专家推理系统
- 格式:ppt
- 大小:592.00 KB
- 文档页数:18
专家系统实例
专家系统是一种基于知识推理的智能信息系统,用于解决特定领域的问题。
它们利用专家知识和推理规则,通过询问用户的问题来识别问题的本质,然后提供相应的解决方案。
以下是一些专家系统实例: 1. 动物识别专家系统:该实例是一个基于人工智能技术的专家系统,用于识别动物物种。
它利用了计算机视觉和自然语言处理技术,通过询问用户有关动物的特征和属性来识别动物。
2. 医学诊断专家系统:该实例是一个用于医学诊断的专家系统,它利用医学知识和推理规则,通过对用户提供的症状和疾病特征进行分析,从而作出准确的医学诊断。
3. 工业控制专家系统:该实例是一个用于工业控制的专家系统,它利用控制理论和推理技术,通过对用户提供的控制命令进行分析和优化,以实现更高效、更安全的工业控制。
4. 农业施肥专家系统:该实例是一个用于农业施肥的专家系统,它利用植物营养知识和推理规则,通过对用户提供的肥料信息和植物需求进行分析,从而提供最佳的施肥方案。
这些专家系统实例展示了人工智能技术在各个领域的应用,可以帮助用户解决各种复杂问题。
专家系统的基本结构
专家系统是一种模拟人类专家解决问题的计算机程序系统,其基本结构包括以下几个部分:
1.知识库:用于存储专家系统的知识,包括事实、规则、概念等。
2.推理机:用于根据知识库中的知识进行推理,得出结论。
3.解释器:用于解释推理过程和结论,向用户提供解释。
4.知识获取模块:用于从专家或其他来源获取知识,并将其添加到知识库中。
5.用户接口:用于用户与专家系统进行交互,包括输入问题、查看结论和解释等。
这些部分相互协作,共同实现专家系统的功能。
其中,知识库是专家系统的核心,它包含了专家的知识和经验,推理机则根据知识库中的知识进行推理,得出结论。
解释器则用于向用户解释推理过程和结论,以便用户理解和接受。
知识获取模块用于不断更新和完善知识库,以提高专家系统的性能和准确性。
用户接口则提供了用户与专家系统进行交互的方式,方便用户使用专家系统。
人工智能的专家系统与规则推理专家系统与规则推理是人工智能领域中的两个重要概念,它们在解决复杂问题、进行推理和决策过程中发挥着重要作用。
本文将深入探讨专家系统和规则推理的定义、原理、应用以及未来发展方向。
一、专家系统的概念和原理专家系统是通过模拟人类专家的知识和经验,以解决特定问题为目标的计算机程序。
它由知识库、推理机和用户界面三个主要组成部分构成。
知识库包含了专家知识的各种表达形式,这些知识可以是规则、事实、概念、关系等。
推理机是专家系统的核心,其作用在于根据知识库中的规则和事实,进行推理和判断,并提供解决问题的答案。
用户界面则是用户与专家系统进行交互的桥梁,使用户能够输入问题并接收系统的回答。
专家系统的原理基于规则推理,即依据一系列前提条件推导出结论的思维过程。
规则推理是基于规则库中的规则进行的,规则库是知识库的一个重要组成部分。
规则库中的规则通常采用条件-结论形式来表示,它由一个前提和一个结论组成。
前提是一个或多个条件,表示问题的特征或状态;结论是根据前提条件推导出来的结论或行动。
推理机会根据用户提供的前提条件,在规则库中寻找匹配的规则,并根据规则中的结论向用户提供答案或行动建议。
二、专家系统的应用领域专家系统的应用领域非常广泛,涵盖了医疗、金融、工业、农业等多个领域。
以下是几个典型的应用案例。
1. 医疗诊断:专家系统可以根据患者提供的症状和疾病数据库,通过规则推理的方式诊断患者疾病,给出相应的治疗建议。
2. 金融风险评估:专家系统可以根据海量的金融数据和分析模型,通过规则推理的方式评估客户的信用风险,为银行提供贷款决策的建议。
3. 工业故障诊断:专家系统可以根据设备传感器数据和故障数据库,通过规则推理的方式判断设备是否存在故障,并提供相应的维修建议。
4. 农业植物识别:专家系统可以根据植物图像和植物数据库,通过规则推理的方式识别出植物的种类以及相应的养护方法。
三、规则推理的概念和原理规则推理是基于规则库中的规则进行的推理过程,它是专家系统中的核心方法之一。
专家系统的推理机可采用的三种推理方法摘要:一、引言二、专家系统简介1.定义2.应用领域三、推理机概述1.推理机的定义2.推理机的作用四、三种推理方法1.基于规则的推理a.规则的制定b.规则的应用2.基于事实的推理a.事实的获取与存储b.事实的匹配与推理3.基于模型的推理a.模型的构建b.模型的应用与优化五、三种推理方法的优缺点1.基于规则的推理a.优点b.缺点2.基于事实的推理a.优点b.缺点3.基于模型的推理a.优点b.缺点六、总结与展望正文:一、引言随着人工智能技术的不断发展,专家系统在很多领域取得了显著的成果。
专家系统由知识库、推理机和解释器等部分组成,其中推理机负责根据输入的问题和知识库进行推理,得出解决方案。
本文将介绍专家系统中推理机可采用的三种推理方法,并分析它们的特点和适用场景。
二、专家系统简介1.定义专家系统是一种模拟人类专家在特定领域解决问题的计算机程序。
它通过将领域专家的知识和经验转化为计算机可以理解和执行的规则和知识表示,从而实现对问题的求解。
2.应用领域专家系统在许多领域都有广泛的应用,如医疗、金融、工程、化学等。
通过将领域专家的知识和经验集成到系统中,专家系统能够为用户提供专业的解决方案。
三、推理机概述1.推理机的定义推理机是专家系统中的核心部分,负责根据输入的问题和知识库进行推理,得出解决方案。
它是专家系统中实现智能推理的关键组件。
2.推理机的作用推理机的作用主要有以下几点:(1)根据输入的问题,检索知识库中的相关规则和事实;(2)对检索到的规则和事实进行组合、演绎和推理,得出可能的解决方案;(3)根据推理结果,对问题进行解释和说明。
四、三种推理方法1.基于规则的推理(1)规则的制定基于规则的推理方法主要依据专家在领域内积累的经验和知识来制定规则。
规则通常采用条件-动作(Condition-Action,CA)形式表示,即当满足某种条件时,采取相应的动作。
(2)规则的应用在推理过程中,推理机根据输入的问题,遍历知识库中的所有规则,判断规则的条件是否满足。
人工智能中的专家系统与推理机制在人工智能领域,专家系统和推理机制是两个重要的概念。
专家系统是一种模拟人类专家知识与推理能力的计算机系统,而推理机制则是专家系统实现知识推理和问题求解的核心机制。
本文将深入探讨人工智能中的专家系统与推理机制,并分析其在现实生活中的应用。
一、专家系统的概念与特点专家系统是一种基于人工智能技术构建的软件系统,旨在模拟人类专家的知识和推理能力,用于解决特定领域的问题。
其特点主要包括以下几点:1. 知识库:专家系统通过建立一个包含大量领域知识的专家知识库,其中包括实际专家的决策过程、经验和实践等。
这些知识以规则、事实、案例等形式存储。
2. 推理机制:专家系统利用专门的推理机制对知识库中的知识进行推理和解决问题。
推理机制是根据领域知识和逻辑规则,通过一系列的推理过程来实现对问题的求解。
3. 解释能力:专家系统不仅能够给出问题的答案,还可以解释其推理过程和结果。
这种解释功能使其在实际应用中更加可信和可靠。
4. 学习能力:专家系统可以通过学习和训练不断提升自身的解决问题能力。
例如,通过与领域专家的交互学习新的知识和经验。
二、推理机制的分类与应用推理机制是专家系统实现问题求解的核心机制,根据其实现方式和思想,可以分为经典推理机制和概率推理机制。
1. 经典推理机制:经典推理机制是基于逻辑推理和规则匹配的方法,主要包括前向推理、后向推理和混合推理。
前向推理从已知事实出发,根据规则逐步推导出结论;后向推理从目标结论出发,反向推导出需要的事实;混合推理结合前向和后向推理的特点,在求解过程中进行动态调整。
2. 概率推理机制:概率推理机制基于概率和统计理论,将不确定性引入问题求解过程中。
主要包括贝叶斯推理、马尔可夫链推理和模糊推理等。
概率推理机制更适用于处理信息不完备或存在不确定性的问题。
这些推理机制在各个领域中都有广泛应用。
例如,在医疗领域,专家系统可以根据患者的症状和病历数据,利用推理机制给出疾病的诊断和治疗建议;在金融领域,专家系统可以分析市场数据和投资策略,帮助投资者做出决策;在工业生产中,专家系统可以根据生产数据和经验知识,优化生产过程并提高效率。
专家系统的构成、工作原理及分类1.专家系统概念:实际上就是一种智能的计算机程序,它运用知识和推理来解决只有专家才能解决的复杂问题。
2.专家系统基本组成:知识库(数据库,规则库)和推理机(解释程序,调度程序)3.专家系统特点:(1)编程思想不同:传统程序=数据结构+算法专家系统=知识+推理(2)知识与程序是否独立:传统程序关于问题求解的知识隐含于程序中,而专家系统知识单独组成知识库,与推理机分离。
(3)处理对象不同:传统程序进行数值计算和数据处理,而专家系统还能处理符号。
(4)是否具有解释功能:传统程序没有,专家系统有。
(5)是否给出正确答案:传统程序一定可以给出正确答案,专家系统可能给出错误答案。
4.专家系统的最基本工作原理:(1)推理机和知识库是专家系统的核心,就是要能够学习知识,然后运用知识。
(2)数据库用来存放初始的数据,可以放入中间推算的中间的结果。
(3)知识获取机构用来获取知识通过人机接口和专家和知识工程师进行知识获取(4)解释机构用来给出结果的解释,说明答案为什么是这样。
5.知识获取的过程:领域专家和知识工程师进行交流沟通,专家进行知识概念解答,工程师进行数据问题提问,知识工程师将从专家处获得的答案形式化,结构化的存到知识库中。
6.知识获取类别一般分为两种,一种是非自动知识获取,即完全是由人来进行的,就是把科技文献领域专家的知识通过阅读度化,让知识工程师掌握,然后通过知识编译器变成计算机能够存储和运用的知识。
这种方式的优点是可靠,错误很少,缺点是文献知识都要通过人工来处理,太复杂了。
二是自动知识获取,即领域专家与机器对话,通过语音识别来将专家的答案变成一个机器能够处理的文字。
或者说是文字图像经过计算机的识别,放到计算机中,然后再进行归纳理解翻译,然后变成知识库里面的知识。
通常采用两者的结合来进行事务的处理。
比如翻译英文著作,可以先通过自动获取知识的专家系统,然后再经过非自动知识获取的专家系统,那样翻译的文章就非常接近原文意思呢。
专家系统中的知识表示与推理机制分析随着人工智能领域的深入发展,专家系统作为其中的一种重要应用,已经得到了广泛的应用。
在专家系统中,知识表示和推理机制是其实现的核心技术,也是其成功与否的关键之一。
因此,对专家系统中知识表示和推理机制的深入分析和探讨,对于提高专家系统的应用水平具有重要的意义。
一、知识表示知识表示是指将复杂的领域知识转换成计算机程序能够理解和操作的形式,以便于专家系统能够利用这些知识进行推理和决策。
在专家系统中,知识表示有多种形式,包括规则表达式、框架、语义网络、决策树等。
这些不同的知识表示形式各有其优缺点,根据具体应用场景和需求选择合适的知识表示形式非常重要。
1.规则表达式规则表达式是专家系统中最早应用的一种知识表示形式,其基本思想是利用一系列的规则描述问题的因果关系和逻辑关系,以此来表达专家领域的知识。
规则表达式的表达形式简单,易于理解和修改,但是当问题变得复杂或规则越来越多时,规则表达式的管理和维护就会变得非常困难。
2.框架框架是一种常用的知识表示形式,用于描述事实之间的复杂关系。
它将一个事物的属性和关系组织为一个框架或者一个对象,如一个人的框架可以包括属性姓名、年龄、性别等,以及这些属性之间的关系。
框架的优点在于能够描述属性之间的复杂关系,也便于系统扩展和更新,但是一堆框架的组合可能会导致知识表示过于复杂。
3.语义网络语义网络是一种基于图形的知识表示形式,用于描述事物之间的语义关系。
它将事实或概念表示为节点,将它们之间的关系表示为边。
语义网络的好处在于它允许系统对知识进行更高层次的表示和推理,如关于概念间的层次结构和分类关系等,但是在构造语义网络时需要考虑节点的组织和表示,避免出现过于复杂的结构。
二、推理机制推理机制是指专家系统根据已有的知识以及推理规则,通过推理过程来生成新的知识或决策结果。
推理机制是专家系统中最核心的部分,其决定了系统的推理速度和推理准确率。
1.前向推理前向推理是指根据事实和规则,从前到后推导出结论的推理方式。
专家系统是一类具有专门知识和经验的计算机智能程序系统,通过对人类专家的问题求解能力的建模,采用人工智能中的知识表示和知识推理技术来模拟通常由专家才能解决的复杂问题,达到具有与专家同等解决问题能力的水平。
这种基于知识的系统设计方法是以知识库和推理机为中心而展开的,即专家系统 = 知识库 + 推理机它把知识从系统中与其他部分分离开来。
专家系统强调的是知识而不是方法。
很多问题没有基于算法的解决方案,或算法方案太复杂,采用专家系统,可以利用人类专家拥有丰富的知识,因此专家系统也称为基于知识的系统(Knowledge-Based Systems)。
一般说来,一个专家系统应该具备以下三个要素:(1)具备某个应用领域的专家级知识;(2)能模拟专家的思维;(3)能达到专家级的解题水平。
专家系统与传统的计算机程序的主要区别如表7.1所示。
表7.1 专家系统与传统的计算机程序的主要区别列项传统的计算机程序专家系统适用范围无限制封闭世界假设建造一个专家系统的过程可以称为“知识工程”,它是把软件工程的思想应用于设计基于知识的系统。
知识工程包括下面几个方面:(1)从专家那里获取系统所用的知识(即知识获取)(2)选择合适的知识表示形式(即知识表示)(3)进行软件设计(4)以合适的计算机编程语言实现。
专家系统的发展史1965年斯坦福大学的费根鲍姆(E.A. Feigenbaum)和化学家勒德贝格(J. Lederberg)合作研制DENDRAL 系统,使得人工智能的研究以推理算法为主转变为以知识为主。
20世纪70年代,专家系统的观点逐渐被人们接受,许多专家系统相继研发成功,其中较具代表性的有医药专家系统MYCIN、探矿专家系统PROSPECTOR等。
20世纪80年代,专家系统的开发趋于商品化,创造了巨大的经济效益。
1977年美国斯坦福大学计算机科学家费根鲍姆 (E.A.Feigenballm)在第五届国际人工智能联合会议上提出知识工程的新概念。
人工智能的专家系统技术导言:人工智能(Artificial Intelligence,AI)是一门研究如何使计算机可以像人一样智能地执行任务的学科。
专家系统是其中一种应用广泛的人工智能技术,它模仿人类专家的知识和推理能力,通过计算机实现对复杂问题的解决和决策。
一、专家系统的概述专家系统是一种基于知识的计算机系统,能够模拟人类专家的决策过程,对特定领域的问题进行分析和解决。
它主要由知识库、推理机和用户界面组成。
专家系统的知识库是存储各种领域专家知识的地方,包括事实、规则、经验、案例等。
知识库使用特定的语言表示和存储知识,使得专家系统能够在特定领域中模拟专家的决策过程。
推理机是专家系统的核心,它通过使用专家系统的知识库和推理规则对问题进行推理和决策。
推理机根据用户输入的问题和已有的知识,进行搜索和匹配,产生一系列推理结果。
推理机还可以根据问题的特点,使用不同的推理方式,如正向推理、反向推理、混合推理等。
用户界面是专家系统与用户之间的桥梁,用户通过界面与专家系统交互,输入问题和获取答案。
用户界面可以是命令行界面、图形界面或自然语言界面等,使得用户能够方便地使用专家系统。
二、专家系统的组成1. 知识获取知识获取是专家系统开发的第一步,它通过采访领域专家、查阅文献、观察现场等方式,收集专家知识并转化为计算机可识别的形式。
知识获取的关键是提取和表示知识,需要选择适当的表示方法和知识表示语言。
2. 知识表示知识表示是将采集到的知识以适当的形式表示和存储,使得计算机可以理解和使用这些知识。
常用的知识表示方法有规则表示、语义网络表示、框架表示等。
规则表示是最常用的方法,将知识表示为一系列条件-动作规则,通过匹配规则,实现对问题的推理和决策。
3. 知识推理知识推理是专家系统的核心功能,它利用知识库和推理规则对问题进行推理和决策。
专家系统的推理机通常采用基于规则的推理方法,通过匹配规则和问题,产生推理结果。
推理过程可以是正向推理、反向推理或混合推理,根据问题的特点,选择合适的推理方式。
专家系统的构成和各部分的作用专家系统,听上去高大上,但其实它的构成和运作就像一碗家常菜,虽然材料多样,但每个部分都缺一不可。
咱们一块儿来看看吧。
专家系统的“头脑”就是知识库,这可是真正的宝藏,里面存着专家们的智慧结晶,真是一本活的百科全书。
想象一下,知识库就像是那位总能给你提供完美建议的老奶奶,什么问题她都能给你答复。
无论是医学、金融还是工程,只要把问题一抛出去,它就像变魔术一样,把答案转给你。
哎,真是神奇,简直让人惊叹。
接下来呢,咱们聊聊推理引擎,这可是专家系统里的“大脑”。
推理引擎就像是一位聪明的侦探,能把知识库里的信息综合起来,得出结论。
举个简单的例子,如果知识库告诉你“天气冷了”,推理引擎就会提示你“穿上外套吧,别感冒了”。
所以,当你在犹豫穿什么的时候,推理引擎就能帮你做决策,真是个靠谱的伙伴。
然后,还有用户界面,听起来简单,其实可重要了。
想象一下,如果你有一个超厉害的专家系统,但它的界面像是70年代的老电脑,谁还愿意用啊?用户界面就像一扇窗,透过这扇窗,用户可以看到专家系统的全部功能,甚至还能轻松地输入问题,就像跟朋友聊天一样。
好的界面能让人倍感亲切,使用起来也是游刃有余。
再来说说解释器。
这个小家伙虽然不显眼,但它的作用可大着呢!它负责把系统得出的结论解释给用户听。
就像老师在课堂上讲解一样,能让你明白这个答案是怎么来的,背后有什么逻辑,真是省心省力。
如果没有解释器,用户可能会一头雾水,根本搞不清楚专家系统是怎么回事。
还有一个重要的部分,叫做知识获取模块。
这部分可是个辛苦的活儿,负责不断更新和补充知识库。
就像我们生活中得不断学习,知识获取模块也要不断吸取新知识。
没有这个模块,知识库就会变成过时的古董,没什么实用价值。
就算专家系统再厉害,时间一长也会变得无能为力。
别忘了外部接口。
这一部分就像是专家系统和外界沟通的桥梁。
它能把专家系统和其他系统连接起来,让数据流通无阻。
想象一下,如果你想把专家系统里的数据分享给朋友,外部接口就能轻松搞定。
专家系统的基本要素及特点专家系统的基本要素及特点⼀个专家系统应该具备以下三个要素:(1)具备某个应⽤领域的专家级知识;(2)能模拟专家的思维;(3)能达到专家级的解题⽔平。
专家系统⼀般具有如下特点:1.具有专家⽔平的专门知识专家系统为了能够像⼈类专家那样去解决实际问题,就必须具有专家级的知识.知识越丰富,解决问题的能⼒就越强。
2.能有效地推理专家系统的根本任务是求解现实问题。
问题的求解过程是⼀个思维的过程,即推理的过程。
所以专家系统必须能够有效地进⾏推理。
3.具有获取知识的能⼒专家系统的基础是知识,为了得到知识就必须具有获取知识的能⼒。
4.具有灵活性专家系统⼀般都采⽤知识库和推理机制分离的构造原理,只要抽去知识库中的知识,它就是⼀个专家系统外壳。
如果要建⽴另外⼀个功能类似的专家系统时,只要把相应的知识装⼊到该外壳的知识库中就可以了。
5.具有透明性所谓的透明性是指系统⾃⾝及其⾏为能被⽤户所理解。
专家系统由于具有了解释机制,使⼈们在应⽤它的时候,不仅得到了正确的答案,⽽且还可以知道得到答案的依据。
6.具有交互性专家系统⼀般都是交互式的,⼀⽅⾯与专家对话获取知识,另⼀⽅⾯与⽤户对话以索取求解问题时所需的已知事实以及回答⽤户的询问。
7.具有实⽤性专家系统是根据问题的实际需求开发的,这⼀特点就决定了它具有坚实的应⽤背景。
⼀8.具有⼀定的复杂性及难度专家系统拥有知识,可以运⽤知识进⾏推理,模拟⼈类的思维过程。
但是,⼈类的知识是丰富多彩的,思维⽅式也是多种多样的。
因此,要真正实现对⼈类思维的模拟,是⼀件⾮常困难的⼯作,并有赖于其他许多学科的共同发展。
专家系统的推理方法
专家系统是一种基于人工智能技术的智能化系统,它可以模拟专家的知识和推理能力,实现自动化的决策或问题解决过程。
而专家系统的推理方法就是指在专家系统中采用的各种推理方式和技术。
目前,专家系统中常用的推理方法主要包括前向推理、后向推理、深度优先搜索、广度优先搜索、规则匹配等。
其中,前向推理是根据已知事实和规则,逐步推导得到结论的过程,常用于问题求解;后向推理则是从目标出发,逆向推导得到与目标相关的事实和规则,常用于决策推理。
除此之外,还有一些高级推理方法,如模糊推理、神经网络推理、遗传算法推理等。
模糊推理是基于模糊逻辑的推理方法,能够处理不确定性和模糊性问题;神经网络推理则是利用人工神经网络模拟人类神经系统进行推理;遗传算法推理则是基于生物遗传算法进行推理,可以通过对规则进行进化优化来提高推理效率和准确性。
总之,专家系统的推理方法是其核心功能之一,不同的推理方法适用于不同的问题场景和应用领域,可以为用户提供高效、准确的决策和问题解决服务。
- 1 -。
人工智能的专家系统与规则推理人工智能的专家系统与规则推理在当今信息技术领域中扮演着至关重要的角色。
随着人工智能技术的不断发展和普及,专家系统与规则推理的应用范围也越来越广泛。
专家系统是一种基于知识库和推理机制进行问题求解的人工智能系统,通过模拟人类专家的决策过程,实现了智能系统对复杂问题的解决能力。
规则推理则是专家系统中的核心技术之一,它通过定义一系列规则和逻辑来模拟专家的决策过程,实现了系统对知识的推理和应用。
专家系统与规则推理在医疗、金融、工业控制、教育等领域都有着广泛的应用。
在医疗领域,专家系统可以帮助医生进行疾病诊断和治疗方案选择,提高了医疗决策的准确性和效率。
在金融领域,专家系统可以帮助银行和金融机构进行风险评估和投资决策,降低了风险和提高了盈利能力。
在工业控制领域,专家系统可以帮助工程师对生产过程进行监控和优化,提高了生产效率和质量。
在教育领域,专家系统可以根据学生的学习情况和特点,提供个性化的学习建议和教学方案,提高了学习效率和成绩。
专家系统和规则推理的核心是知识表示和推理机制。
专家系统通过知识库存储专家的经验和知识,推理机制根据知识库中的规则和逻辑进行推理和决策。
知识表示是专家系统的基础,它直接影响着系统的性能和应用效果。
传统的知识表示方式有基于规则、基于框架、基于神经网络等,每种表示方式有其适用的场景和优劣势。
而推理机制则是专家系统实现智能决策的关键,它通过推理算法对知识库中的规则和事实进行推理和推断,得出最终的结论和解决方案。
随着人工智能技术的不断创新和发展,专家系统与规则推理也在不断进化和完善。
传统的专家系统和规则推理技术存在着知识表示繁琐、推理效率低下、泛化能力差等问题,难以适应复杂多变的现实环境。
因此,研究人员提出了许多新的方法和技术来改进专家系统和规则推理,如基于深度学习的知识表示、基于强化学习的推理算法、基于图神经网络的智能决策等。
这些新技术和方法不断拓展了专家系统和规则推理的应用领域和性能表现,使其在人工智能领域发挥着越来越重要的作用。
专家系统中的推理机(inferenceengine)以及主要种类本⽂参考:专家系统专家系统:模仿⼈类专家的思维⽅式进⾏决策的⼈⼯智能算法,算法核⼼是“知识库(knowledge base)”和“推理机(inference engine)”。
专家系统通常包括6个部分:⼈机交互界⾯、知识库、综合数据库、推理机、解释器、知识获取。
知识库:包含解决问题相关的领域知识。
在基于规则的专家系统中,知识⽤⼀组规则来表达。
其具有IF(条件)THEN(⾏为)结构,当规则的条件被满⾜时,触发规则,继⽽执⾏⾏为。
数据库:包含⼀组事实,⽤于匹配知识库中的IF(条件)。
推理机:执⾏推理,专家系统由此找到解决⽅案。
推理引擎链接知识库中的规则和数据库中的事实。
解释器:⽤户使⽤解释器查看专家系统怎样得出解决⽅案的过程。
⼈机交互界⾯:⼈机交互界⾯是实现⽤户(查询问题解决⽅案)和专家系统之间交流的途径。
⼀个完整的专家系统图⽰如下:推理机“推理机”根据“知识库”对“数据库”做出决策的基本原理图如下:CLIPS(C Language Integrated Production System)是⼀类推理机,原则上可以处理各种领域的推理任务,只要系统能够为CLIPS提供这个领域的特有领域规则(知识库)和事实信息(数据库)。
JessJess(Java Expert Shell System)是基于Java语⾔的CLISP推理机。
Jess(CLIPS)的优点是:推理机是开放的,⽤户提供不同的规则系统,就可以进⾏不同领域的推理⼯作,⽤户可以对推理机的推理能⼒进⾏扩展。
但,作为前向推理系统,Jess⽤空间换时间,推理会产⽣⼤量的中间数据,空间效率很低;同时,由于Jess(CLIPS)是通⽤推理引擎,不可能提供针对各种具体领域的优化能⼒,使得这种推理机制的效率很难优化。
针对本体的⼏类推理机针对本体的推理⼀般集中在集中标准的本体语⾔上,如OWL、RDFS/RDF、DAML等。