由题意得,90°-x=14(180°-x). 所以x=60°.
所以这个角的度数是60°.
知识点 余角、补角的性质及计算
1.如果∠1和∠2互为补角,且∠1>∠2,那么∠2的余角为 ( D )
A.12(180°-∠1)
B.12∠1
C.12(∠1+∠2)
D.12(∠1-∠2)
【解析】因为12(∠1-∠2)+∠2=12(∠1+∠2)=90°,所以∠2的余角为12(∠1-∠2).
【解析】180°-46°35'
=179°60'-46°35'
=133°25'.
4.如果∠α和2∠β互补,且∠α<2∠β,给出下列四个式子:①90°-∠α;②2∠β-90°;
③∠β-12∠α;④∠β+12∠α.其中可以表示∠α余角的式子有( ) B
A.4个
B.3个
C.2个
D.1个
【解析】因为∠α与2∠β互补,
5.如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,则 ∠COE的余角是_____∠_C__O_D__,∠__A_O_D___. 【解析】因为射线OD和射线OE分别平分∠AOC和∠BOC, 所以∠AOD=∠COD=12∠AOC,∠COE=∠BOE=12∠BOC. 因为∠AOC+∠BOC=180°, 所以∠COD+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12×180°=90°, 所以∠COE+∠AOD=90°, 所以∠COE的余角是∠COD,∠AOD.
(2)因为OE平分∠BOD,OF平分∠AOC, 所以∠DOE=∠EOB=12∠BOD, ∠COF=∠FOA=12∠AOC. 因为∠AOD=k∠BOC,∠EOF=14∠BOC, 即∠BOC=4∠EOF, 所以∠AOD=4k∠EOF. 因为∠BOC=∠BOD+∠AOC-∠AOD,∠BOD=2∠BOE,∠AOC=2∠COF, ∠BOE+∠COF-∠BOC=∠EOF, 所以4∠EOF=2(∠EOF+4∠EOF)-4k∠EOF,k=32.