,如图所示:∵f2(x)+af(x)=0,∴f(x)=0或f(x)=﹣a;由图得,f(x)=0有三个根分别为﹣1、0、1,当a<0时,f(x)=﹣a有四个根;∴方程f2(x)+af(x)=0的实数解的个数为7;故选:D.25.已知x1,x2是函数f(x)=e﹣x﹣|lnx|的两个不同零点,则x1x2的取值范围是()A.(0,)B.(,1] C.(1,e) D.(,1)答案及解析:25.D【考点】函数零点的判定定理.【分析】作出y=e﹣x和y=|lnx|的函数图象,根据函数图象及函数的性质判断x1,x2的关系,利用不等式的性质或函数性质得出答案.【解答】解:令f(x)=0得e﹣x=|lnx|,作出y=e﹣x和y=|lnx|的函数图象如图所示:由图象可知,1<x2<e,∴x1x2>,又|lnx1|>|lnx2|,即﹣lnx1>lnx2,∴lnx1+lnx2<0,∴lnx1x2<0,∴x1x2<1.故选D.【点评】本题考查了指数函数,对数函数的图象及性质,不等式的性质,属于中档题.26.已知a>1,若函数,则f[f(x)]﹣a=0的根的个数最多有()A.1个B.2个C.3个D.4个答案及解析:26.C【考点】根的存在性及根的个数判断.【分析】设t=f(x),则方程转化为f(t)﹣a=0,即f(t)=a,然后根据函数的图象确定x解的个数.【解答】解:设t=f(x),则方程转化为f(t)﹣a=0,即f(t)=a,当1<x≤3时,﹣1<x﹣2≤1,∴此时f(x)=f(x﹣2)+a﹣1=a x﹣2+a﹣1.当﹣1<x≤1时,,当1<x≤3时,,.∵a>1,∴2a﹣1>a..由图象可知,∵f(t)=a>1,∴当时,t最多有两个解.其中t<1,或1<t<3.当t<1时,函数t=f(x),只有一解x∈(﹣1,1),当1<t<3.函数t=f(x),最多有2个解.故f[f(x)]﹣a=0的根的个数最多有3个.故选C.27.定义函数序列:,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,f n(x)=f(f n﹣1(x)),则函数y=f2017(x)的图象与曲线的交点坐标为()A. B.C.D.答案及解析:27.A【考点】抽象函数及其应用;函数的图象.【分析】由题意,可先求出f1(x),f2(x),f3(x)…,归纳出f n(x)的表达式,即可得出f2017(x)的表达式,进而得到答案.【解答】解:由题意f1(x)=f(x)=.f2(x)=f(f1(x))==,f3(x)=f(f2(x))==,…f n(x)=f(f n﹣1(x))=,∴f2017(x)=,由得:,或,由中x≠1得:函数y=f2017(x)的图象与曲线的交点坐标为,故选:A【点评】本题考查逻辑推理中归纳推理,由特殊到一般进行归纳得出结论是此类推理方法的重要特征.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(本题共10道小题,每小题0分,共0分)28.函数f(x)=,如果方程f(x)=b有四个不同的实数解x1、x2、x3、x4,则x1+x2+x3+x4= .答案及解析:28.4【考点】54:根的存在性及根的个数判断.【分析】作出f(x)的图象,由题意可得y=f(x)和y=b的图象有4个交点,不妨设x1<x2<x3<x4,由x1、x2关于原点对称,x3、x4关于(2,0)对称,计算即可得到所求和.【解答】解:作出函数f(x)=的图象,方程f(x)=b有四个不同的实数解,等价为y=f(x)和y=b的图象有4个交点,不妨设它们交点的横坐标为x1、x2、x3、x4,且x1<x2<x3<x4,由x1、x2关于原点对称,x3、x4关于(2,0)对称,可得x1+x2=0,x3+x4=4,则x1+x2+x3+x4=4.故答案为:4.29.已知函数f(x)是定义在R上的奇函数,且在区间(0,+∞)上单调递增,若实数a满足,则a的取值范围是.答案及解析:29.(1,3)【考点】3N:奇偶性与单调性的综合.【分析】根据函数是奇函数,且在(0,+∞)单调递增,得到函数在R上单调递增,利用函数的单调性解不等式即可得到结论.【解答】解:∵f(x)是定义在R上的奇函数,且在(0,+∞)单调递增,∴由,得,∴∴1<a<3,∴a的取值范围是(1,3),故答案为(1,3).30.已知定义在R上的奇函数f(x)满足,S n为数列{a n}的前n项和,且S n=2a n+n,则f(a5)+f(a6)= .答案及解析:30.3【考点】8E:数列的求和.【分析】由已知求得函数周期,再由数列递推式求出数列通项,求得a5、a6的值,则答案可求.【解答】解:∵f(x)为奇函数,∴f(﹣x)=﹣f(x),又∵,∴.∴.∴f(x)是以3为周期的周期函数.∵数列{a n}满足a1=﹣1,且S n=2a n+n,∴当n≥2时,S n﹣1=2a n﹣1+n﹣1,则a n=2a n﹣2a n﹣1+1,即a n=2a n﹣1﹣1,∴a n﹣1=2(a n﹣1﹣1)(n≥2),则,∴.上式对n=1也成立.∴a5=﹣31,a6=﹣63.∴f(a5)+f(a6)=f(﹣31)+f(﹣63)=f(2)+f(0)=f(2)=﹣f(﹣2)=3.故答案为:3.31.函数y=ax2﹣2x的图象上有且仅有两个点到直线y=x的距离等于,则实数a的取值集合是.答案及解析:31.{a|a<﹣或a=0或a}【考点】3W:二次函数的性质.【分析】对a进行分类讨论,得出y=ax2﹣2x与y=x±2的位置关系,根据交点个数判断a的范围.【解答】解:(1)若a=0,则y=2x与y=x为相交直线,显然y=2x上存在两点到y=x的距离等于,符合题意;(2)若a>0,则y=ax2﹣2x与直线y=x相交,∴y=ax2﹣2x在直线y=x上方的图象必有2点到直线y=x的距离等于,又直线y=x与y=x﹣2的距离为,∴抛物线y=ax2﹣2x与直线y=x﹣2不相交,联立方程组,消元得ax2﹣3x+2=0,∴△=9﹣8a<0,解得a.(3)若a<0,同理可得a<﹣.故答案为:{a|a<﹣或a=0或a}.32.设函数y=f(x)的定义域为D,若对于任意x1,x2∈D,满足x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点Q为函数y(x)=f(x)图象的对称中心,研究并利用函数f(x)=x3﹣3x2﹣sin(πx)的对称中心,可得f()+f()+…+f()= .答案及解析:32.﹣8066【考点】3O:函数的图象.【分析】根据题意,将函数的解析式变形可得f(x)=x3﹣3x2﹣sin(πx)=(x﹣1)3﹣sin (πx)﹣3(x﹣1)﹣2,分析可得x1+x2=2,则f(x1)+f(x2)=﹣4,由此计算可得答案.【解答】解:根据题意,f(x)=x3﹣3x2﹣sin(πx)=(x﹣1)3﹣sin(πx)﹣3(x﹣1)﹣2,分析可得:若x1+x2=2,则f(x1)+f(x2)=﹣4,=;故答案为:﹣8066.33.若定义在[﹣m,m](m>0)上的函数f(x)=+xcosx(a>0,a≠1)的最大值和最小值分别是M、N,则M+N= .答案及解析:33.6【考点】函数的最值及其几何意义.【分析】f(x)可化为3++xcosx,令g(x)=+xcosx,则f(x)=g(x)+3,根据函数的奇偶性可得g(x)在[﹣1,1]上关于原点对称,再根据函数的单调性可得.【解答】解:函数f(x)=+xcosx(﹣1≤x≤1)=3++xcosx,令g(x)=+xcosx,则f(x)=g(x)+3,因为g(﹣x)=﹣xcos(﹣x)=﹣xcosx=﹣g(x),且x∈[﹣1,1],所以g(x)在[﹣1,1]上关于原点对称,即为奇函数,因为f(x)和g(x)单调性相同,所以f(x)取到最大值M时,相对应的x下的g(x)也取最大值M﹣3,同理f(x)有最小值m时,g(x)也取最小值N﹣3,g(x)最大值M'=M﹣3,最小值N'=N﹣3,因为g(x)关于坐标原点对称可得所以(M﹣3)+(N﹣3)=0,所以M+N=6.故答案为:6.34.已知函数f(x)=若f(2﹣a2)>f(a),则实数a的取值范围为.答案及解析:34.(﹣2,1)【考点】分段函数的解析式求法及其图象的作法;二次函数的性质.【分析】先根据二次函数的解析式分别研究分段函数在各自区间上的单调性,从而得到函数f (x)的单调性,由此性质转化求解不等式,解出参数范围即可.【解答】解:函数f(x),当x≥0 时,f(x)=x2+4x,由二次函数的性质知,它在[0,+∞)上是增函数,当x<0时,f(x)=4x﹣x2,由二次函数的性质知,它在(﹣∞,0)上是增函数,该函数连续,则函数f(x)是定义在R 上的增函数∵f(2﹣a2)>f(a),∴2﹣a2>a解得﹣2<a<1实数a 的取值范围是(﹣2,1)故答案为:(﹣2,1)35.已知函数f(x)=3x﹣1,g(x)=x2﹣2x﹣1,若存在实数a、b使得f(a)=g(b),则b是取值范围是.答案及解析:35.(﹣∞,0)∪(2,+∞)【考点】二次函数的性质.【分析】若存在实数a、b使得f(a)=g(b),则g(b)属于函数f(x)的值域,进而得到答案.【解答】解:函数f (x )=3x﹣1∈(﹣1,+∞), 若存在实数a 、b 使得f (a )=g (b ), 则g (b )=b 2﹣2b ﹣1>﹣1,解得: b ∈(﹣∞,0)∪(2,+∞), 故答案为:(﹣∞,0)∪(2,+∞) 36.已知函数f (x )=x 3﹣ax 2﹣3x ,若f (x )在区间[1,+∞)上是增函数,实数a 的取值范围是 . 答案及解析: 36.(﹣∞,0]【考点】导数的运算.【分析】先对函数f (x )=x 3﹣ax 2﹣3x 进行求导,转化成f′(x )在[1,+∞)上恒有f′(x )≥0问题,进而求出参数a 的取值范围. 【解答】解:y=3x 2﹣2ax ﹣3,∵f (x )在[1,+∞)上是增函数,∴f′(x )在[1,+∞)上恒有f′(x )≥0, 即3x 2﹣2ax ﹣3≥0在[1,+∞)上恒成立.则必有≤1且f′(1)=﹣2a ≥0, ∴a ≤0.实数a 的取值范围是(﹣∞,0]. 故填:(﹣∞,0]. 37.已知函数⎩⎨⎧>-≤+-=-0x ),1x (f 0x ,12)x (f x ,若方程f (x )=log a (x+2)(0<a <1)有且仅有两个不同的实数根,则实数a 的取值范围为 .答案及解析:37.【考点】根的存在性及根的个数判断.【分析】作出f(x)与y=log a(x+2)的函数图象,根据交点个数判断函数值的大小关系,列出不等式组解出.【解答】解:∵当x>0时,f(x)=f(x﹣1),∴f(x)在(0,+∞)上是周期为1的函数,做出y=f(x)与y=log a(x+2)的函数图象,则两函数图象有2个交点,∴,解得.故答案为:.三、解答题(本题共16道小题,第1题0分,第2题0分,第3题0分,第4题0分,第5题0分,第6题0分,第7题0分,第8题0分,第9题0分,第10题0分,第11题0分,第12题0分,第13题0分,第14题0分,第15题0分,第16题0分,共0分)38.已知函数f(x)=,a,b∈R,a≠0,b≠0,f(1)=,且方程f(x)=x有且仅有一个实数解;(1)求a、b的值;(2)当x∈(,]时,不等式(x+1)•f(x)>m(m﹣x)﹣1恒成立,求实数m的范围.答案及解析:38.【考点】函数恒成立问题;函数解析式的求解及常用方法.【分析】(1)根据题意,直接带入f(1),同时考虑f(x)=x有且仅有一个实数解,故可求出a.b值;(2)当x∈(,]时,不等式(x+1)•f(x)>m(m﹣x)﹣1恒成立,即可转化为:(x+1)f(x)>m(m﹣x)﹣1恒成立⇔(1+m)x>m2﹣1;【解答】解:(1)∵f(x)=,且f(1)=;∴,即a+b=2;又只有一个实数解;∴x有且仅有一个实数解为0;∴b=1,a=1;∴f(x)=.(2)∵x∈(,];∴x+1>0;∴(x+1)f(x)>m(m﹣x)﹣1恒成立⇔(1+m)x>m2﹣1;当m+1>0时,即m>﹣1时,有m﹣1<x恒成立⇔m<x+1⇔m<(x+1)min∴﹣1<m≤;当m+1<0,即m<﹣1时,同理可得m>(x+1)max=;∴此时m不存在.综上:m∈(﹣1,].39.已知a为常数,a∈R,函数f(x)=x2+ax﹣lnx,g(x)=e x.(其中e是自然对数的底数)(Ⅰ)过坐标原点O作曲线y=f(x)的切线,设切点为P(x0,y0),求证:x0=1;(Ⅱ)令,若函数F(x)在区间(0,1]上是单调函数,求a的取值范围.答案及解析:39.【考点】利用导数研究曲线上某点切线方程;函数的单调性与导数的关系.【专题】综合题;压轴题.【分析】(I)先对函数求导,,可得切线的斜率=,即,由x0=1是方程的解,且y=x2+lnx﹣1在(0,+∞)上是增函数,可证(Ⅱ)由,,先研究函数,则.由h'(x)在(0,1]上是减函数,可得h'(x)≥h'(1)=2﹣a,通过研究2﹣a的正负可判断h(x)的单调性,进而可得函数F(x)的单调性,可求【解答】解:(I)(x>0).…(2分)过切点P(x0,y0)的切线的斜率=整理得.…(4分)显然,x0=1是这个方程的解,又因为y=x2+lnx﹣1在(0,+∞)上是增函数,所以方程x2+lnx﹣1=0有唯一实数解.故x0=1.…(6分)(Ⅱ),.…(8分)设,则.易知h'(x)在(0,1]上是减函数,从而h'(x)≥h'(1)=2﹣a.…(10分)(1)当2﹣a≥0,即a≤2时,h'(x)≥0,h(x)在区间(0,1)上是增函数.∵h(1)=0,∴h(x)≤0在(0,1]上恒成立,即F'(x)≤0在(0,1]上恒成立.∴F(x)在区间(0,1]上是减函数.所以,a≤2满足题意.…(12分)(2)当2﹣a<0,即a>2时,设函数h'(x)的唯一零点为x0,则h(x)在(0,x0)上递增,在(x0,1)上递减.又∵h(1)=0,∴h(x0)>0.又∵h(e﹣a)=﹣e﹣2a+(2﹣a)e﹣a+a﹣e a+lne﹣a<0,∴h(x)在(0,1)内有唯一一个零点x',当x∈(0,x')时,h(x)<0,当x∈(x',1)时,h(x)>0.从而F(x)在(0,x')递减,在(x',1)递增,与在区间(0,1]上是单调函数矛盾.∴a>2不合题意.综合(1)(2)得,a≤2.…(15分)【点评】考查学生利用导数研究函数的单调能力,函数单调性的判定,以及导数的运算,试题具有一定的综合性.40.设函数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a<﹣2时,讨论f(x)的零点个数.答案及解析:40.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;(Ⅱ)求出f(e﹣a),由f(1)>0,f(e﹣a)<0,及f(x)的单调性,可知f(x)在(1,e﹣a)上有唯一零点,取,则,根据函数的零点存在定理讨论即可.【解答】解:(Ⅰ)f'(x)=2(x﹣1)(lnx+a)(x>0).①当a=0时,f'(x)=2(x﹣1)lnx,当0<x<1时,f'(x)>0,当x>1时,f'(x)>0.当x=1时,f'(x)=0.∴f(x)在(0,+∞)递增;②当a>0时,令f'(x)=0,得,此时e﹣a<1.易知f(x)在(0,e﹣a)递增,(e﹣a,1)递减,(1,+∞)递增;③当a<0时,e﹣a>1.易知f(x)在(0,1)递增,(1,e﹣a)递减,(e﹣a,+∞)递增.(Ⅱ)当a<﹣2时,由(Ⅰ)知f(x)在(0,1)上递增,(1,e﹣a)上递减,(e﹣a,+∞)上递增,且,将x=e﹣a代入f(x),得,∵a<﹣2,∴f(e﹣a)<0.下面证明当x∈(0,1)时存在x0,使f(x0)<0.首先,由不等式lnx<x﹣1,∴,∴,∴.考虑到x2﹣2x=x(x﹣2)<0,∴.再令,可解出一个根为,∵a<﹣2,∴,∴,就取.则有f(x0)<0.由零点存在定理及函数f(x)在(0,1)上的单调性,可知f(x)在(0,1)上有唯一的一个零点.由f(1)>0,f(e﹣a)<0,及f(x)的单调性,可知f(x)在(1,e﹣a)上有唯一零点.下面证明在x∈(e﹣a,+∞)上,存在x1,使f(x1)>0,就取,则,∴,由不等式e x>x+1,则e﹣a+a>(﹣a+1)+a>0,即f(x1)>0.根据零点存在定理及函数单调性知f(x)在(e﹣a,+∞)上有一个零点.综上可知,f(x)当a<﹣2时,共有3个零点.41.已知函数f(x)=+x(a,b∈R).(Ⅰ)当a=2,b=3时,求函数f(x)极值;(Ⅱ)设b=a+1,当0≤a≤1时,对任意x∈[0,2],都有m≥|f'(x)|恒成立,求m的最小值.答案及解析:41.【考点】6E:利用导数求闭区间上函数的最值;6D:利用导数研究函数的极值.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)对a进行分类讨论:当a=0时,f(x)=﹣x+1,m≥1;再对对称轴进行讨论,当<2时,即a>;当≥2时,即a≤,分别去求|f(x)|的最大值.【解答】解:(Ⅰ)a=2,b=3时,f(x)=x3﹣x2+x,f′(x)=2x2﹣3x+1=(2x﹣1)(x﹣1),令f′(x)>0,解得:x>1或x<,令f′(x)<0,解得:<x<1,故f(x)在(﹣∞,)递增,在(,1)递减,在(1,+∞)递增,故f(x)极大值=f()=,f(x)极小值=f(1)=,(Ⅱ)当b=a+1,f(x)=ax3﹣(a+1)x2+x,f′(x)=ax2﹣(a+1)x+1,f′(x)恒过点(0,1);当a=0时,f′(x)=﹣x+1,m≥|f′(x)|恒成立,∴m≥1;0<a≤1,开口向上,对称轴≥1,f′(x)=ax2﹣(a+1)x+1=a(x﹣)2+1﹣,①当a=1时f′(x)=x2﹣2x+1,|f′(x)|在x∈[0,2]的值域为[0,1];要m≥|f′(x)|,则m≥1;②当0<a<1时,根据对称轴分类:当x=<2,即<a<1,△=(a﹣1)2>0,f′()=﹣(a+)∈(﹣,0),又f′(2)=2a﹣1<1,所以|f′(x)|≤1;当x=≥2,即0<a≤;f′(x)在x∈[0,2]的最小值为f′(2)=2a﹣1;﹣1<2a﹣1≤﹣,所以|f′(x)|≤1,综上所述,要对任意x∈[0,2]都有m≥|f′(x)|恒成立,有m≥1,∴m≥1.42.设函数f(x)=x2﹣mlnx,h(x)=x2﹣x+a(Ⅰ)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;(Ⅱ)当m=2时,若函数g(x)=f(x)﹣h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围.答案及解析:42.【考点】利用导数研究函数的极值;函数的零点.【专题】压轴题.【分析】(I)由a=0,我们可以由f(x)≥h(x)在(1,+∞)上恒成立,得到﹣mlnx≥﹣x,即在(1,+∞)上恒成立,构造函数,求出函数的最小值,即可得到实数m的取值范围;(Ⅱ)当m=2时,我们易求出函数g(x)=f(x)﹣h(x)的解析式,由方程的根与对应函数零点的关系,易转化为x﹣2lnx=a,在[1,3]上恰有两个相异实根,利用导数分析函数的单调性,然后根据零点存在定理,构造关于a的不等式组,解不等式组即可得到答案.【解答】解:(I)由a=0,f(x)≥h(x)可得﹣mlnx≥﹣x,即记,则f(x)≥h(x)在(1,+∞)上恒成立等价于m≤φ(x)min.(3分)求得(4分)当x∈(1,e)时;φ′(x)<0;当x∈(e,+∞)时,φ′(x)>0故φ(x)在x=e处取得极小值,也是最小值,即φ(x)min=φ(e)=e,故m≤e.(6分)(II)函数k(x)=f(x)﹣h(x)在[1,3]上恰有两个不同的零点等价于方程x﹣2lnx=a,在[1,3]上恰有两个相异实根.(7分)令g(x)=x﹣2lnx,则(8分)当x∈[1,2)时,g′(x)<0,当x∈(2,3]时,g′(x)>0g(x)在[1,2]上是单调递减函数,在(2,3]上是单调递增函数.故g(x)min=g(2)=2﹣2ln2(10分)又g(1)=1,g(3)=3﹣2ln3∵g(1)>g(3),∴只需g(2)<a≤g(3),(12分)故a的取值范围是(2﹣2ln2,3﹣2ln3](13分)【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,其中(I)的关键是构造函数,将问题转化为函数恒成立问题,(II)的关键是利用导数分析函数的单调性后,进而构造关于a的不等式组.43.设p:实数a满足不等式3a≤9,q:函数f(x)=x3+x2+9x无极值点.(1)若“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围;(2)已知“p∧q”为真命题,并记为r,且t:a2﹣(2m+)a+m(m+)>0,若r是¬t的必要不充分条件,求正整数m的值.答案及解析:43.【考点】命题的真假判断与应用.【专题】转化思想;转化法;简易逻辑.【分析】分别求出命题p,q为真时,实数a的取值范围;(1)若“p∧q”为假命题,“p∨q”为真命题,则p与q只有一个命题是真命题,进而得到答案;(2)求出“p∧q”为真命题,实数a的取值范围,结合r是¬t的必要不充分条件,可得满足条件的正整数m的值.【解答】解:由3a≤9,得a≤2,即p:a≤2.…(1分)∵函数f(x)无极值点,∴f'(x)≥0恒成立,得△=9(3﹣a)2﹣4×9≤0,解得1≤a≤5,即q:1≤a≤5.…(3分)(1)∵“p∧q”为假命题,“p∨q”为真命题,∴p与q只有一个命题是真命题.若p为真命题,q为假命题,则.…若q为真命题,p为假命题,则.…(6分)于是,实数a的取值范围为{a|a<1或2<a≤5}.…(7分)(2)∵“p∧q”为真命题,∴.…(8分)又,∴,∴a<m或,…(10分)即t:a<m或,从而¬t:.∵r是¬t的必要不充分条件,即¬t是r的充分不必要条件,∴,解得,∵m∈N*,∴m=1…(12分)【点评】本题以命题的真假判断与应用为载体,考查了充要条件,函数的极值,指数不等式的解法,二次不等式的解法,复合命题,难度中档.44.设函数(1)若函数f(x)的图象在点(e2,f(e2))处的切线方程为3x+4y﹣e2=0,求实数a、b的值;(2)当b=1时,若存在x1,,使f(x1)≤f′(x2)+a成立,求实数a的最小值.答案及解析:44.【考点】6E:利用导数求闭区间上函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】35 :转化思想;4R:转化法;53 :导数的综合应用.【分析】(1)﹣a(x>0,且x≠1),可得f′(e2)=﹣a=﹣,f (e2)==﹣,联立解得a,b.(2)当b=1时,f(x)=﹣ax,f′(x)=﹣a,可得f′(x)+a==﹣(﹣)2+,[f′(x)+a]max=,x∈[e,e2].存在 x1,x2∈[e,e2],使 f(x1)≤f′(x2)+a成立⇔x∈[e,e2],f(x)min≤f′(x)max+a=,对a分类讨论解出即可.【解答】解:(1)﹣a(x>0,且x≠1),∵函数f(x)的图象在点(e2,f(e2))处的切线方程为 3x+4y﹣e2=0,。
信丰中学2017级高一年级暑期学科拓展营测试数学试题 2017。
7一、选择题(本大题共12小题,每小题5分,共60分.)1.下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共面...的一个图是( )P P P PQ Q QQR R RS S SS PPP P QQQ Q R RRR SSS SPPPPQQQ QRRRR SSSSPP PPQQQQRRRRSSSSA B C D 2.已知直线l α⊥平面,有以下几个判断:①若m l ⊥,则m α//;②若m α⊥,则m l //;③若m α//,则m l ⊥;④若m l //,则m α⊥.上述判断中正确的是( )A.①②③ B.②③④ C.①③④ D.①②④3.若b a 、为异面直线,直线c ∥a ,则c 与b 的位置关系是( ) A .相交 B .异面C .平行D . 异面或相交4.右图是一个正方体的展开图,在原正方体中,有下列命题:①AB 与CD 所在直线垂直; ②CD 与EF 所在直线平行③AB 与MN 所在直线成60°角; ④MN 与EF 所在直线异面 其中正确命题的序号是( ) A .①③ B .①④ C .②③D .③④MCEFNDBA分别在半平面α,β内,AC ⊥l ,BD ⊥l ,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2a B.错误!a C .a D.错误!a6.设m 、n 是不同的直线,αβγ、、是不同的平面,有以下四个命题:错误!若βα//,αγ//,则βγ//; 错误!若αβ⊥,//m α,则m β⊥;○3若m α⊥,//m β,则βα⊥; 错误!若//m n ,n α⊂,则//m α. 其中真命题的个数是( )A.0 B.1 C.2 D.37.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-28. 抛物线y 2=4x 的焦点到双曲线x 2-错误!=1的渐近线的距离是( )A 。
圆锥曲线限时训练11.(本题满分12分)已知椭圆2222=1x y a b (a>b>0)的离心率为3l :y =kx +m 交椭圆于不同的两点A ,B. (1)求椭圆的方程;(2)若坐标原点O 到直线l 的距离为2,求△AOB 面积的最大值.圆锥曲线限时训练21.(本题满分12分)已知椭圆C 的对称中心为原点O ,焦点在x 轴上,左右焦点分别为1F 和2F ,且|1F 2F |=2,点(1,23)在该椭圆上.(1)求椭圆C 的方程;(2)过1F 的直线l 与椭圆C 相交于A ,B 两点,若 A 2F B 的面积为7212,求以2F 为圆心且与直线l 相切圆的方程.2. (本题满分13分)过椭圆Γ:+=1(a>b>0)右焦点F2的直线交椭圆于A,B两点,F1为其左焦点,已知△AF1B的周长为8,椭圆的离心率为.(Ⅰ)求椭圆Γ的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆Γ恒有两个交点P,Q,且⊥?若存在,求出该圆的方程;若不存在,请说明理由.2. (本题满分13分)已知椭圆:C 22221(0)x y a b a b+=>>的一个焦点是(1,0)F ,且离心率为12. (Ⅰ)求椭圆C 的方程;(Ⅱ)设经过点F 的直线交椭圆C 于,M N 两点,线段MN 的垂直平分线交y 轴于点0(0,)P y ,求0y 的取值范围.圆锥曲线限时训练1答案1.解:(1)设椭圆的半焦距为c ,依题意得⎪⎩⎪⎨⎧==336a a c ............1分解得c由222c b a +=,得b =1.=4(k≠0). .............8分2. 解:(Ⅰ)设椭圆C 的半焦距是c .依题意,得 1c =. ………………1分 因为椭圆C 的离心率为12, 所以22a c ==,2223b a c =-=. ………………3分故椭圆C 的方程为 22143x y +=. ………………4分 (Ⅱ)解:当MN x ⊥轴时,显然00y =. ………………5分 当MN 与x 轴不垂直时,可设直线MN 的方程为(1)(0)y k x k =-≠.由 22(1),3412,y k x x y =-⎧⎨+=⎩消去y 整理得 0)3(48)43(2222=-+-+k x k x k . ………7分 设1122(,),(,)M x y N x y ,线段MN 的中点为33(,)Q x y ,则 2122834k x x k +=+. ………………8分所以 212324234x x k x k +==+,3323(1)34k y k x k -=-=+. 线段MN 的垂直平分线方程为)434(1433222kk x k k k y +--=++. 在上述方程中令0=x ,得k kkk y 4314320+=+=. ………………10分当0k <时,34k k +≤-0k >时,34k k+≥.所以00y ≤<,或00y <≤. ………………12分综上,0y 的取值范围是[. ………………13分圆锥曲线限时训练2答案1.解:(1)椭圆C 的方程是13422=+y x ............4分 (2)当直线x l ⊥轴时,可得B AF B A 2),23,1(),23,1(∆---的面积为3,不合题意。
微专题四:三角恒等变换 方法一 运用转化与化归思想例1 设函数2()cos(2)sin 3f x x x π=++.(1)求函数()f x 的单调递增区间;(2)若02παβπ<<<<,1()422f πβ-=+,1()22f αβ+=sin α的值. 【变式演练1】(1)化简:.(2)若、为锐角,且,,求的值.【变式演练2】已知 ,αβ均为锐角,且3sin 5α=,1tan()3αβ-=-. (1)求sin()αβ-的值;(2)求cos β的值.方法二 运用函数方程思想例2 已知2sin()3αβ+=,3sin()4αβ-=,求2tan()tan tan tan tan()αβαββαβ+--⋅+的值. 例3若[]0,απ∈,,44ππβ⎡⎤∈-⎢⎥⎣⎦, R λ∈,且3c o s 202πααλ⎛⎫---= ⎪⎝⎭,cos 2αβ⎛⎫+ ⎪⎝⎭的值为___________【变式演练3】设tan ,tan αβ是方程2320x x -+=的两根,则tan()αβ+的值为( ) A .-3 B .-1 C .1 D .3【变式演练4】方程()233102x ax a a +++=>两根tan tan αβ、,且,,22ππαβ⎛⎫∈-⎪⎝⎭,则αβ+= ;方法三 运用换元思想例5 若,22sin sin =+βα求βαcos cos +的取值范围.【变式演练4】若 是三角形的最小内角,则函数的最小值是________ 【高考再现】1. 【2016高考新课标2理数】若3cos()45πα-=,则sin 2α=( )(A )725 (B )15 (C )15- (D )725-2. 【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则ta n ta n ta n AB C 的最小值是 ▲ .3.【2015高考重庆,理9】若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( ) A 、1 B 、2 C 、3 D 、4 4.【2015高考四川,理12】=+ 75sin 15sin . 5.【2015高考重庆,文6】若11tan ,tan()32a ab =+=,则tan =b ( ) (A)17 (B) 16 (C) 57(D) 566.【2015高考四川,文13】已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是_______ 【反馈练习】1. 【2015-2016学年天津市静海一中等六校高一上期末数学试卷,理14】已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+= . 2. 【2015-2016学年江苏省如东高中高一下期中数学试卷,理15】已知()s i n 22s i n 2αγβ+=,则()()tan tan αβγαβγ++-+的值是_________.3.【 2015-2016学年浙江省慈溪中学高一4-6班上期中数学卷,理14】αtan ,βtan 是方程240x -+=的两个根,且α,(,)22ππβ∈-,则αβ+= .4.【2014-2015学年江苏省扬州中学高二下学期质量检测数学试卷,文14】若1s i n ()64απ-=,则sin(2)6a π+的值为 .5. 【2015-2016学年江西省抚州市高一上学期期末质量检测数学试卷,理9】已知cos cos 1αβ+=,则sin sin αβ-的取值范围是( ).A []11-,B []2-,2C 0⎡⎣D ⎡⎣6. 【2014-2015学年浙江省杭州第二中学高一下学期期中考试数学试卷,理14】已知:αππ∈⎛⎝ ⎫⎭⎪434,,βπ∈⎛⎝ ⎫⎭⎪04,,且cos sin παπβ435541213-⎛⎝ ⎫⎭⎪=+⎛⎝ ⎫⎭⎪=-,,则()cos αβ+=_______.7. 【2015届江苏省宿迁市剑桥国际学校高三上学期期中考试数学试卷,理14】设()αβ∈0π,,,且5sin()13αβ+=,1tan 22α=.则cos β的值为 .8. 【2013-2014学年湖南省五市十校高一下学期期中检测数学试卷,理14】已知tan ,tan αβ是方程23520xx +-=的两根,则()tan αβ+= .9. 【2015-2016学年江西省上高县二中高一上学期期末数学试卷,理18】关于的方程24sintan0(0)22x x m αααπ++=<<有两个相等的实数根.(1)求实数m 的取值范围; (2)若42cos 3m α+=,求1sin 2cos 21tan ααα+-+的值. .。
2017年江西省赣州市高考数学一模试卷(理科)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin15°+cos165°的值为()A.B.C.D.2.设命题p:函数y=f(x)不是偶函数,命题q:函数y=f(x)是单调函数,则p是q的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.如图是一个几何体挖去另一个几何体所得的三视图,若主视图中长方形的长为2,宽为1,则该几何体的体积为()A.B.C.D.4.抛物线C:y2=2px(p>0)的焦点为F,A是C上一点,若A到F的距离是A到y轴距离的两倍,且三角形OAF的面积为1(O为坐标原点),则p的值为( )A.1 B.2 C.3 D.45.若(x﹣2y)2n+1的展开式中前n+1项的二项式系数之和为64,则该展开式中x4y3的系数是()A.﹣B.70 C.D.﹣706.二战中盟军为了知道德国“虎式"重型坦克的数量,采用了两种方法,一种是传统的情报窃取,一种是用统计学的方法进行估计,统计学的方法最后被证实比传统的情报收集更精确,德国人在生产坦克时把坦克从1开始进行了连续编号,在战争期间盟军把缴获的“虎式”坦克的编号进行记录,并计算出这些编号的平均值为675.5,假设缴获的坦克代表了所有坦克的一个随机样本,则利用你所学过的统计知识估计德国共制造“虎式”坦克大约有( )A.1050辆B.1350辆C.1650辆D.1950辆7.复数z1、z2满足|z1|=|z2|=1,z1﹣z2=,则z1•z2=()A.1 B.﹣1 C.i D.﹣i8.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图,f()=﹣1,则f(0)的值为()A.1 B. C.D.9.秦九韶是我国南宋时代的数学家,其代表作《数书九章》是我国13世纪数学成就的代表之一,秦九韶利用其多项式算法,给出了求高次代数方程的完整算法,这一成就比西方同样的算法早五六百年,如图是该算法求函数f(x)=x3+x+1零点的程序框图,若输入x=﹣1,c=1,d=0.1,则输出的x的值为( )A.﹣0.6 B.﹣0.69 C.﹣0。
信丰中学2019届高二下学期数学文科A 层24班周考2 3.20一、选择题:本大题共12小题,每小题5分,共60分。
1.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( A ) A .[]052, B. []-14, C. []-55, D. []-37,2.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是 ( D ).A .⎝ ⎛⎭⎪⎫0,34B .⎝ ⎛⎦⎥⎤0,34C .⎣⎢⎡⎭⎪⎫0,34D .⎣⎢⎡⎦⎥⎤0,34 3.已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1)的实数x 的取值范围是 ( C ).A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞) 4.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( D ) A .)2()1()23(f f f <-<- B .)2()23()1(f f f <-<- C .)23()1()2(-<-<f f f D .)1()23()2(-<-<f f f5.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( B )A .10B .11C .12D .136.设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是 ( D ).7.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( D )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移12个单位 8.已知3()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的值等于( D )A .2-B .4-C .6-D .10-1、已知函数f (log 2x)=x ,则f (21)等于( C ) A.22B.42C. 2D.41 2、已知函数f (x)=lg(x+12+x ),则( D ) A. f (x)为偶函数,且在(-∞,0)内递减 B. f (x)无奇偶性,且在(0,+∞)内递增 C. f (x)无奇偶性,且在(-∞,0)内递减D. f (x)为奇函数,且在定义域内递增3、设a=log 0.70.8,b=log 1.10.9,c=1.10.9,则a, b, c 的大小关系为( C ) A. a>b>cB. a>c>bC. c>a>bD. b>a>c4、已知f(x)是以2为周期的偶函数,且当x∈(0,1)时,f(x)=2x-1,则f(log 212)的值为( A )A.31B.34C.2D.115、已知函数f(x)=mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点右侧,则实数m 的取值范围是 ( D ) A .(0,1] B .(0,1) C .(-∞,1) D .(-∞,1]6、函数y =( B )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数7、设函数f (x )=⎪⎩⎪⎨⎧≥<-,)0()0(7)21(x x x x若f(a)<1,则实数a 的取值范围是( C )A.(-∞,-3)B.(1,+∞)C.(-3,1)D.(-∞,-3) (1,+∞) 8、已知函数f (x)=)(log 221a ax x --在(-∞, 1-3)上是增函数,则实数a 的取值范围为( C ) A. (0, 1)B. (2-23,+∞)C. [2-23, 2]D. (-∞, 2)二、填空题:本大题共4小题;每小题5分,共20分,把答案填在题中的横线上。
2017-2018学年高三第二学期数学(理科) 一课一练试题一
班级 姓名 座号 得分
一、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
.
1、已知4
11e n dx x =
⎰,那么3()n x x
-展开式中含2x 项的系数为 2、已知P 为ABC ∆所在平面内的一点,满足30PA PB PC ++=,ABC ∆的面积为2015,则ABP ∆的面积为
3、若实数,,a b c 成等差数列,点(1,0)P -在动直线:0l ax by c ++=上的射影为M ,点(0,3)N ,则线段MN 长度的最小值是
4、已知函数()23log (1)1132
x x k
f x x x k x a -+-≤<⎧=⎨-+≤≤⎩,若存在k 使得函数()f x 的值域为[]0,2,
则实数a 的取值范围是
二、解答题(本大题4小题,共46分,解答应写出文字说明、证明过程或演算步骤) 5.(本小题满分10分) 设()f x =|1||1|x x -++. (1)求()2f x x ≤+的解集; (2)若不等式|1||21|
()||
a a f x a +--≥对任意实数0a ≠恒成立,求实数x 的取值范围.
6.(本小题满分12分)在锐角ABC ∆中,,,a b c 分别为角,,A B C 的对边,且
2
7
4sin cos 222
B C A +-=. (1)求角A 的大小;
(2)若BC 边上高为1,求ABC ∆面积的最小值?
7.(本小题满分12分)甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.
(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为随机变量X ,求X 的分布列和数学期望.
B 1
8. (本小题满分12分)直三棱柱111ABC A B C - 中,11AA AB AC ===,
E ,
F 分别是1CC 、BC 的中点,11AE A B ⊥,D 为棱11A B 上的点.
(1)证明:DF AE ⊥;
(
2)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余
若存在,说明点D 的位置,若不存在,说明理由.
高三第二学期数学(理科)一课一练试题一答案
1.135
2.1209
3.
4.12⎛
⎝ 5.解: (1)由零点分段法得
()2f x x ≤+的解集为{|02}x x ≤≤ ………5分
(2)|1||21|111112123||a a a a a a a +--=+--≤++-=
当且仅当11120a a ⎛⎫⎛⎫+-≤ ⎪ ⎪
⎝⎭⎝⎭时,取等号. ………8分 由不等式|1||21|()||a a f x a +--≥对任意实数0a
≠恒成立,可得|1||1|3x x -++≥
解得:32x
≤-
或32x ≥. 故实数x 的取值范围是33
(,][,)22
-∞-⋃+∞………10分
7.解:(1)设事件
A 为“两手所取的球不同色”
, 则3
2
993433321)(=⨯⨯+⨯+⨯-=A P ………4分
(2)
依题意,X 的可能取值为0,1,2.左手所取的两球颜色相同的概率为18
5
2
92
42322=++C C C C ,右手所取的两球颜色相同的概率为
4
129232323=
++C C C C …7分
24134318134111851)0(=
⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛
-==X P , 18
7
41)1851()411(185)1(=⨯-+-⨯=
=X P ,72541185)2(=⨯==X P ………10分
所以X的分布列为: 36
19
7252187124130)(=⨯+⨯+⨯=X E
8. (1)证明:
11AE A B ⊥ ,11A B ∥AB AB AE ∴⊥ 又
1AB AA ⊥ 1A E A A A
⋂=
,
AB ∴⊥
面
11
A ACC 又
AC ⊂
面
11A ACC AB AC ∴⊥ (2)
分 ,以
A 为原点建立如图所示的空间直角坐标系()0,0,0A ,10,1,2E ⎛⎫ ⎪⎝⎭,11,,022F ⎛⎫
⎪⎝⎭
,1(0,0,1)A ,1(1,0,1)B
设(),,D
x y z ,111AD AB λ= 且[0,1]λ∈,即:()(),,11
,0,0x y z λ-=(),0,1D λ∴ 11,,122DF λ⎛⎫∴=-- ⎪⎝⎭ 10,1,2AE ⎛
⎫∴= ⎪⎝
⎭ ,∴11022DF AE =-= DF AE
∴⊥ (6)
分
(2)假设存在,设面DEF 的法向量为
(),,n x y z = , 则 00
n FE n DF ⎧=⎨
=⎩ 111,,222FE ⎛⎫
=- ⎪⎝⎭ 11,,122DF λ⎛⎫
=-- ⎪
⎝⎭
11102
2211022x y z x y z λ⎧-++=⎪⎪∴⎨⎛⎫⎪-+-= ⎪⎪⎝⎭⎩ 即: ()()3211221x z y z
λλλ⎧=⎪-⎪⎨+⎪=⎪-⎩
令
()21z λ=-
()()3,12,21n λλ∴=+- . ………8分,由题可知面ABC 的法向量()0,0,1m = ………9分
平面DEF 与平面
ABC 所成锐二面的余弦值为
14
()
14cos ,14
m n m n m n
∴=
=
14
=
12λ∴=或7
4
λ= (舍) ………11分,∴ 当点D 为11A B 中点时,满足要求.………12分。