人教版数学九年级下27.2.3相似三角形的应用举例教案及教学反思
- 格式:docx
- 大小:102.22 KB
- 文档页数:5
人教初中数学九年级下册《27-2-3 相似三角形的应用》(教案)一. 教材分析人教初中数学九年级下册《27-2-3 相似三角形的应用》这一节主要让学生了解相似三角形的性质,并学会运用相似三角形解决实际问题。
在教材中,通过丰富的实例,引导学生探究相似三角形的性质,培养学生的观察能力、思考能力和动手能力。
同时,本节课也是对前面所学三角形的知识的巩固和提高,为后续学习其他几何知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的定义和性质,但对相似三角形的应用可能还比较陌生。
因此,在教学过程中,教师需要通过实例引导学生理解相似三角形的应用,并学会运用相似三角形解决实际问题。
此外,学生可能对如何运用相似三角形解决实际问题存在疑惑,需要在教学过程中进行解答。
三. 教学目标1.理解相似三角形的性质,并能运用相似三角形解决实际问题。
2.培养学生的观察能力、思考能力和动手能力。
3.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.掌握相似三角形的性质。
2.学会运用相似三角形解决实际问题。
五. 教学方法1.实例教学:通过丰富的实例,引导学生理解相似三角形的应用。
2.问题驱动:提出问题,引导学生思考和探究相似三角形的性质。
3.小组讨论:分组讨论,培养学生的合作能力和解决问题的能力。
4.练习巩固:布置适量练习题,让学生巩固所学知识。
六. 教学准备1.准备相关的实例和图片。
2.准备练习题和答案。
3.准备教学课件。
七. 教学过程1.导入(5分钟)通过一个实际问题引出相似三角形的概念,激发学生的兴趣。
例如:在同一平面内,有两三角形,它们的对应角度相等,对应边成比例,请问这两个三角形是什么关系?2.呈现(10分钟)展示相似三角形的性质,引导学生观察和思考。
可以通过展示图片和实例,让学生直观地了解相似三角形的性质。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,运用相似三角形的性质进行解答。
教师巡回指导,解答学生的疑问。
人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计1一. 教材分析人教版数学九年级下册27.2.3《相似三角形应用举例》一节,是在学生学习了相似三角形的性质和判定之后,进一步探讨相似三角形在实际问题中的应用。
通过本节课的学习,使学生了解相似三角形在实际生活中的重要性,提高他们运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了相似三角形的性质和判定,具备了一定的逻辑思维能力和空间想象能力。
但学生在解决实际问题时,往往缺乏将数学知识与实际问题相结合的能力。
因此,在教学过程中,教师需要注重引导学生将所学知识应用于实际问题,提高他们的数学应用能力。
三. 教学目标1.理解相似三角形在实际问题中的应用,提高学生运用数学知识解决实际问题的能力。
2.培养学生的逻辑思维能力和空间想象能力。
3.增强学生对数学学科的兴趣和自信心。
四. 教学重难点1.重点:相似三角形在实际问题中的应用。
2.难点:将实际问题转化为数学问题,运用相似三角形的性质和判定解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究相似三角形在实际问题中的应用。
2.利用多媒体课件辅助教学,直观展示实际问题,提高学生的空间想象能力。
3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
4.注重个体差异,因材施教,使每个学生都能在课堂上得到有效的训练和提高。
六. 教学准备1.准备相关实际问题,用于引导学生运用相似三角形知识解决。
2.准备多媒体课件,展示实际问题及解题过程。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如建筑物的设计、尺子测量等,引导学生思考这些实际问题与数学知识的联系。
从而引出本节课的主题——相似三角形在实际问题中的应用。
2.呈现(10分钟)教师展示一个实际问题:在同一平面内,有两座建筑物,一座高度为30米,另一座高度为18米。
请问,在离这两座建筑物等距离的地点,如何测量出两座建筑物的高度比?教师引导学生分析问题,并提出解决方法:利用相似三角形。
人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计2一. 教材分析人教版数学九年级下册27.2.3《相似三角形应用举例》是本节课的主要内容。
相似三角形在实际生活中的应用非常广泛,是解决实际问题的重要工具。
本节课通过具体的例子让学生了解相似三角形的性质,学会运用相似三角形解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的定义和性质,具备了一定的数学思维能力。
但部分学生在解决实际问题时,仍存在运用不当的情况,需要通过本节课的学习加以巩固。
三. 教学目标1.理解相似三角形的性质,并能够运用到实际问题中。
2.培养学生的数学思维能力和解决问题的能力。
3.提高学生对数学的兴趣,增强学生的自信心。
四. 教学重难点1.掌握相似三角形的性质。
2.学会如何运用相似三角形解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究相似三角形的性质。
2.通过具体的例子,让学生学会运用相似三角形解决实际问题。
3.采用小组合作学习的方式,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学PPT,展示具体的例子。
2.准备一些实际问题,用于课堂练习。
3.准备黑板,用于板书。
七. 教学过程1.导入(5分钟)利用一个实际问题引入本节课的主题,引导学生思考如何运用相似三角形解决问题。
2.呈现(15分钟)通过PPT展示相似三角形的性质,让学生了解相似三角形的定义和性质。
3.操练(20分钟)让学生分组讨论,尝试解决一些实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)对学生的解答进行讲评,引导学生总结相似三角形的性质和解决实际问题的方法。
5.拓展(10分钟)给学生一些较复杂的问题,让学生尝试解决。
教师提供必要的指导。
6.小结(5分钟)对本节课的内容进行总结,强调相似三角形的性质和解决实际问题的方法。
7.家庭作业(5分钟)布置一些相关的练习题,让学生巩固所学知识。
8.板书(5分钟)教师在黑板上板书相似三角形的性质和解决实际问题的方法。
人教版九年级数学下册:27.2.3《相似三角形应用举例》教案1一. 教材分析《相似三角形应用举例》是人教版九年级数学下册第27章的一部分。
本节内容主要通过具体的例子来介绍相似三角形的应用,帮助学生理解和掌握相似三角形的性质和应用。
教材通过丰富的例题和练习题,使学生能够将相似三角形的知识应用到实际问题中,提高解决问题的能力。
二. 学情分析九年级的学生已经学习了一定程度的代数和几何知识,对相似三角形的性质有一定的了解。
但是,学生可能对相似三角形在实际问题中的应用还不够熟悉。
因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握相似三角形的应用。
三. 教学目标1.理解相似三角形的性质。
2.能够运用相似三角形解决实际问题。
3.提高学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:相似三角形的性质和应用。
2.难点:如何将相似三角形的知识应用到实际问题中。
五. 教学方法采用问题驱动的教学方法,通过具体的例子和实际问题,引导学生理解和掌握相似三角形的应用。
同时,运用小组合作和讨论的方式,激发学生的学习兴趣,提高学生的参与度。
六. 教学准备1.准备相关的例题和练习题。
2.准备教学PPT或者黑板。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容。
例如,一个梯形的对角线长度分别为8cm和12cm,求梯形的面积。
让学生尝试解决这个问题,从而引出相似三角形的性质和应用。
2.呈现(15分钟)通过PPT或者黑板,呈现相似三角形的性质和应用的例题。
例如,两个相似三角形的边长比例为2:3,求这两个三角形的面积比例。
引导学生观察和分析例题,理解相似三角形的性质。
3.操练(15分钟)让学生分组合作,解决一些类似的实际问题。
例如,两个相似三角形的边长比例为3:4,求这两个三角形的面积比例。
通过小组合作和讨论,引导学生运用相似三角形的性质解决问题。
4.巩固(10分钟)提供一些练习题,让学生独立完成。
•••••••••••••••••《相似三角形的应用》教学反思《相似三角形的应用》教学反思3篇引导语:作为一位刚到岗的人民教师,我们的任务之一就是课堂教学,写教学反思能总结教学过程中的很多讲课技巧,那么应当如何写教学反思呢?下面是小编精心整理的《相似三角形的应用》教学反思,仅供参考,大家一起来看看吧。
《相似三角形的应用》教学反思篇1相似三角形的应用分两块内容,一块是相似三角形的周长比和面积比与相似比的关系,另一块是相似性质在实际生活中的应用。
第一个应用总的来说是比较简单的,没有太难,太偏的问题,但实际应用的难度就大大提高了,涉及到的实际问题,不仅题意难以理解,还有就是问题复杂,学生摸不找头脑,找不到解体思路,像我新课后完成后布置学生完成的课后作业题2、5、6题,有些成绩较好的学生跑到我办公室说:“老师,你布置的书本作业我一个都做不来。
”第一块内容虽然相对而言比较简单,但学生也有比较容易错的地方,比如说题目条件是两个相似三角形的面积比是多少,学生往往会直接将其开方得到两个相似三角形相似比是多少,这样做的原因就是学生还没真正理解“相似的性质”——先要有相似,才有比例。
另外,在相似性质的应用中有的时候还会用到相似比等于对应线段的比(比如说对应边上的高的比),用到这个性质的题目比较多,特别是在这样一个图形中:直角三角形里面放一个长方形或正方形。
学生刚开始的时候不容易找到。
相似性质的应用也常常与“比例尺”问题结合起来,学生在单位的换算上经常出错,关键是科学计数法还不熟练。
相似性质应用最多的地方就是求面积问题,还有类问题就是三角形与三角形之间虽然不相似,但它们等高,所以它们的面积比等于它们底边的比,也就等于它们底边所在的一组三角形的相似比。
在第二块内容的设计中,我主要以书本上的例题为主导,由于时间关系通过例题介绍了两种构造相似三角形求出树高的方法。
特别是第一种方法中,要用到科学中入射角等于反射角的原理,在以后学生的练习中,发现个别学生不知道这个原理,还发现部分学生将这个图形与“平行预备定理”的图形相混淆了,由平行预备定理直接得出这个图形中的两个三角形相似。
人教初中数学九年级下册《27-2-3 相似三角形的应用》(教学设计)一. 教材分析教材介绍了相似三角形的性质和应用。
通过前面的学习,学生已经掌握了相似三角形的定义和性质,本节课将通过实际问题引出相似三角形的应用,进一步培养学生的解决问题的能力。
二. 学情分析学生在八、九年级已经学习了三角形的性质、相似三角形的定义和性质,对本节课的内容有一定的认知基础。
但部分学生对实际问题与数学知识的联系还不够明确,需要通过实例来引导他们将理论知识运用到实际问题中。
三. 教学目标1.理解相似三角形的性质及应用。
2.能运用相似三角形的性质解决实际问题。
3.培养学生的解决问题能力和合作交流能力。
四. 教学重难点1.重点:相似三角形的性质及应用。
2.难点:如何将实际问题转化为数学问题,并运用相似三角形的性质解决。
五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生主动探究、合作交流,培养他们的解决问题能力。
六. 教学准备1.准备相关的实际问题,如测量身高、计算电阻等。
2.准备多媒体教学设备,如投影仪、计算机等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如测量身高、计算电阻等,引导学生思考如何利用相似三角形的性质来解决这些问题。
2.呈现(10分钟)呈现一个测量身高的实际问题:在地面上有一个身高为h的人,他头部的影长为c,他脚部的影长为b,求人的实际身高。
3.操练(15分钟)引导学生分小组进行讨论,如何利用相似三角形的性质来解决这个问题。
让学生动手画图,标出已知量和未知量,然后根据相似三角形的性质列出比例关系式。
4.巩固(5分钟)对学生的解答进行点评,讲解相似三角形的性质在解决这个问题时的应用。
让学生再次确认他们的解答是否正确。
5.拓展(5分钟)让学生思考:还有哪些实际问题可以利用相似三角形的性质来解决?让学生举例说明,并进行讲解。
6.小结(5分钟)对本节课的内容进行总结,让学生明确相似三角形的性质及应用。
《相似三角形的性质》教学设计方案(第一课时)一、教学目标:1. 理解相似三角形的定义,掌握相似三角形的性质。
2. 能够运用相似三角形的性质解决实际问题。
3. 培养观察、分析和解决问题的能力。
二、教学重难点:教学重点:相似三角形的定义及性质的应用。
教学难点:理解相似三角形的对应比值相等以及灵活运用性质解决实际问题。
三、教学准备:1. 准备教学用具:黑板、白板、图片、尺子等。
2. 制作PPT,设计相关问题引导学生思考。
3. 搜集一些相似三角形的实际应用案例,以便于学生了解性质的重要性。
4. 安排一次实践活动,让学生动手制作相似三角形,加深理解。
四、教学过程:本节课的教学对象是八年级的学生,他们已经具备一定的认知能力和动手操作能力。
本节课的重点是相似三角形的性质的探究和应用,难点是相似三角形性质的灵活运用。
1. 引入:首先通过一些生活中的相似三角形实例,让学生感受到相似三角形的存在和其在实际生活中的应用,从而激发学生的学习兴趣。
2. 探究:引导学生通过观察、测量、比较等方法,探究相似三角形的性质。
可以利用直尺、剪刀、纸张等工具,进行实际操作和实验。
在探究过程中,鼓励学生发现问题、提出问题、解决问题。
3. 讲解:在学生探究的基础上,教师进行适当的讲解和说明,帮助学生理解相似三角形的性质及其证明过程。
4. 练习:设计一些与相似三角形性质相关的练习题,让学生进行练习。
这些练习题应该包括基础题和提高题,以适应不同学生的学习需求。
5. 总结:在课程结束前,让学生总结本节课的主要内容,包括相似三角形的性质及其应用,并鼓励学生提出自己的问题和观点。
6. 作业:布置一些与相似三角形性质相关的作业,包括基础题和提高题,以帮助学生巩固和拓展所学知识。
在教学方法上,可以采用探究式学习和合作学习的方法,鼓励学生积极参与、动手实践、交流合作,以培养学生的自主学习能力和合作精神。
同时,可以利用多媒体教学技术,如PPT、视频等,来辅助教学,提高教学效果。
解析:先利用△BDC ∽△FGE 得到 = ,可计算出 BC =6m , 27.2.3 相似三角形的应用举例
1.运用三角形相似的知识计算不能直接测量物体的长度和高度;
(重点)
2.灵活运用三角形相似的知识解决实际问题.(难点)
一、情境导入
胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七
大奇观之一” .在古希腊,有一位伟大的科学家叫泰勒斯.一天,希
腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃
及金字塔的高度吧!”这在当时条件下是个大难题,因为是很难爬到
塔顶的.你知道泰勒斯是怎样测量金字塔的高度的吗?
二、合作探究
探究点:相似三角形的应用
【类型一】 利用影子的长度测量物体的高度
如图,某一时刻一根 2m 长的竹竿 EF 的影长 GE 为 1.2m ,此时,
小红测得一棵被风吹斜的柏树与地面成 30°角,树顶端 B 在地面上
的影子点 D 与 B 到垂直地面的落点 C 的距离是 3.6m ,求树 AB 的长.
BC 2 3.6 1.2
CD GE 3.6 1.2 DCE = °,∴△90
BAE ∽△DCE ,∴ = .∵CE =2.5m ,DC =1.6m ,∴= ,∴AB =12.8,∴大楼 AB 的高度为 12.8m.
然后在 △R t ABC 中利用含 30 度的直角三角形三边的关系即可得到 AB
的长.
BC EF BC 2 解:如图,CD =3.6m ,∵△BDC ∽△FGE ,∴ = ,即 = ,
∴BC =6m.在 △R t ABC 中,∵∠A =30°,∴AB =2BC =12m ,即树长
AB 是 12m.
方法总结:解答此类问题时,首先要把实际问题转化为数学问
题.利用相似三角形对应边成比例建立相等关系求解.
变式训练:见《学练优》本课时练习“课堂达标训练” 第 1 题
【类型二】 利用镜子的反射测量物体的高度
小红用下面的方法来测量学校教学大楼 AB 的高度.如图,在水
平地面点 E 处放一面平面镜,镜子与教学大楼的距离 AE =20m.当她
与镜子的距离 CE =2.5m 时,她刚好能从镜子中看到教学大楼的顶端
B .已知她的眼睛距地面高度 D
C =1.6m ,请你帮助小红测量出大楼 AB
的高度(注:入射角=反射角).
解析:根据物理知识得到∠BEA =∠DEC ,所以可得△BAE ∽△DCE ,
再根据相似三角形的性质解答.
解:如图,∵根据光的反射定律知∠BEA =∠DEC ,∵∠BAE =∠
AB AE DC EC
AB 20 1.6 2.5
方法总结:解本题的关键是找出相似的三角形,然后根据对应边成比例列出方程.解题时要灵活运用所学各学科知识.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型三】利用标杆测量物体的高度
如图,某一时刻,旗杆AB影子的一部分在地面上,另一部分在建筑物的墙面上.小明测得旗杆AB在地面上的影长BC为9.6m,在墙面上的影长CD为2m.同一时刻,小明又测得竖立于地面长1m的标杆的影长为1.2m.请帮助小明求出旗杆的高度.
解析:根据在同一时刻物高与影长成正比例,利用相似三角形的对应边成比例解答即可.
解:如图,过点D作DE∥BC,交AB于E,∴DE=CB=9.6m,BE =CD=2m,∵在同一时刻物高与影长成正比例,∴EA∶ED=1∶1.2,∴AE=8m,∴AB=AE+EB=8+2=10m,∴学校旗杆的高度为10m.
方法总结:利用杆或直尺测量物体的高度就是利用杆(或直尺)的高(长)作为三角形的边构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.
变式训练:见《学练优》本课时练习“课堂达标训练”第3题
=°,易得△
90A BE∽△CDE.根据=,即可算出AB的高.【类型四】利用相似三角形的性质设计方案测量高度
星期天,小丽和同学们在碧沙岗公园游玩,他们来到1928年冯
玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽问:“这个纪
念碑有多高呢?”请你利用初中数学知识,设计一种方案测量纪念碑
的高度(画出示意图),并说明理由.
解析:设计相似三角形,利用相似三角形的性质求解即可.在距离纪念碑AB的地面上平放一面镜子E,人退后到D处,在镜子里恰
好看见纪念碑顶A.若人眼距地面距离为CD,测量出CD、DE、BE的长,就可算出纪念碑AB的高.
解:设计方案例子:如图,在距离纪念碑AB的地面上平放一面
镜子E,人退后到D处,在镜子里恰好看见纪念碑顶A.若人眼距地面距离为CD,测量出CD、DE、BE的长,就可算出纪念碑AB的高.理由:测量出CD、DE、BE的长,因为∠CED=∠AEB,∠D=∠B
CD DE
AB BE
方法总结:解题的关键是根据相似三角形的性质设计出具体图形,将实际问题抽象出数学问题求解.
变式训练:见《学练优》本课时练习“课后巩固提升”第6题
三、板书设计
1.利用相似三角形测量物体的高度;
2.利用相似三角形测量河的宽度;
3.设计方案测量物体高度.
通过本节知识的学习,可以使学生综合运用三角形相似的判定和性质解决问题,发展学生的应用意识,加深学生对相似三角形的理解和认识.基本达到了预期的教学目标,大部分学生都学会了建立数学模型,利用相似的判定和性质来解决实际问题.。