模糊多准则决策方法.pptx
- 格式:pptx
- 大小:1.30 MB
- 文档页数:8
模糊集理论 1 Fuzzy 数(1) 区间数定义1:设R 是实数域,称闭区间],[11b a 为区间数,其中1a 为区间数的下确界,1b 为区间数的上确界,1111,,b a R b a ≤∈。
设],[],,[222111b a y b a y ==是任两个区间数,则区间数的基本运算定义为:(1)],[222121b b a a y y ++=+; (2)],[122121b a b a y y --=-; (3)],[212121b b a a y y =⨯; (4)],[122121b a b a y y =÷; (5)],[111kb ka y k =; (6)]1,1[1121a a y =。
定义2:设],[],,[222111b a y b a y ==是两个闭区间,则它们的距离为:|)|||)1(),(212121b b a a y y d -+--=λλλ。
其中]1,0[∈λ表示决策者的风险态度,当5.0>λ时,称决策者是追求风险的,当5.0<λ时,称决策者是厌恶风险的,当5.0=λ时,称决策者是风险中性的,此时有:|)||(|21),(212121b b a a y y d -+-=。
定义3:两区间数的比较22],[],[21212121b b a a b b a a +>+⇔>。
22],[],[21212121b b a a b b a a +=+⇔=。
(2)Fuzzy 数定义4:一个模糊数是实数集上一个正规的凸模糊集。
对模糊数A ,它的隶属函数可表示为:⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤≤=其它0 )( 1 )(d x c x f cx b b x a x f f R A L A A其中)(x f L A为连续的单调递增函数,)(x f RA 为连续的单调递减函数,分别称作左基准函数和右基准函数。
为方便起见,记为),,,(d c b a A =。
模糊数A 的α-截集})(|{αα≥=x f x AA (]1,0[∈α)是R 的闭区间,记为],[αααR LA A A = 。