模糊决策方法
- 格式:pdf
- 大小:1.94 MB
- 文档页数:53
第七章模糊决策方法模糊决策方法是一种通过模糊数学理论来处理决策问题的方法。
在传统的决策理论中,决策者需要准确地确定问题的各种参数和变量,然后根据这些确定的参数来进行决策。
然而,在实际情况中,很多参数和变量都是模糊的,难以精确确定,而模糊决策方法则可以在这种情况下进行决策。
模糊决策方法的核心思想是引入模糊数学中的模糊集合和模糊逻辑。
模糊集合可以用来描述模糊的参数和变量,而模糊逻辑则可以用来处理模糊的推理和决策过程。
在模糊决策方法中,首先需要建立模糊集合,并对参数和变量进行模糊化处理。
这一过程通常需要借助于专家知识和经验来确定模糊集合的隶属函数。
随后,需要建立规则库,其中包含一系列的规则,用来描述决策的逻辑关系。
这些规则通常以“如果……,那么……”的形式给出。
最后,通过模糊推理方法,根据输入的模糊参数和变量,以及规则库中的规则,来得到模糊决策的结果。
模糊决策方法具有以下几个特点:首先,模糊决策方法是一种灵活的方法。
在模糊决策方法中,参数和变量可以用模糊集合来描述,而不需要准确地确定具体的数值。
这样,模糊决策方法可以更好地适应实际情况的不确定性和复杂性。
其次,模糊决策方法是一种直观的方法。
在模糊决策方法中,通过对参数和变量的模糊化处理,可以更好地反映真实世界的模糊性和不确定性。
这样,决策者可以在直观上理解和评估模糊决策的结果,更加容易接受这种决策方法。
再次,模糊决策方法是一种高效的方法。
在模糊决策方法中,通过建立规则库和使用模糊推理方法,可以在较短的时间内得到模糊决策的结果。
这样,决策者可以更快地做出决策,并在不同的决策方案之间进行比较和评估。
最后,模糊决策方法是一种可行的方法。
在实际应用中,模糊决策方法已经得到了广泛的应用,并取得了良好的效果。
例如,在工程领域中,模糊决策方法可以用来进行生产计划的制定和控制;在经济领域中,模糊决策方法可以用来进行市场预测和投资决策等。
总之,模糊决策方法是一种适应不确定性和模糊性的决策方法。
火灾危险评估中的模糊决策方法有哪些火灾是一种极其危险的灾害,给人们的生命财产安全带来了巨大的威胁。
为了有效地预防和控制火灾,对火灾危险进行准确的评估至关重要。
在火灾危险评估中,模糊决策方法因其能够处理不确定性和模糊性信息而得到了广泛的应用。
一、模糊综合评价法模糊综合评价法是一种基于模糊数学的综合评价方法。
它将多个因素对评价对象的影响进行综合考虑,通过建立模糊评价矩阵和确定权重,最终得出综合评价结果。
在火灾危险评估中,首先需要确定评价因素,如火源特性、可燃物分布、建筑结构、消防设施等。
然后,对每个评价因素划分不同的等级,并赋予相应的模糊隶属度。
例如,火源特性可以分为强、中、弱三个等级,分别对应不同的模糊隶属度。
接下来,通过专家打分或实际数据统计等方式确定各评价因素的权重。
最后,利用模糊运算规则计算出综合评价结果,从而判断火灾危险的程度。
这种方法的优点是能够全面考虑多个因素的影响,并且可以处理评价因素的模糊性和不确定性。
但它也存在一定的局限性,例如权重的确定可能存在主观性,评价结果的准确性依赖于评价因素和等级的划分是否合理。
二、模糊层次分析法模糊层次分析法是将层次分析法与模糊数学相结合的一种方法。
层次分析法通过将复杂问题分解为多个层次和因素,并进行两两比较,确定各因素的相对重要性。
而模糊层次分析法则在此基础上,引入了模糊数来表示两两比较的结果,从而更好地处理不确定性。
在火灾危险评估中,运用模糊层次分析法可以构建火灾危险评估的层次结构模型,包括目标层、准则层和指标层。
目标层即为火灾危险程度的评估;准则层可以包括火灾发生的可能性、火灾的危害程度等;指标层则是具体的评估指标,如火源类型、人员密度等。
通过专家判断或问卷调查等方式,对各层次因素进行两两比较,并用模糊数表示比较结果。
然后,利用模糊数的运算规则计算出各因素的权重。
最后,综合各因素的权重和评价结果,得出火灾危险的评估值。
模糊层次分析法在处理复杂系统的多因素决策问题时具有较好的效果,能够有效地降低主观因素的影响,但计算过程相对较为复杂。
几种模糊多属性决策方法及其应用一、本文概述随着信息时代的快速发展,决策问题日益复杂,涉及的属性越来越多,决策信息的不确定性也越来越大。
在这种背景下,模糊多属性决策方法应运而生,成为解决复杂决策问题的重要工具。
本文旨在探讨几种典型的模糊多属性决策方法,包括模糊综合评价法、模糊层次分析法、模糊集结算子等,并分析它们在实际应用中的优势和局限性。
本文首先介绍了模糊多属性决策方法的基本概念和理论基础,为后续研究提供必要的支撑。
接着,详细阐述了三种常用的模糊多属性决策方法,包括它们的原理、步骤和应用范围。
在此基础上,通过案例分析,展示了这些方法在实际应用中的具体运用和取得的效果。
通过本文的研究,读者可以深入了解模糊多属性决策方法的原理和应用,掌握其在实际问题中的使用技巧,为解决复杂决策问题提供有力支持。
本文也为进一步研究和改进模糊多属性决策方法提供了参考和借鉴。
二、模糊多属性决策方法概述模糊多属性决策(Fuzzy Multiple Attribute Decision Making,FMADM)是一种处理不确定性、不精确性和模糊性的决策分析方法。
在实际问题中,由于信息的不完全、知识的局限性或环境的动态变化,决策者往往难以获取精确的属性信息和权重信息,这使得传统的多属性决策方法难以应用。
模糊多属性决策方法通过引入模糊集理论,能够更好地处理这种不确定性和模糊性,为决策者提供更合理、更可靠的决策支持。
模糊多属性决策方法的核心思想是将决策问题中的属性值和权重视为模糊数,利用模糊集理论中的运算法则进行决策分析。
根据不同的决策目标和背景,模糊多属性决策方法可以分为多种类型,如模糊综合评价、模糊多目标决策、模糊群决策等。
这些方法在各自的领域内都有着广泛的应用,如企业管理、项目管理、环境评估、城市规划等。
在模糊多属性决策方法中,常用的模糊数有三角模糊数、梯形模糊数、正态模糊数等。
这些模糊数可以根据实际问题的需要选择合适的类型,以更好地描述属性值的不确定性和模糊性。
模糊集理论 1 Fuzzy 数(1) 区间数定义1:设R 是实数域,称闭区间],[11b a 为区间数,其中1a 为区间数的下确界,1b 为区间数的上确界,1111,,b a R b a ≤∈。
设],[],,[222111b a y b a y ==是任两个区间数,则区间数的基本运算定义为:(1)],[222121b b a a y y ++=+; (2)],[122121b a b a y y --=-; (3)],[212121b b a a y y =⨯; (4)],[122121b a b a y y =÷; (5)],[111kb ka y k =; (6)]1,1[1121a a y =。
定义2:设],[],,[222111b a y b a y ==是两个闭区间,则它们的距离为:|)|||)1(),(212121b b a a y y d -+--=λλλ。
其中]1,0[∈λ表示决策者的风险态度,当5.0>λ时,称决策者是追求风险的,当5.0<λ时,称决策者是厌恶风险的,当5.0=λ时,称决策者是风险中性的,此时有:|)||(|21),(212121b b a a y y d -+-=。
定义3:两区间数的比较22],[],[21212121b b a a b b a a +>+⇔>。
22],[],[21212121b b a a b b a a +=+⇔=。
(2)Fuzzy 数定义4:一个模糊数是实数集上一个正规的凸模糊集。
对模糊数A ,它的隶属函数可表示为:⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤≤=其它0 )( 1 )(d x c x f cx b b x a x f f R A L A A其中)(x f L A为连续的单调递增函数,)(x f RA 为连续的单调递减函数,分别称作左基准函数和右基准函数。
为方便起见,记为),,,(d c b a A =。
模糊数A 的α-截集})(|{αα≥=x f x AA (]1,0[∈α)是R 的闭区间,记为],[αααR LA A A = 。
几种模糊多属性决策方法及其应用随着社会的不息进步和进步,人们在决策过程中面临的问题也越来越复杂。
面对多属性决策问题,传统的决策方法往往无法有效处理模糊性和不确定性。
模糊多属性决策方法应运而生,它能够更好地处理决策问题中存在的模糊性和不确定性,援助决策者做出更科学、合理的决策。
本文将介绍几种常见的模糊多属性决策方法及其应用,旨在援助读者了解这些方法,并在实际应用中发挥其作用。
二、几种常见的模糊多属性决策方法1. 人工智能模糊决策方法人工智能模糊决策方法是基于模糊集合理论和人工智能技术的决策方法,其核心优势在于可以更好地处理模糊性和不确定性的多属性决策问题。
其中,模糊综合评判方法是最常用的一种人工智能模糊决策方法。
该方法通过建立评判矩阵,运用模糊数学理论计算评判矩阵的权重,从而对多属性决策问题进行评判和排序。
2. 层次分析法层次分析法是一种将问题层次化、分解的多属性决策方法。
该方法通过构建决策模型的层次结构,将决策问题划分为若干个层次。
然后,通过对每个层次的评判和权重计算,最终得到决策问题的最优解。
层次分析法对于处理多属性决策问题具有很好的适用性,因为它能够充分思量到不同层次因素的权重干系。
3. 灰色关联分析法灰色关联分析法是一种基于灰色系统理论的多属性决策方法。
该方法主要通过灰色关联度的计算来评判和排序决策方案。
它能够将不同属性之间的关联度思量在内,从而得到较为客观合理的结果。
灰色关联分析法在处理模糊多属性决策问题方面具有较好的效果,主要用于较为复杂的决策问题。
三、模糊多属性决策方法的应用1. 经济决策在经济决策中,往往存在多个因素需要综合思量而做出决策。
模糊多属性决策方法可以援助决策者在不确定性和模糊性的状况下,找到最优的决策方案。
例如,在投资项目评估中,可以利用模糊综合评判方法对不同项目进行评判和排序,从而选择最具优势的投资项目。
2. 环境决策环境决策中存在许多模糊不确定性的因素,传统的决策方法无法很好地处理这些问题。
模糊决策的三种方法模糊决策是一种基于模糊理论的决策方法,其目标是针对现实生活中的不确定性和模糊性进行决策。
模糊决策的核心思想是将决策问题中的模糊信息和不确定性进行数学建模和分析,以求得合理的决策结果。
常见的模糊决策方法有模糊集合理论、模糊数学和模糊逻辑。
下面将详细介绍这三种方法。
1.模糊集合理论模糊集合理论是模糊决策的基础,它通过引入模糊概念来描述现实世界中的模糊性和不确定性。
在模糊集合理论中,一个元素可以同时属于多个集合,并以一些隶属度来描述其在各个集合中的程度。
这使得模糊集合能够更好地处理复杂的、模糊的决策问题。
在模糊集合理论中,最常用的模糊决策方法是模糊综合评价和模糊层次分析。
模糊综合评价通过将决策问题转化为模糊评价问题,然后利用模糊集合运算来对待选方案进行评价和排序。
模糊层次分析将决策问题转化为多层次的模糊子问题,然后通过对每个子问题进行模糊比较和模糊一致性检测来确定权重和评价方案。
2.模糊数学模糊数学是将模糊理论应用于数学方法和技术的一门学科,它通过引入模糊集合和模糊逻辑等概念,对模糊决策问题进行建模和分析。
在模糊数学中,模糊数是一种介于0和1之间的数值,用来描述元素在一些模糊集合中的隶属度。
对于模糊决策问题,模糊数学提供了一系列有效的方法,如模糊规划、模糊优化和模糊最优化等。
模糊规划通过引入模糊目标和模糊约束,对决策变量进行模糊处理,从而求解满足一定模糊要求的最优方案。
模糊优化通过引入模糊目标函数和模糊约束条件,以及模糊偏导数和模糊梯度等概念,对决策变量进行模糊处理和优化,以求得最优解。
模糊最优化是模糊优化的一种特殊情况,它在模糊目标函数和模糊约束条件下求解最优解。
3.模糊逻辑模糊逻辑是一种能够处理模糊命题和模糊推理的逻辑系统,它通过引入模糊命题和模糊规则,对决策问题进行描述和推理。
在模糊逻辑中,命题的真值不再是0或1,而是一个介于0和1之间的模糊数,用来表示命题的隶属度。
对于模糊决策问题,模糊逻辑提供了一系列有效的方法,如模糊推理、模糊控制和模糊识别等。
第七章
模糊决策方法
引例:你某时到某地去接一个“大胡子.
高个子. 长头发. 戴宽边黑色眼镜的中年
男子”,尽管提供的只有一个精确的信
息——男人,而其它的信息——大胡子.
高个子. 长头发. 戴宽边黑色眼镜. 中年男
人都是模糊的,但你对这些模糊概念经
过头脑的综合分析判断就可以接到这个
人。
人脑较之精确计算机,就是能在信息不完整不精确的情况下,作出判断与决策,模糊性常常是信息浓缩所致,目的是为了提高交换的概率,所以不是毫无用处,而是积极的特性。
sy1
天气冷热雨的大小风的强弱人的胖瘦年龄大小个子高低
幻灯片 2
sy1 sheng yu, 2016/5/27
Lotfi A. Zadeh
Eurasian Academy.
https:///wiki/Lotfi_A._Zadeh
模糊数VS灰数P162
随机性的不确定性,也就是概率的不确定性,主要与事件的
”,
掷一粒骰子出现6点”等,
它们的发生是一种偶然现象,具有不确定性
在这里事件本身(“有雨”,“出现6点”)是确定的,而事
基于模糊推理的ERP安全供货库存预测
2013/5/20 来源:万方数据
作者:邵江霞张美风
L.A.Zadeh, 1921--)教
年发表了题为《模糊集合论》(《Fuzzy 》)的论文,从而宣告模糊数学的诞生。
扎德教授多年来致力于“计算机”与“大系统”的矛盾研究,集中思考了计算机为什么不能像人脑那样进行灵活的思
“当系统的复杂性日趋增长时,我们做出系统特性的精确然而有意义的描述的能力将相应降低,直至达到这样一个阈值,一旦超过它,精确性和有意义性将变成两个几乎互相排斥的特
“常规数学方法的应用对于本质上是模糊系统的分析来说是不协调的,它将引起理论和实际之间的很大差距。
”因此,必须寻找到一套研究和处理模糊性的数学方法。
这就是模糊数学产
例2在标志年龄(0〜100)的数轴上,标出“年老”、“年轻”的区间。
这里需要考虑…40岁,…50岁,…60岁,…
属于“年轻”还是“年老”。
从“长”到“短”,从“年轻”到“年老”。
经历了一个从量变到质变的连续过渡过程。
“长”“短”“年轻”“年老”这些模糊概念无法用特征函数来刻画。
Zadeh把特征函数的值域由{0,1}扩张到[0,1],引入了隶属函数,定义的模糊集合,使模糊概念的数学表达成为可能。
两点说明:
运算
)
(,Y X F S R 设);,(),( ,),(y x S y x R Y X y x S R );
,(),( ,),(y x S y x R Y X y x S R ),(),(),)((y x S y x R y x S R 包含:相等:并:倒置
倒置
倒置
模糊关系的性质:模糊关系的表示-模糊矩阵
模糊矩阵-Example
▪设有四种物品,苹果、乒乓球、书、花组成的论域,x2,…,x n表示,它们的相似程度可以用模糊关系用x
1
示:
的“恒等关系”,表示恒等关系I的矩阵为单位
模糊矩阵的运算性质
(6)0-1律:A∪O=A, A∩O=O;
E∪A=E,E∩A=A;
相比较,没有什么优越,记r
=0,x
ii
两者的优越成分合在一起
有长处而未发现x
比x
j
相比若不分优劣
模糊优先关系排序决策-例
▪例:已知“子女像父亲”模糊优先关系
0 0.9 0.2
模糊相似优先比决策-例 多种菊花的排序(p214)
幻灯片 188
ly2 Liu Yang, 2013/5/17。