专题四(学生):导数复习
- 格式:doc
- 大小:862.50 KB
- 文档页数:14
导数知识点总结复习导数是微积分中的重要概念,用于描述一个函数在其中一点的变化率。
复习导数的知识点主要包括以下几个方面:1.导数的定义及其几何意义:导数的定义是函数在其中一点的极限,用极限的观点来描述函数的瞬时变化率。
几何意义上,导数表示函数曲线在其中一点的切线斜率。
2.导数的计算方法:(1)通过导数的定义计算导数,即计算函数在其中一点的极限;(2)使用基本的导数公式,如常数的导数、幂函数的导数、指数函数的导数等;(3)使用求导法则,如乘积法则、商法则、复合函数的导数等。
3.导数的基本性质:(1)导数存在的条件,即函数在其中一点处可导的充分必要条件是左右导数相等;(2)导数为零的点被称为函数的驻点,具有重要的几何意义;(3)导数具有局部性质,即导数为正表示函数在该点上升,导数为负表示函数在该点下降。
4.高阶导数:高阶导数是指多次求导后得到的导数。
n阶导数可以通过n次对函数进行求导得到,一阶导数是函数的切线斜率,二阶导数是切线的斜率的变化率,三阶导数是斜率变化率的变化率,依此类推。
5.导数在函数图像上的应用:(1)通过导数可以分析函数的增减性及极值问题,如通过导数的正负可以判断函数的单调性;(2)通过导数及高阶导数可以研究函数的拐点及凹凸性;(3)导数还可以用于表示速度、加速度等实际问题中的变化率。
除了上述内容,还可以继续深入学习以下导数的相关知识点:6.隐函数求导:当给定一个方程而不是显式函数时,可以通过对方程两边同时求导来求得隐函数的导数。
7.参数方程求导:若一个曲线可以由参数方程表示,可以通过对参数方程中的各个分量分别求导来求得曲线上任意一点的切线斜率。
8.反函数求导:若两个函数互为反函数,则它们在对应点上的导数互为倒数。
9.高级导数计算:熟练掌握更复杂的导数计算方法,如利用链式法则、递推法则等求解导数。
10.微分与局部线性化:微分是导数的近似应用,用于求得函数在其中一点附近的近似值。
微分可以用于线性化非线性函数,并求得函数在其中一点的线性逼近。
导数的专题复习-最经典最全
导数是微积分中的重要概念,它具有广泛的应用。
本文将对导数进行专题复,总结其中最经典、最全的内容。
1. 导数的定义
导数是描述函数在某一点处变化率的概念。
在数学上,函数
f(x)在点x=a处的导数表示为f'(a),它可以通过极限的概念进行定义。
2. 导函数的计算
导数的计算有多种方法,常用的包括求导法则、链式法则、隐函数求导法等。
这些方法能够帮助我们求出各种类型函数的导数,如常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。
3. 导数的性质
导数具有一些重要的性质,包括:
- 导数存在性:函数在某一点处可导的条件;
- 可导性与连续性的关系:函数可导的充分必要条件;
- 导数的代数运算:导数与求导函数的和差、乘积、除法的关系;
- 高阶导数:对导数的导数的概念。
4. 导数的应用
导数在科学和工程的领域中具有广泛的应用,包括但不限于以下几个方面:
- 函数的最大值与最小值问题:利用导数可以求解函数的极值问题;
- 曲线的切线与法线:导数可以帮助我们确定曲线在某一点处的切线和法线;
- 运动学中的速度与加速度:导数可以描述物体在运动过程中的速度和加速度。
总结:
本文对导数进行了最经典、最全的复习,内容涵盖了导数的定义、导函数的计算、导数的性质以及导数的应用。
通过学习导数,我们可以更好地理解函数的变化规律,并运用它们解决实际问题。
导数复习专题(1)导数的概念及几何意义(切线斜率);(2)导数的求法:一是熟练常见函数的导数;二是熟练求导法则:和、差、积、商、复合函数求导。
(3)导数的应用:一是函数单调性;二是函数的极值与最值(值域);三是比较大小与证明不等式;四是函数的零点个数(或参数范围)或方程的解问题。
(4)八个基本求导公式)('C = ;)('n x = ;(n∈Q) )(sin 'x = , )(cos 'x = ; )('x e = , )('x a = ;)(ln 'x = , )(log 'x a =(5)导数的四则运算 )('±v u = ])(['x Cf = )('uv = ,)('vu= )0(≠v (6)复合函数的导数设)(x u θ=在点x 处可导,)(u f y =在点)(x u θ=处可导,则复合函数)]([x f θ在点x 处可导, 且x u x u y y '⋅'='.目标:理解导数的概念和导数的几何意义,会求简单的函数的导数和曲线在一点处的切线方程.求曲线在一点处的切线方程思路:一会求导;二敢设切点;三要列尽方程;四解好方程组;五得解。
例1.已知曲线y = f (x )在x =-2处的切线的倾斜角为34π,则f '(-2)= ,[(2)]f '-= .例2.设函数f (x )的导数为()f x ',且f (x )=x 2+2x f '(1),则f '(2)= .例3.(1)曲线C :y =ax 3+bx 2+cx +d 在(0,1)点处的切线为l 1:y =x +1,在(3,4)点处的切线为l 2:y =-2x +10,求曲线C 的方程.(2)求曲线S :y =2x -x 3的过点A (1,1)的切线方程.知识要点:函数的单调性:设函数在某区间内可导,则()f x '>0⇒f (x )在该区间上单调递增;()f x '<0⇒f (x )在该区间上单调递减.反之,若f (x )在某区间上单调递增,则在该区间上有()f x '≥0恒成立(但不恒等于0);若f (x )在某区间上单调递减,则在该区间上有()f x '≤0恒成立(但不恒等于0).题型与方法:(1)单调区间:一般分为含参数和不含参数问题,含参数的求导后又分导函数能分解与不能分解两类,能分解讨论两根大小;不能分解,讨论判别式。
高考数学复习详细资料——导数概念与运算知识清单1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f 〔x 0+x ∆〕-f 〔x 0〕,比值x y∆∆叫做函数y=f 〔x 〕在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,xy∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f 〔x 〕在点x 0处的导数,记作f ’〔x 0〕或y ’|0x x =。
即f 〔x 0〕=0lim →∆x x y∆∆=0lim→∆x x x f x x f ∆-∆+)()(00。
说明:〔1〕函数f 〔x 〕在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
〔2〕x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f 〔x 〕在点x 0处的导数的步骤〔可由学生来归纳〕: 〔1〕求函数的增量y ∆=f 〔x 0+x ∆〕-f 〔x 0〕;〔2〕求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;〔3〕取极限,得导数f ’(x 0)=x yx ∆∆→∆0lim。
2.导数的几何意义函数y=f 〔x 〕在点x 0处的导数的几何意义是曲线y=f 〔x 〕在点p 〔x 0,f 〔x 0〕〕处的切线的斜率。
也就是说,曲线y=f 〔x 〕在点p 〔x 0,f 〔x 0〕〕处的切线的斜率是f ’〔x 0〕。
相应地,切线方程为y -y 0=f/〔x 0〕〔x -x 0〕。
3.几种常见函数的导数:①0;C '= ②()1;nn xnx-'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '=⑥()ln x xa a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=.4.两个函数的和、差、积的求导法那么法那么1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (.)'''v u v u ±=± 法那么2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv += 假设C 为常数,那么'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu =法那么3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫ ⎝⎛v u ‘=2''v uv v u -〔v ≠0〕。
高中数学导数复习课教案主题:导数复习目标:通过复习导数的基本概念和求导法则,帮助学生复习巩固导数的相关知识,提高他们的求导能力。
时间:1课时教学步骤:一、复习导数的基本概念1. 导数的定义:导数表示函数在某一点处的变化率,即函数的斜率。
2. 导数的符号表示:记为f'(x),读作f prime of x。
3. 导数的几何意义:导数表示函数图像在某一点处的切线斜率。
二、求导法则的复习1. 常数函数的导数:f'(x) = 02. 幂函数的导数:f'(x) = nx^(n-1) (n为常数)3. 指数函数的导数:f'(x) = a^x * ln(a)4. 对数函数的导数:f'(x) = 1 / (x * ln(a))5. 三角函数的导数:sin'(x) = cos(x),cos'(x) = -sin(x),tan'(x) = sec^2(x)三、求导实例练习1. 求函数f(x) = x^2 + 2x的导数2. 求函数g(x) = e^x * sin(x)的导数3. 求函数h(x) = ln(x)的导数四、求导技巧和综合练习1. 复合函数的求导法则2. 链式法则的应用3. 综合练习:求函数i(x) = (x^2 + 1) * e^x的导数五、作业布置1. 完成课堂练习题目2. 预习下节课内容,复习导数的基本概念和求导法则教学反思:本节课通过复习导数的基本概念和求导法则,帮助学生加深对导数的理解,提高他们的求导能力。
同时,通过实例练习和综合练习,巩固学生的求导技巧和应用能力。
在后续的教学中,需要加强对导数在实际问题中的应用,引导学生将导数与现实生活相结合,提升他们的数学建模能力。
专题04 导数及其应用(解答题)1.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【答案】(1)见解析;(2)(],0a ∈-∞.【解析】(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=.当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x …. 又当0,[0,π]a x ∈…时,ax ≤0,故()f x ax …. 因此,a 的取值范围是(,0]-∞.【名师点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.2.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.【答案】(1)见解析;(2)见解析.【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---==⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值,以及函数零点的问题,属于常考题型.3.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(Ⅰ)若a ≤0,讨论()f x 的单调性; (Ⅱ)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->. 【答案】(Ⅰ)()f x 在(0,)+∞内单调递增.;(Ⅱ)(i )见解析;(ii )见解析. 【解析】(Ⅰ)解:由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e x x xf ax x a a x x x-⎡⎤=-+-=⎣'⎦. 因此当a ≤0时,21e 0x ax ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(Ⅱ)证明:(i )由(Ⅰ)知21e ()xax f x x-'=.令2()1e x g x ax =-,由10e a <<, 可知()g x 在(0,)+∞内单调递减,又(1)1e 0g a =->,且221111ln 1ln 1ln 0g a a a a a ⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设为0x ,则011l n x a<<.当()00,x x ∈时,()0()()0g x g x f x x x'=>=,所以()f x 在()00,x 内单调递增;当()0,x x ∈+∞时,()0()()0g x g x f x x x'=<=,所以()f x 在()0,x +∞内单调递减,因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h'x x=-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()(1)0h x h <=,所以ln 1x x <-.从而ln 1111111ln ln ln ln 1e ln ln ln 1ln 0a f a h a a a a a a ⎛⎫⎛⎫⎛⎫=--=-+=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为()0(1)0f x f >=,所以()f x 在0(,)x +∞内有唯一零点.又()f x 在()00,x 内有唯一零点1,从而,()f x 在(0,)+∞内恰有两个零点.(ii )由题意,()()010,0,f x f x '=⎧⎪⎨=⎪⎩即()012011e 1,ln e ,1x x ax x a x ⎧=⎪⎨=-⎪⎩从而1011201ln e x x x x x --=,即102011ln e 1x x x x x -=-.因为当1x >时,ln 1x x <-,又101x x >>,故()102012011e 1x x x x x x --<=-,两边取对数,得1020ln e ln x x x -<,于是()10002ln 21x x x x -<<-,整理得0132x x ->.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力. 4.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围. 【答案】(1)见详解;(2)8[,2)27. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是 3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭. 当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27. 【名师点睛】这是一道常规的导数题目,难度比往年降低了不少.考查函数的单调性,最大值、最小值的计算.5.【2019年高考北京文数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:x2-(2,0)-8(0,)3 838(,4)34()g'x+-+()g x6-6427-所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.6.【2019年高考浙江】已知实数0a ≠,设函数()=ln 1,0.f x a x x x ++>(1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)ex ∈+∞均有(),2x f x a ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)20,4⎛⎤⎥ ⎝⎦. 【解析】(1)当34a =-时,3()ln 1,04f x x x x =-++>. 31(12)(211)()42141x x f 'x x x x x+-++=-+=++, 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得204a <≤.当204a <≤时,()2x f x a ≤等价于2212ln 0x xx a a+--≥. 令1t a=,则22t ≥. 设2()212ln ,22g t t x t x x t =-+-≥,则211()(1)2ln xg t x t x x x+=-+--.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭时,1122x+≤,则 ()(22)84212ln g t g x x x ≥=-+-.记1()4221ln ,7p x x x x x =-+-≥,则 2212121()11x x x x p'x x x x x x +--+=--=++(1)[1(221)]1(1)(12)x x x x x x x x -++-=++++.故x171(,1)71(1,)+∞()p'x-0 +()p x1()7p 单调递减极小值(1)p单调递增所以,()(1)0p x p ≥=.因此,()(22)2()0g t g p x ≥=≥. (ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,12ln (1)()12x x x g t g x x ⎛⎫--++= ⎪ ⎪⎝⎭…. 令211()2ln (1),,e 7q x x x x x ⎡⎤=++∈⎢⎥⎣⎦ , 则ln 2()10x q'x x+=+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭….由(i )得,127127(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此1()()102q x g t g x x⎛⎫+=-> ⎪ ⎪⎝⎭…. 由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,[22,),()0t g t ∈+∞…, 即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a …. 综上所述,所求a 的取值范围是20,4⎛⎤⎥ ⎝⎦.【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.7.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=, 解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=--⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=.因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:x (,3)-∞-3-(3,1)-1 (1,)+∞()f 'x + 0 – 0 + ()f x极大值极小值所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得22121111,33b b b b b b x x +--+++-+==.列表如下:x 1(,)x -∞1x()12,x x2x2(,)x +∞()f 'x+ 0 – 0 + ()f x极大值极小值所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()()23221(1)(1)2127927b b b b b b b --+++=++-+23(1)2(1)(1)2((1)1)272727b b b b b b +-+=-+-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下: x 1(0,)3131(,1)3()g'x + 0 – ()g x极大值所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.8.【2018年高考全国Ⅲ卷文数】已知函数21()exax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥. 【答案】(1)210x y --=;(2)见解析.【解析】(1)2(21)2()exax a x f x -+-+'=,(0)2f '=. 因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-+≥+-+.令21()1ex g x x x +=+-+,则1()21ex g x x +'=++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 所以()g x (1)=0g ≥-.因此()e 0f x +≥.【名师点睛】本题考查函数与导数的综合应用,第一问由导数的几何意义可求出切线方程,第二问当1a ≥时,21()e (1e)e x x f x x x +-+≥+-+,令21()1e x g x x x +=+-+,求出()g x 的最小值即可证明.9.【2018年高考全国Ⅰ卷文数】已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥. 【答案】(1)在(0,2)单调递减,在(2,+∞)单调递增;(2)见解析.【解析】(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e. 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当1ea ≥时,()0f x ≥.【名师点睛】该题考查的是有关导数的应用问题,涉及的知识点有导数与极值、导数与最值、导数与函数的单调性的关系以及证明不等式问题,在解题的过程中,首先要确定函数的定义域,之后根据导数与极值的关系求得参数值,之后利用极值的特点,确定出函数的单调区间,第二问在求解的时候构造新函数,应用不等式的传递性证得结果. 10.【2018年高考全国Ⅱ卷文数】已知函数()()32113f x x a x x =-++. (1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.【答案】(1)在(–∞,323-),(323+,+∞)单调递增,在(323-,323+)单调递减;(2)见解析.【解析】(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --. 令f ′(x )=0解得x =323-或x =323+.当x ∈(–∞,323-)∪(323+,+∞)时,f ′(x )>0; 当x ∈(323-,323+)时,f ′(x )<0.故f (x )在(–∞,323-),(323+,+∞)单调递增,在(323-,323+)单调递减.(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++.设()g x =3231x a x x -++,则g ′(x )=2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′(x )=0, 所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a –1)=22111626()0366a a a -+-=---<, f (3a +1)=103>,故f (x )有一个零点. 综上,f (x )只有一个零点.【名师点睛】(1)用导数求函数单调区间的步骤如下:①确定函数的定义域;②求导数;③由(或)解出相应的的取值范围,当时,在相应区间上是增函数;当时,在相应区间上是减增函数.(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数有唯一零点,可先证明其单调,再结合零点存在性定理进行论证.11.【2018年高考北京文数】设函数2()[(31)32]e x f x ax a x a =-+++.(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围. 【答案】(Ⅰ)12a =;(Ⅱ)(1,)+∞. 【解析】(Ⅰ)因为2()[(31)32]e xf x ax a x a =-+++, 所以2()[(1)1]e xf x ax a x '=-++.2(2)(21)e f a '=-,由题设知(2)0f '=,即2(21)e 0a -=,解得12a =. (Ⅱ)方法一:由(Ⅰ)得2()[(1)1]e (1)(1)e xxf x ax a x ax x '=-++=--. 若a >1,则当1(,1)x a∈时,()0f x '<; 当(1,)x ∈+∞时,()0f x '>. 所以()f x 在x =1处取得极小值.若1a ≤,则当(0,1)x ∈时,110ax x -≤-<, 所以()0f x '>.所以1不是()f x 的极小值点. 综上可知,a 的取值范围是(1,)+∞.方法二:()(1)(1)e xf x ax x '=--.(1)当a =0时,令()0f x '=得x =1.(),()f x f x '随x 的变化情况如下表:x(,1)-∞1 (1,)+∞()f x ' + 0 − ()f x↗极大值↘∴()f x 在x =1处取得极大值,不合题意. (2)当a >0时,令()0f x '=得121,1ax x ==. ①当12x x =,即a =1时,2()(1)e 0xf x x '=-≥, ∴()f x 在R 上单调递增, ∴()f x 无极值,不合题意.②当12x x >,即0<a <1时,(),()f x f x '随x 的变化情况如下表:x(,1)-∞1 1(1,)a1a1(,)a+∞ ()f x '+ 0 − 0 + ()f x↗极大值↘极小值↗∴()f x 在x =1处取得极大值,不合题意.③当12x x <,即a >1时,(),()f x f x '随x 的变化情况如下表:x1(,)a-∞1a1(,1)a1(1,)+∞()f x ' + 0 − 0 + ()f x↗极大值↘极小值↗∴()f x 在x =1处取得极小值,即a >1满足题意. (3)当a <0时,令()0f x '=得121,1ax x ==. (),()f x f x '随x 的变化情况如下表:x1(,)a-∞1a1(,1)a1(1,)+∞()f x '− 0 + 0 − ()f x↘极小值↗极大值↘∴()f x 在x =1处取得极大值,不合题意. 综上所述,a 的取值范围为(1,)+∞.【名师点睛】导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数的单调性或求单调区间问题;③利用导数求函数的极值、最值问题;④关于不等式的恒成立问题.解题时需要注意以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值、最值问题时常会涉及分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.12.【2018年高考天津文数】设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(I )若20,1,t d ==求曲线()y f x =在点(0,(0))f 处的切线方程; (II )若3d =,求()f x 的极值;(III )若曲线()y f x =与直线2()63y x t =---有三个互异的公共点,求d 的取值范围. 【答案】(I )x +y =0;(II )函数f (x )的极大值为63;函数f (x )的极小值为−63;(III )d 的取值范围为(,10)(10,)-∞-+∞.【解析】(Ⅰ)解:由已知,可得f (x )=x (x −1)(x +1)=x 3−x ,故()f x '=3x 2−1, 因此f (0)=0,(0)f '=−1,又因为曲线y =f (x )在点(0,f (0))处的切线方程为y −f (0)=(0)f '(x −0), 故所求切线方程为x +y =0. (Ⅱ)解:由已知可得f (x )=(x −t 2+3)(x −t 2)(x −t 2−3)=(x −t 2)3−9(x −t 2)=x 3−3t 2x 2+(3t 22−9)x −t 23+9t 2.故()f x '=3x 2−6t 2x +3t 22−9.令()f x '=0,解得x =t 2−3,或x =t 2+3. 当x 变化时,()f x ',f (x )的变化如下表:x(−∞,t 2−3)t 2−3 (t 2−3,t 2+3)t 2+3 (t 2+3,+∞)()f x '+ 0 − 0 + f (x )↗极大值↘极小值↗所以函数f (x )的极大值为f (t 2−3)=(−3)3−9×(−3)=63;函数f (x )的极小值为f (t 2+3)=(3)3− 9×(3)=−63.(Ⅲ)解:曲线y =f (x )与直线y =−(x −t 2)−63有三个互异的公共点等价于关于x 的方程(x −t 2+d )(x −t 2)(x −t 2 −d )+(x −t 2)+ 63=0有三个互异的实数解,令u =x −t 2,可得u 3+(1−d 2)u +63=0.设函数g (x )=x 3+(1−d 2)x +63,则曲线y =f (x )与直线y =−(x −t 2)−63有三个互异的公共点等价于函数y =g (x )有三个零点.()g'x =3x 3+(1−d 2).当d 2≤1时,()g'x ≥0,这时()g x 在R 上单调递增,不合题意.当d 2>1时,()g'x =0,解得x 1=213d --,x 2=213d -.易得,g (x )在(−∞,x 1)上单调递增,在[x 1,x 2]上单调递减,在(x 2,+∞)上单调递增. g (x )的极大值g (x 1)=g (213d --)=32223(1)639d -+>0. g (x )的极小值g (x 2)=g (213d -)=−32223(1)639d -+. 若g (x 2)≥0,由g (x )的单调性可知函数y =g (x )至多有两个零点,不合题意.若2()0,g x <即322(1)27d ->,也就是||10d >,此时2||d x >,(||)||630,g d d =+>且312||,(2||)6||2||636210630d x g d d d -<-=--+<-+<,从而由()g x 的单调性,可知函数()y g x =在区间1122(2||,),(,),(,||)d x x x x d -内各有一个零点,符合题意.所以,d 的取值范围是(,10)(10,)-∞-+∞.【名师点睛】本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能力. 13.【2018年高考浙江】已知函数f (x )=x −ln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 【答案】(Ⅰ)见解析;(Ⅱ)见解析. 【解析】(Ⅰ)函数f (x )的导函数11()2f x xx '=-, 由12()()f x f x ''=得1212111122x x x x -=-, 因为12x x ≠,所以121112x x +=. 由基本不等式得4121212122x x x x x x =+≥. 因为12x x ≠,所以12256x x >. 由题意得12112212121()()ln ln ln()2f x f x x x x x x x x x +=-+-=-. 设1()ln 2g x x x =-, 则1()(4)4g x x x'=-, 所以x(0,16)16 (16,+∞)()g x ' −0 +()g x2−4ln2所以g (x )在[256,+∞)上单调递增, 故12()(256)88ln 2g x x g >=-, 即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a <1()a n k nn --≤||1()a n k n +-<0, 所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a ,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得ln x x a k x--=.设l (n )x ah xx x --=,则22ln )1)((12xx ag x x x a x h '=--+--+=, 其中2(n )l xg x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2, 故–g (x )–1+a ≤–g (16)–1+a =–3+4ln2+a ≤0,所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根. 综上,当a ≤3–4ln2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.【名师点睛】本题主要考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力.14.【2018年高考江苏】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1];(2)当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.【解析】(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=14,θ0∈(0,π6).当θ∈[θ0,π2]时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[14,1].答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1].(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,π2 ].设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2], 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ'=--=-+-=--+. 令()=0f θ',得θ=π6, 当θ∈(θ0,π6)时,()0f θ'>,所以f (θ)为增函数; 当θ∈(π6,π2)时,()0f θ'<,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 【名师点睛】本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.15.【2018年高考江苏】记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f xg x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”. (1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 【答案】(1)见解析;(2)e2;(3)见解析. 【解析】(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e 2. (3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x-'=-=′,. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.【名师点睛】本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.16.【2017年高考全国Ⅰ卷文数】已知函数()f x =e x (e x −a )−a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.【答案】(1)当0a =时,)(x f 在(,)-∞+∞单调递增;当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;当0a <时,()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增;(2)34[2e ,1]-.【解析】(1)函数()f x 的定义域为(,)-∞+∞,22()2e e (2e )(e )xx x x f x a a a a '=--=+-,①若0a =,则2()e xf x =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,故()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.③若0a <,则由()0f x '=得ln()2a x =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增.(2)①若0a =,则2()e xf x =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2a x =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a a f a -=--.从而当且仅当23[ln()]042aa --≥,即342e a ≥-时()0f x ≥.综上,a 的取值范围为34[2e ,1]-.【名师点睛】本题主要考查导数两大方面的应用:(1)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f x ',由()f x '的正负,得出函数()f x 的单调区间;(2)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.17.【2017年高考全国Ⅱ卷文数】设函数2()(1)e x f x x =-.(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.【答案】(1)在(,12)-∞--和(12,)-++∞单调递减,在(12,12)---+单调递增;(2)[1,)+∞. 【解析】(1)2()(12)e xf x x x '=--.令()0f x '=得121+2x x =--=-,.当(,12)x ∈-∞--时,()0f x '<;当(12,12)x ∈---+时,()0f x '>;当(12,)x ∈-++∞时,()0f x '<.所以()f x 在(,12)-∞--和(12,)-++∞单调递减,在(12,12)---+单调递增.(2)()(1+)(1)e x f x x x =-.当a ≥1时,设函数h (x )=(1−x )e x ,h ′(x )= −x e x<0(x >0),因此h (x )在[0,+∞)单调递减,而h (0)=1, 故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x −x −1,g ′(x )=e x−1>0(x >0),所以g (x )在[0,+∞)单调递增,而g (0)=0,故e x≥x +1.当0<x <1时,2()(1)(1)f x x x >-+,22(1)(1)1(1)x x ax x a x x -+--=---,取05412a x --=,则2000000(0,1),(1)(1)10,()1x x x ax f x ax ∈-+--=>+故.当0a ≤时,取051,2x -=则0(0,1),x ∈20000()(1)(1)11f x x x ax >-+=>+. 综上,a 的取值范围是[1,+∞).【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.18.【2017年高考全国Ⅲ卷文数】已知函数()2(1)ln 2x ax a x f x =+++.(1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--.【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,)(x f 在)21,0(a-单调递增,在),21(+∞-a单调递减;(2)详见解析 【解析】(1)()f x 的定义域为(0,+),()()1211()221x a x f x a x a x x++'=+++=.若0a ≥,则当(0)x ∈+∞,时,()0f x '>,故()f x 在(0,+)单调递增. 若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1()2x a ∈-+∞,时,()0f x '<.故()f x 在1(0,)2a-单调递增,在1()2a-+∞,单调递减. (2)由(1)知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=---. 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设()ln 1g x x x =-+,则1()1g x x '=-.当(0,1)x ∈时,()0g x '>;当x ∈(1,+)时,()0g x '<.所以()g x 在(0,1)单调递增,在(1,+)单调递减.故当x =1时()g x 取得最大值,最大值为g (1)=0.所以当x >0时,()0g x ≤.从而当a <0时,11ln()1022a a -++≤,即3()24f x a≤--. 【名师点睛】利用导数证明不等式的常见类型及解题策略:(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.19.【2017年高考浙江】已知函数f (x )=(x –21x -)e x -(12x ≥). (1)求f (x )的导函数;(2)求f (x )在区间1[+)2∞,上的取值范围.【答案】(1)(1)(212)e 1()()221x x x f x x x ----'=>-;(2)121[0,e ]2-.【解析】(1)因为1(21)121x x 'x --=--,(e )e x x'--=-, 所以1()(1)e (21)e 21x xf x x x x --'=-----(1)(212)e 1()221x x x x x ----=>-.(2)由(1)(212)e ()021x x x f x x ----'==-,解得1x =或52x =.因为x12(12,1) 1 (1,52) 52(52,+∞) ()f x '–0 +–f (x )121e 2-521e 2-又21()(211)e 02x f x x -=--≥, 所以f (x )在区间1[,)2+∞上的取值范围是121[0,e ]2-.【名师点睛】本题主要考查导数两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f'x ,由()f'x 的正负,得出函数()f x 的单调区间;(二)函数的最值(极值)的求法:由单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.20.【2017年高考北京文数】已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 【答案】(Ⅰ)1y =;(Ⅱ)最大值为1;最小值为π2-. 【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(Ⅱ)设()e (cos sin )1xh x x x =--,则()e (cos sin sin cos )2e sin xxh x x x x x x '=---=-.当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点的是需要两次求导数,因为通过()f x '不能直接判断函数的单调性,所以需要再求一次导数,设()()h x f x '=,再求()h x ',一般这时就可求得函数()h x '的零点,或是()0h x '>(()0h x '<)恒成立,这样就能知道函数()h x 的单调性,再根据单调性求其最值,从而判断()y f x =的单调性,最后求得结果. 21.【2017年高考天津文数】设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =.(Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线,(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.【答案】(Ⅰ)递增区间为(,)a -∞,(4,)a -+∞,递减区间为(),4a a -;(Ⅱ)(ⅰ)见解析,(ⅱ)[7],1-.【解析】(Ⅰ)由324()63()f x x a x x a b =--+-,可得2()3123()3()((44))f 'x x a x a a x x a -=---=--,令()0f 'x =,解得x a =或4x a =-.由||1a ≤,得4a a <-. 当x 变化时,()f 'x ,()f x 的变化情况如下表:x (,)a -∞ (),4a a - (4,)a -+∞()f 'x+-+()f x所以,()f x 的单调递增区间为(,)a -∞,(4,)a -+∞,单调递减区间为(),4a a -.(Ⅱ)(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()e x x x x g g'⎧=⎪⎨=⎪⎩, 所以000000()e e e (()())ex x xx f f f x 'x x ⎧=⎪⎨+=⎪⎩,解得00()1()0f 'x x f =⎧⎨=⎩. 所以,()f x 在0x x =处的导数等于0.(ii )因为()e xg x ≤,00[11],x x x ∈-+,由e 0x >,可得()1f x ≤.又因为0()1f x =,0()0f 'x =,故0x 为()f x 的极大值点,由(Ⅰ)知0x a =. 另一方面,由于||1a ≤,故14a a +<-,由(Ⅰ)知()f x 在(,)1a a -内单调递增,在(),1a a +内单调递减, 故当0x a =时,()()1f f x a ≤=在[1,1]a a -+上恒成立,从而()e xg x ≤在00,[11]x x -+上恒成立.由32()63()14a a f a a a a b =---+=,得32261b a a =-+,11a -≤≤.令32()261t x x x =-+,[1,1]x ∈-,所以2()612t'x x x =-,令()0t'x =,解得2x =(舍去),或0x =. 因为(1)7t -=-,(1)3t =-,(0)1t =, 故()t x 的值域为[7],1-. 所以,b 的取值范围是[7],1-.【名师点睛】本题考查导数的应用,属于中档问题,第一问的关键是根据条件判断两个极值点的大小,从而避免讨论;第二问要注意切点是公共点,切点处的导数相等,求b 的取值范围的关键是得出0x a =,然后构造函数进行求解.22.【2017年高考山东文数】已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)390x y --=,(Ⅱ)见解析.【解析】(Ⅰ)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x '=-, 所以(3)3f '=,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-, 即390x y --=.(Ⅱ)因为()()()cos sin g x f x x a x x =+--, 所以()()cos ()sin cos g x f x x x a x x ''=+---,()()sin x x a x a x =--- ()(sin )x a x x =--,令()sin h x x x =-, 则()1cos 0h x x '=-≥, 所以()h x 在R 上单调递增, 因为(0)0h =,所以,当0x >时,()0h x >;当0x <时,()0h x <. (1)当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--,当0x =时()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,()(sin )g x x x x '=-, 当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3)当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(0,)x a ∈时,0x a -<,()0g x '<,()g x 单调递减; 当(,)x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当0x =时()g x 取到极大值,极大值是(0)g a =-; 当x a =时()g x 取到极小值,极小值是31()sin 6g a a a =--. 综上所述:当0a <时,函数()g x 在(,)a -∞和(0,)+∞上单调递增,在(,0)a 上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-; 当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--. 【名师点睛】(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.23.【2017年高考江苏】已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()'f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23>b a ;(3)若()f x ,()'f x 这两个函数的所有极值之和不小于72-,求a 的取值范围.。
导数知识点复习导数是微积分中的重要概念,在数学和科学的众多领域都有着广泛的应用。
为了更好地掌握导数,让我们来系统地复习一下相关的知识点。
一、导数的定义导数的定义是函数在某一点的变化率。
对于函数\(y =f(x)\),在点\(x_0\)处的导数定义为:\f'(x_0) =\lim_{\Delta x \to 0} \frac{f(x_0 +\Delta x)f(x_0)}{\Delta x}\通俗地说,导数就是当自变量\(x\)的变化量\(\Delta x\)趋近于零时,函数值\(y\)的变化量与\(x\)的变化量之比的极限。
例如,对于函数\(f(x) = x^2\),在\(x = 1\)处的导数为:\f'(1) =\lim_{\Delta x \to 0} \frac{(1 +\Delta x)^2 1^2}{\Delta x} =\lim_{\Delta x \to 0} \frac{1 + 2\Delta x +(\Delta x)^2 1}{\Delta x} =\lim_{\Delta x \to 0} (2 +\Delta x) = 2\二、导数的几何意义导数的几何意义是函数在某一点处切线的斜率。
如果函数\(y =f(x)\)在点\(x_0\)处可导,那么\(f'(x_0)\)就是曲线\(y = f(x)\)在点\((x_0, f(x_0))\)处切线的斜率。
以函数\(f(x) = x^2\)为例,在点\(x = 1\)处,导数\(f'(1) = 2\),所以曲线\(y = x^2\)在点\((1, 1)\)处的切线斜率为\(2\),切线方程为\(y 1 = 2(x 1)\),即\(y =2x 1\)。
三、基本初等函数的导数公式1、\((C)'= 0\)(\(C\)为常数)2、\((x^n)'= nx^{n 1}\)(\(n\)为实数)3、\((\sin x)'=\cos x\)4、\((\cos x)'=\sin x\)5、\((e^x)'= e^x\)6、\((a^x)'= a^x \ln a\)(\(a > 0, a \neq 1\))7、\((\ln x)'=\frac{1}{x}\)8、\((\log_a x)'=\frac{1}{x \ln a}\)(\(a > 0, a \neq 1\))这些公式是求导的基础,必须牢记。
2023届全国高考数学复习:专题(导数的运算)重点讲解与练习1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有[cf (x )]′=cf ′(x );[f (x )±g (x )]′=f ′(x )±g ′(x );[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); 3.复合函数的定义及其导数(1)一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )与u =g (x )的复合函数,记作y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ꞏu ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【方法总结】导数运算的原则和方法基本原则:先化简、再求导; 具体方法:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ;(2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).[例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x (4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( ) A .f (x )=sin x +cos x B .f (x )=ln x -2x C .f (x )=x 3+2x -1 D .f (x )=x e x(5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x 6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .94 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= . 12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-213.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .4 15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2.参考答案【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).解析 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x . (3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12sin4x , ∴y ′=-12sin 4x -12x ꞏ4cos 4x =-12sin 4x -2x cos 4x . (4)令u =2x -5,y =ln u .则y ′=(ln u )′u ′=12x -5ꞏ2=22x -5,即y ′=22x -5. [例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e xx +a.若f ′(1)=e 4,则a =________. 答案 1 解析 f ′(x )=e x (x +a )-e x (x +a )2=e x (x +a -1)(x +a )2,则f ′(1)=a e (a +1)2=e 4,整理可得a 2-2a +1=0,解得a =1.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .答案 -74 解析 ∵f (x )=2x 2-3xf ′(1)+ln x ,∴f ′(x )=4x -3f ′(1)+1x x =1代入,得f ′(1)=4-3f ′(1)+1,得f ′(1)=54.∴f (x )=2x 2-154x +ln x ,∴f (1)=2-154=-74.(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x 答案 C 解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2 022=4×505+2,∴f 2 022(x )=f 2(x )=cos x -sin x .故选C .(4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=x 3+2x -1D .f (x )=x e x答案 AB 解析 对于A :f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x ,∵x ∈⎝⎛⎭⎫0,π2,∴f ″(x )<0,f (x )在⎝⎛⎭⎫0,π2上是凸函数,故A 正确.对于B :f ′(x )=1x -2,f ″(x )=-1x 2<0,故f (x )在⎝⎛⎭⎫0,π2上是凸函数,故B 正确;对于C :f ′(x )=3x 2+2,f ″(x )=6x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故C 错误;对于D :f ′(x )=(x +1)e x ,f ″(x )=(x +2)e x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故D 错误.故选AB . (5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 答案 C 解析 由选项知f (x )的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x ,即⎣⎡⎦⎤f (x )x ′=1+1x ,故f (x )x =x +ln x +c (c 为待定常数),即f (x )=x 2+(ln x +c )x .又f (1)≥1,则c ≥0,故选C .【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 1.答案 B 解析 (log 2x )′=1x ln 2,故B 正确. 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 2.答案 B 解析 y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x3.答案 BCD 解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B ,C ,D 正确,故选BCD .4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .4.答案 1cos 2x -2x 3 解析 f ′(x )=(sin x )′ꞏcos x -sin x ꞏ(cos x )′cos 2x+(x -2)′=cos 2x +sin 2x cos 2x +(-2)x -3=1cos 2x -2x 3. 5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x5.答案 D 解析 由题意,f (x )=x sin x ,f 1(x )=f ′(x )=sin x +x cos x ,f 2(x )=f ′1(x )=cos x +cos x -x sin x =2cos x -x sin x ,f 3(x )=f ′2(x )=-3sin x -x cos x ,f 4(x )=f ′3(x )=-4cos x +x sin x ,f 5(x )=f ′4(x )=5sin x +x cos x ,…,据此可知f 2 019(x )=-2 019sin x -x cos x ,f 2 021(x )=2 021sin x +x cos x ,所以f 2019(x )+f 2 021(x )=2sin x ,故选D .6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e6.答案 B 解析 f ′(x )=2 021+ln x +x ×1x =2 022+ln x ,又f ′(x 0)=2 022,得2 022+ln x 0=2 022,则ln x 0 =0,解得x 0=1.7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .7.答案 2 解析 f ′(x )=-(ax -1)′(ax -1)2e x cos x -e x sin x =-a (ax -1)2+e x cos x -e xsin x ,∴f ′(0)=-a +1=-1, 则a =2.8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .8.答案 e 2解析 f ′(x )=12x -3ꞏ(2x -3)′+a e -x +ax ꞏ(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .949.答案 C 解析 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x 所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.10.答案 -4 解析 ∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),∴f ′(1)=-2,∴f ′(0)=2f ′(1)=2×(-2)=-4. 11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= .11.答案 1+e 解析 因为f (ln x )=x +ln x ,所以f (x )=x +e x ,所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e .12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-212.答案 C 解析 因为f ′(x )=f ′(1)ꞏ2x ln 2+2x ,所以f ′(1)=f ′(1)ꞏ2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2ꞏ2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2. 13.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x13.答案 BC 解析 对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意. 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .414.答案 C 解析 f ′(x )=-3e x (e x +1)2+3x 2,f ′(-x )=-3e x (e x +1)2+3x 2,所以f ′(x )为偶函数,f ′(2019)-f ′(-2019) =0,因为f (x )+f (-x )=31+e x+x 3+31+e -x -x 3=31+e x +3e x 1+e x =3,所以f (2020)+f (-2020)+f ′(2019)-f ′(-2019)=3.故选C .15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______.15.答案 8 解析 因为f ′(x )=4ax 3-b sin x +7,所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7.所以f ′(x )+f ′(-x )=14.又f ′(2 020)=6,所以f ′(-2 020)=14-6=8. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2. 16.解析 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x ꞏ1x =⎝⎛⎭⎫ln x +1x e x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3. (3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)∵y =ln 1+2x =12ln(1+2x ),∴y ′=12ꞏ11+2x ꞏ(1+2x )′=11+2x.(5)由已知f (x )=x -ln x +2x -1x 2.所以f ′(x )=1-1x -2x 2+2x 3=x 3-x 2-2x +2x 3.。
导数 一、考试说明要求:二、应知应会知识1.(1)曲线34x x y -=在点()3,1--处的切线方程是( )A .47+=x yB .27+=x yC .4-=x yD .2-=x y(2)若曲线4x y =的一条切线l 与直线084=-+y x 垂直,则l 的方程是( )A .034=--y xB .054=-+y xC .034=+-y xD .034=++y x (3)过点()0,1-且与抛物线12++=x x y 相切的一条切线是( )A .022=++y xB .033=+-y xC .01=++y xD .01=+-y x(4)在函数x x y 83-=的图象上,切线的倾斜角小于4π的点中,坐标为整数的点的个数是( )A .3B .2C .1D .0(5)过点()2,1-P 且与抛物线2432+-=x x y 在点()1,1M 处的切线平行的直线方程是 .(6)若曲线()x x y 333--=在点P 处的切线的倾斜角为3π,则切点P 的横坐标为 .2.(1)已知直线1l 、2l 分别是抛物线22-+=x x y 在点()0,1A 、B 处的切线,且21l l ⊥,求直线2l 的方程.(2)已知函数()bx ax x x f 3323+-=在点()11,1-处的切线为0112=-+y x ,求函数()x f 的解析式.(3)求曲线2212x y -=与2413-=x y 在交点处的切线的夹角.考查导数的几何意义.利用导数求曲线的切线斜率,切点坐标,曲线方程中的待定系数. 已知曲线上一点的坐标,求曲线在这点处的切线方程的一般步骤: (1)根据导数的几何意义,求出曲线在一点处的切线斜率; (2)利用直线的点斜式方程,写出切线方程.已知曲线在一点处切线的斜率,求切点坐标的一般步骤: (1)设切点坐标;(2)根据导数的几何意义,求出曲线在这点处切线斜率关于切点坐标的表达式; (2)列关于切点坐标的方程,求出切点坐标.3.(1)若在区间()1,∞-上()0/<x f,在区间()+∞,1上()0/>x f ,则有A .()()10->f fB .()()10f f >C .()()21f f <-D .()()12f f <(2)函数()1323++-=x x x f 是增函数的区间为( )A .()+∞,2B .()2,∞-C .()0,∞-D .()2,0(3)0<a 是函数()()x x x a x f +-=23在区间()+∞∞-,上为减函数的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分且不必要条件(4)若函数()ax x x f +=3在区间()+∞,1上是增函数,则实数a 的取值范围是( )A .()+∞,3B .[)+∞-,3C .()3,∞-D .(]3,∞-(5)若函数ax x x y +-=2331在()2,1上是减函数,在()+∞,2上是增函数,则a 的取值为 .(6)函数()x x x f 33-=在区间 上是增函数,在区间 上是减函数. 4.(1)已知函数()x f 1323+-+=x x ax 在R 上是增函数,求a 的取值范围.(2)已知函数()32324x ax x x f -+=在区间()1,1-上是增函数,求实数a 的取值范围. (3)若函数()()11213123+-+-=x a ax x x f 在区间()4,1上是减函数,在区间()+∞,6上是增函数,求实数a 的取值范围.考查利用导数研究函数的单调性的方法,已知函数的单调性求参数的取值或取值范围.多项式函数()x f 在一个区间上是增函数的充要条件是:()0/≥x f ;多项式函数()x f /在一个区间上是减函数的充要条件是:()0/≤x f.已知函数解析式求函数单调区间的一般步骤: (1)求导数()x f/;(2)解不等式()0/>x f,求出()x f 的单调递增区间,解不等式()0/<x f ,求出()x f 的单调递减区间.注:根据教材利用导数求函数的单调区间,所求单调区间一般是开区间. 已知三次函数的单调性求参数的取值范围一般步骤: (1)求二次导函数()x f/;(2)根据多项式函数单调性的充要条件,利用二次导函数的特征列出关于参数的方程或不等式;(3)解方程或不等式得所求.5.(1)函数()7323-+-=x x x f 的极小值是( )A .7-B .7C .3-D .3 (2)已知函数()9323+++=x ax x x f ,且()03/=-f,则()x f 的极大值为( )A .9B .15C .16D .18(3)函数()x x x f 123+-=在[]3,0上的最大值、最小值分别是( )A .9、0B .16、0C .16、16-D .9 、16-(4)函数()a x x x f +-=33在闭区间[]0,3-上的最大值3,则a 的值是( )A .21B .3C .1D .0(5)若函数()a bx ax x x f -++=23在1=x 处的极值为10,则=a ,=b .(6)函数9324++-=x x y 的最大值为 .6.(1)已知R 上的奇函数()d cx ax x f ++=3()0≠a ,在1=x 时()x f 取得极值2-,求()x f 的极大值.(2)已知函数()1323+-=x ax x f ()0≥a ,若()x f 的图象与x 轴有且只有一个公共点,求a 的取值范围. (3)已知函数()c x x x x f +--=22123,若对任意[]2,1-∈x 都有()2c x f <,求c 的取值范围.考查利用导数研究函数的极大值、极小值,最大值、最小值的方法,已知函数的极值求参数的值或参数的取值范围多项式函数函数()x f 在点0x 处取极值的必要条件是()0/=x f;多项式函数函数()x f 在点0x 处取极值的充分条件是:存在以0x 为端点的两个相邻开区间,使得()x f/在这两个区间上的符号不同.已知函数解析式求函数极值的一般步骤: (1)求导数()x f /;(2)求出()x f /的零点;(3)考察()x f/在以零点为端点的相邻开区间上的符号,若左正右负,则()x f 在公共端点处有极大值,若左负右正,则()x f 在公共端点处有极小值,若左右相同,则()x f 在公共端点处没有极值.求函数在闭区间[]b a ,上最值的一般步骤: (1)求()x f 在开区间()b a ,上极值;(2)比较极值与()a f 、()b f 的大小,最大的一个为最大值,最小的一个为最小值.。
导数复习知识点总结导数复习知识点总结我们从一出生到耋耄之年,一直就没有离开过数学,或者说我们根本无法离开数学,这一切有点像水之于鱼一样。
以下是数学网为大家整理的导数知识点总结,希望可以解决您所遇到的相关问题。
一、函数的单调性在(a,b)内可导函数f(x),f(x)在(a,b)任意子区间内都不恒等于0.f(x)f(x)在(a,b)上为增函数.f(x)f(x)在(a,b)上为减函数.二、函数的极值1、函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f(a)=0,而且在点x=a附近的左侧f(x)0,右侧f(x)0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2、函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f(b)=0,而且在点x=b附近的左侧f(x)0,右侧f(x)0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.三、函数的最值1、在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.2、若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.四、求可导函数单调区间的一般步骤和方法1、确定函数f(x)的定义域;2、求f(x),令f(x)=0,求出它在定义域内的一切实数根;3、把函数f(x)的间断点(即f(x)的无定义点)的`横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;4、确定f(x)在各个开区间内的符号,根据f(x)的符号判定函数f(x)在每个相应小开区间内的增减性.五、求函数极值的步骤1、确定函数的定义域;2、求方程f(x)=0的根;3、用方程f(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;4、由f(x)=0根的两侧导数的符号来判断f(x)在这个根处取极值的情况.六、求函数f(x)在[a,b]上的最大值和最小值的步骤1、求函数在(a,b)内的极值;2、求函数在区间端点的函数值f(a),f(b);3、将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.特别提醒1、f(x)0与f(x)为增函数的关系:f(x)0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-,+)上单调递增,但f(x)0,所以f(x)0是f(x)为增函数的充分不必要条件.2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.3、可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.。
一、考试地位:导数知识及其应用,每年必考,属于考点中的重难点.二、考查题型、题量:一般是1—2道小题和1道解答题.分值在18—23分左右.三、考查内容:导数作为研究函数的工具,在函数习题中考查.1.导数的运算:(1)求导,其中复合函数求导为理科.(2)切线斜率相关的问题.2.利用导数判断函数的单调区间,求函数极值、最值,处理函数零点问题等.3.导数与不等式相结合考查.4.理科还考察定积分的基本运算或利用定积分求面积.四、难度:中等或偏难.1.小题考查中等题或压轴题.2.解答题:在历年新课标卷中,导数解答题都作为最后一题,习题的后几问属于难题,有一定的区分度.在个别地区的自主命题中,导数解答题有时作为压轴解答题,有时也放在前几个解答题中,难度基础或中等.以下为近三年高考真题中部分导数相关的习题.导数基础或中等习题的类型:1.小题题号靠前的习题,解答题的第一问.2.考查导数的几何意义:与切线方程、切线斜率相关的求解.3.求简单的含参函数的单调区间.4.求函数的极值点、极值.5.定积分的基本运算或利用定积分求面积(理科).1.【2016新课标Ⅰ理,7】函数22x y x e =-在[–2,2]的图象大致为( )A. B.C. D.2.【2014山东理,6】 直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A. 2 2B. 4 2C. 2D. 43.【2014江西理,8】 若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A.-1B.-13C.13 D.14.【2014新课标Ⅱ理,8】设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A.0B.1C.2D.35.【2015天津理,11】曲线2y x =与直线y x =所围成的封闭图形的面积为 .6.【2015湖南理,11】20(1)x dx ⎰-= .7.【2014广东理,10】 曲线y =e - 5x +2在点(0,3)处的切线方程为 .8.【2014江西理,13】若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是 .9.【2016北京理,18】 设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(1)求a ,b 的值; (2)求()f x 的单调区间.10.【2016山东理,20】已知()221()ln ,R x f x a x x a x -=-+∈. (Ⅰ)讨论()f x 的单调性;(Ⅱ)当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立.11.【2014江西理,18】已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ).(1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝⎛⎭⎫0,13上单调递增,求b 的取值范围.1-8题答案供参考:1.D2.D3.B4.D5.166.07.y =-5x +38.(-ln 2,2)。
学案26 导数复习课一、 导数的几何意义导数的几何意义: .习题1:函数)(x f y =的图像在点(5,(5))f 处的切线方程是,8+-=x y则(5)(5)f f '+=____________.习题2:曲线3y x =在点P 处的切线斜率为3,则P 点坐标为 .习题3:过抛物线2y x =上点11(,)24M 的切线的倾斜角为 .二、常见函数的导数及导数的四则运算常见函数的导数:____________()()_____________,()(sin )____________, (cos )_____________,()_____________, ()_____________,(log )_____________ (ln )____x x a C C x x x a e x x αα''==''==''==''==为常数,为常数,_________.导数的运算法则:如果(),()f x g x 有导数,那么(1)[()()]_______________________f x g x '+=,(2)[()()]______________________f x g x '-=,(3)[()] Cf x '=(C 为常数),(4)[()()]____________________________f x g x '=,(5)()[]___________________(()0)()f xg x g x '=≠ 习题4:函数)23)(32(2-+=x x y 的导数为______________________.习题5:函数sin x y x=的导数为______________________. 习题6:32()32,f x ax x =++若(1)4f '-=,则 .a =※习题7:已知2()2(1)f x x xf '=+,则(0)f '=三、导数与函数的单调性()()0()0y f x f x f x ='>'<一般地,设函数在某个区间内可导,如果在该区间上,则函数在该区间上为_____函数;如果在该区间上,则函数在该区间上为_____函数.习题8、函数3yx x 的递增区间是 .习题9、函数3255yx x x 在122⎡⎤-⎢⎥⎣⎦, 的递减区间是 .习题10、根据导函数()f x '的下列信息,试画出函数()f x 图象的大致形状 当14x <<时,()0;f x '>当4x >或1x <时,()0;f x '<;当4x =或1x =时,()0;f x '=.四、导数与函数的极值和最值1、求可导函数()f x 极值的步骤:(1)确定函数的定义区间,求导数/()f x ;(2)求方程/()f x =0的根;(3)列表,判定符号.2、求)(x f 在[]b a ,上的最值的步骤如下:(1)求)(x f 在(,)a b 内的极值;(2)将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值 习题11、函数3242y x x x =--的极大值点为_________,极大值为_________;极小值点为_______,极小值为_______.习题12、函数18)(24+-=x x x f 在区间[3,1]-上的最大值是_____________最小值是_____________.习题13、已知函数42)(23-++=bx x ax x f 在1-=x 时有极大值.4-求)(x f y =的解析式并求出单调区间.课后作业:1、(07全国)已知曲线的24x y =的一条切线的斜率为12,则切点的横坐标为 .2、曲线313y x x =+在点4(1,)3处的切线与坐标轴围成的三角形的面积为 .3、函数22234y x x =--()()的导数为 .4、函数42335x x y x--=+3的导数为 .5、下列说法正确的是:( )A 、函数在闭区间上的极大值一定比极小值大B 、极大值、极小值只能各有一个C 、对于32()21f x x px x =+++,若26p <,则()f x 无极值D 、()f x 在0x 取得极大值,则()f x 在定义域内是先增后减的函数.6、已知32()(6)1f x x ax a x =++++有极大值和极小值,则a 的取值范围为 .7、已知函数53()1f x x ax bx =+++,在1x =和2x =处取得极值, ,a = .b =8、已知函数11232)(23++--=x x x x f 在区间[]1,m 上的最小值为-17,则 m 的值为 .9、若函数1)(23+++=mx x x x f 是R 是的单调函数,则实数m 的取值范围是 .10、已知函数32()f x x bx ax d 的图象过点(0,2)p ,且在点(1,(1))M f --的切线方程为670x y -+=①求函数()y f x =的解析式; ②求函数()y f x =的单调区间.11、求曲线212ln ,[,1]4y x x x =+∈的切线中,斜率最小的切线在y 轴上的截距.12、设函数32()f x x ax bx c =+++的图象如图所示,且与0y =在原点相切,若函数的极小值为4-,①求,,a b c 的值;②求函数的递减区间.。
完整版)导数讲义(学生新版)导数一、导数的概念函数y=f(x),如果自变量x在x处有增量Δx,那么函数y 相应地有增量Δy=f(x+Δx)−f(x),比值化率,即Δy/Δx叫做函数y=f(x)在x到x+Δx之间的平均变化率。
如果当Δx→0时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f’(x)或y’|x=x。
例如,若lim(Δy/Δx)=k,则lim(Δy/f(x+2Δx)−f(x)/Δx)=lim(2k)等于()=k,因此f’(x)=lim(Δy/Δx)。
变式训练:设函数f(x)在点x处可导,试求下列各极限的值:1.lim(f(x−Δx)−f(x))/Δx;2.lim(f(x+h)−f(x−h))/2h;3.若f’(x)=2,则lim(f(x−k)−f(x))/k=?二、导数的几何意义函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x))处的切线的斜率。
也就是说,曲线y=f(x)在点p(x,f(x))处的切线的斜率是f’(x)。
切线方程为y−f(x)=(f’(x))(x−x)。
三、导数的运算1.基本函数的导数公式:①C’=0;(C为常数)②x^n’=nx^(n−1);③(sin x)’=cos x;④(cos x)’=−sin x;⑤(e^x)’=e^x;⑥(ax)’=axln a;⑦(ln x)’=1/x;⑧(log_a x)’=log_a e/x。
题:求下列函数的导数:(8分钟独立完成)1)f(x)=π;(2)f(x)=x^4;(3)f(x)=x;(4)f(x)=sin x;(5)f(x)=−cos x;(6)f(x)=3x;(7)f(x)=e^x;(8)f(x)=log_2 x;(9)f(x)=ln x;(10)f(x)=1/(1+x);(11)y=x^4+cos x;(12)y=x/(4+x^2);(13)y=log x−e^x;(14)y=x^3 cos x。
专题4.4 导数的综合应用(知识点讲解)【知识框架】【核心素养】1. 考查利用导数研究函数的单调性、极值与最值、函数的零点,凸显数学运算、逻辑推理的核心素养.2.考查利用导数不等式的证明、方程等,凸显数学运算、逻辑推理的核心素养.【知识点展示】(一)函数零点 1.方程()0f x =有实根函数()y f x =的图象与x 轴有交点函数()y f x =有零点.2.函数()y f x =的零点就是()0f x =的根,所以可通过解方程得零点,或者通过变形转化为两个熟悉函数图象的交点横坐标.(二)导数解决函数的零点问题1.利用导数研究高次式、分式、指数式、对数式、三角式及绝对值式结构函数零点个数(或方程根的个数)问题的一般思路(1)可转化为用导数研究其函数的图象与x 轴(或直线y =k)在该区间上的交点问题;(2)证明有几个零点时,需要利用导数研究函数的单调性,确定分类讨论的标准,确定函数在每一个区间上的极值(最值)、端点函数值等性质,进而画出函数的大致图象.再利用零点存在性定理,在每个单调区间内取值证明f (a)·f (b)<0.2.证明复杂方程在某区间上有且仅有一解的步骤第一步,利用导数证明该函数在该区间上单调;第二步,证明端点的导数值异号. 3.已知函数有零点求参数范围常用的方法(1)分离参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f (x)中分离出参数,然后利用求导的方法求出构造的新函数的最值,最后根据题设条件构建关于参数的不等式,确定参数范围;(2)分类讨论法:一般命题情境为没有固定区间,求满足函数零点个数的参数范围,通常解法为结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围. (三)导数证明不等式(1)直接转化为函数的最值问题:把证明f (x )<g (a )转化为f (x )max <g (a ).(2)移项作差构造函数法:把不等式f (x )>g (x )转化为f (x )-g (x )>0,进而构造函数h (x )=f (x )-g (x ). (3)构造双函数法:若直接构造函数求导,难以判断符号,导函数零点不易求得,即函数单调性与极值点都不易获得,可转化不等式为f (x )>g (x )利用其最值求解.(4)换元法,构造函数证明双变量函数不等式:对于f (x 1,x 2)≥A 的不等式,可将函数式变为与x 1x 2或x 1·x 2有关的式子,然后令t =x 1x 2或t =x 1x 2,构造函数g (t )求解.(5)适当放缩构造函数法:一是根据已知条件适当放缩,二是利用常见的放缩结论,如ln x ≤x -1,e x ≥x +1,ln x <x <e x (x >0),xx +1≤ln(x +1)≤x (x >-1).(6)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数等.把不等式左、右两边转化为结构相同的式子,然后根据“相同结构”,构造函数.(7)赋值放缩法:函数中对与正整数有关的不等式,可对已知的函数不等式进行赋值放缩,然后通过多次求和达到证明的目的.(四)利用导数研究不等式恒(能)成立问题 1.分离参数法一般地,若a >f (x )对x ∈D 恒成立,则只需a >f (x )max ;若a <f (x )对x ∈D 恒成立,则只需a <f (x )min .若存在x 0∈D ,使a >f (x 0)成立,则只需a >f (x )min ;若存在x 0∈D ,使a <f (x 0)成立,则只需a <f (x 0)max .由此构造不等式,求解参数的取值范围. 2.构造函数分类讨论法有两种常见情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.【常考题型剖析】题型一:利用导数研究函数的零点或零点个数例1.(2012·天津·高考真题(理))函数在区间(0,1)内的零点个数是( )A .0B .1C .2D .3【答案】B 【解析】 【详解】2()2ln 23,(0,1)()0x f x x f x +''=>在上恒成立,所以单调递增,(0)10,(1)10,f f =-<=>故函数在区间(0,1)内的零点个数1个.例2.(2019·全国高考真题(理))已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析 【解析】(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,sin x -,在1,2π⎛⎫- ⎪⎝⎭上单调递减 ()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减又()0sin0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++00,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x '=∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫ ⎪⎝⎭上单调递减则0x x =为()g x 唯一的极大值点即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在()00,x 上单调递增,在0,2x π⎛⎫⎪⎝⎭上单调递减 又()00f '= ()00f x '∴>()f x ∴在()00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-<⎪++⎝⎭10,2x x π⎛⎫∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1lnln102222e f ππππ⎛⎫⎛⎫=-+=>= ⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+< 即()02ff ππ⎛⎫⋅<⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点例3.(2022·全国·高考真题(理))已知函数()ln xf x x a x x e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <. 【答案】(1)(,1]e -∞+ (2)证明见的解析 【解析】 【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,再利用导数即可得证.(1)()f x 的定义域为(0,)+∞,2111()e 1x f x x x x ⎛⎫'=--+ ⎪⎝⎭1111e 1e 11x x x x x x x x ⎛⎫-⎛⎫⎛⎫=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令()0f x =,得1x =当(0,1),()0,()x f x f x '∈<单调递减当(1,),()0,()x f x f x >'∈+∞单调递增()(1)e 1f x f a ≥=+-, 若()0f x ≥,则e 10a +-≥,即1a e ≤+ 所以a 的取值范围为(,1]e -∞+ (2)由题知,()f x 一个零点小于1,一个零点大于1 不妨设121x x 要证121x x <,即证121x x <因为121,(0,1)x x ∈,即证()121f x f x ⎛⎫> ⎪⎝⎭因为()()12f x f x =,即证()221f x f x ⎛⎫> ⎪⎝⎭即证1e 1ln e ln 0,(1,)x x x x x x x x x-+--->∈+∞即证1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦下面证明1x >时,1e 11e 0,ln 02x x x x x x x ⎛⎫->--< ⎪⎝⎭设11(),e e xx g x x xx =->,则11122111111()e e e 1e e 1x x x xx g x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'=--+⋅-=--- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111e 1e 1e e xx x xx x x x x ⎛⎫⎛⎫-⎛⎫=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设()()()22e 1111,e e 0x x x x x x x x x x x ϕϕ-⎛⎫=>=-=⎪⎭'> ⎝所以()()1e x ϕϕ>=,而1e e x <所以1e e 0xx x->,所以()0g x '>所以()g x 在(1,)+∞单调递增即()(1)0g x g >=,所以1ee 0xx x x->令11()ln ,12h x x x x x ⎛⎫=--> ⎪⎝⎭2222211121(1)()10222x x x h x x x x x ----⎛⎫'=-+==< ⎪⎝⎭ 所以()h x 在(1,)+∞单调递减即()(1)0h x h <=,所以11ln 02x x x ⎛⎫--< ⎪⎝⎭;综上, 1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,所以121x x <. 【总结提升】利用导数研究函数零点或方程根的方法 (1)通过最值(极值)判断零点个数的方法.借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.(2)数形结合法求解零点.对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围. (3)构造函数法研究函数零点.①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.题型二:与函数零点有关的参数(范围)问题例4.(2019浙江)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则( ) A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a , 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b 1−a<0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .例5.(2015·安徽·高考真题(理))设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是________.(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==. 【答案】1,3,4,5 【解析】 【详解】令3()f x x ax b =++,求导得2'()3f x x a =+,当0a ≥时,'()0f x ≥,所以()f x 单调递增,且至少存在一个数使()0f x <,至少存在一个数使()0f x >,所以3()f x x ax b =++必有一个零点,即方程30x ax b ++=仅有一根,故④⑤正确;当0a <时,若3a =-,则2'()333(1)(1)f x x x x =-=+-,易知,()f x 在(,1),(1,)-∞-+∞上单调递增,在[1,1]-上单调递减,所以()=(1)132f x f b b -=-++=+极大,()=(1)132f x f b b =-+=-极小,要使方程仅有一根,则()=(1)1320f x f b b -=-++=+<极大或者()=(1)1320f x f b b =-+=->极小,解得2b <-或2b >,故①③正确.所以使得三次方程仅有一个实 根的是①③④⑤.例6.(2020·全国高考真题(文))已知函数()(2)xf x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞. 【解析】(1)当1a =时,()(2)xf x e x =-+,'()1xf x e =-, 令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,从方程可知,2x =-不成立,即2xe a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++,令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e +∞.【总结提升】与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.题型三:与不等式恒成立、有解、无解等问题有关的参数范围问题例7.(2019·天津高考真题(理))已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为( )A .[]0,1B .[]0,2C .[]0,eD .[]1,e【答案】C【解析】∵(0)0f ≥,即0a ≥,(1)当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->, 当1a <时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x=,则2ln 1'()(ln )x g x x -=,当,x e >函数单增,当0,x e <<函数单减,故max ()()g x g e e ==,所以a e ≤.当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 综上可知,a 的取值范围是[0,]e , 故选C.例8.(2021·江苏省前黄高级中学高三开学考试)已知函数2()2sin 341x f x x x =+-+,则(2)(2)f f +-=_________;关于x 的不等式2()(23)2f x f x +-≥的解集为____________.【答案】2 3,12⎡⎤-⎢⎥⎣⎦【分析】根据解析式直接求(2)(2)f f +-的值,易知()f x 关于(0,1)对称,可将题设不等式变形为2(23)()f x f x -≥-,再利用导数判断()f x 的单调性,由单调性列不等式求解集. 【详解】232(2)(2)2sin 262sin 2621717f f +-=+-+-+=, 由()()22222sin 32sin 341414141x x x x f x f x x x x x --+-=+-+-+=+=++++2(41)41x x ++2=, ∴()f x 关于(0,1)对称,故()2()f x f x =--,∴22()(23)2()(23)2f x f x f x f x +-=--+-≥,即2(23)()f x f x -≥-, 又124ln 2()2cos 30(41)x xf x x +'=-+-<+,故()f x 单调递减, ∴223x x -≤-,即223(23)(1)0x x x x +-=+-≤,解得312x -≤≤.∴不等式解集为3,12⎡⎤-⎢⎥⎣⎦. 故答案为:2;3,12⎡⎤-⎢⎥⎣⎦. 例9.(2021·全国高三月考)已知函数2()ln f x x mx =+.(1)探究函数()f x 的单调性;(2)若关于x 的不等式()1(12)f x m x ≤++在(]0,e 上恒成立,求实数m 的取值范围.【答案】(1)答案见解析;(2)12e 2⎡⎤-⎢⎥-⎣⎦,. 【分析】(1)求导,对参数m 分类讨论,由导函数的符号可得函数的单调性;(2)将不等式()1(12)f x m x ≤++化为()2ln 1210x mx m x +-+-≤,再构造函数()2()ln 121g x x mx m x =+-+-,利用导数求出函数()g x 的最大值,由max ()0g x ≤可求出结果.【详解】(1)由2()ln f x x mx =+,得2121()2(0)mx f x mx x x x +'=+=>, ①若0m ≥,则()0f x '>,()f x 在()0,∞+上单调递增;②若0m <,则2121()22x x mx f x mx m x x x⎛ +⎝⎭⎝⎭'=+==⋅,当0x <<时,()0f x '>;当x >()0f x '<; 所以()f x在区间0,⎛ ⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减. 综上所述:当0m ≥时,()f x 在()0,∞+上单调递增;当0m <时,()f x在区间⎛⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减. (2)不等式()1(12)f x m x ≤++在(]0,e 上恒成立,相当于()2ln 1210x mx m x +-+-≤在(]0,e 上恒成立,令()2()ln 121g x x mx m x =+-+-, 则212(21)1(21)(1)()221mx m x mx x g x mx m x x x-++--'=+--==, ①当0m ≤时,210mx -<,由()0g x '<,得1e x <≤,由()0g x '>,得01x <<,所以()g x 在(0,1)上单调递增,在(1,e]上单调递减,所以max ()(1)2g x g m ==--,所以20m --≤,解得20m -≤≤. ②当102em <≤时,因为022e x <≤,所以021mx <≤,所以210mx -≤, 所以当01x <<时,()0g x '≥,当1e x <≤时,()0g x '≤,所以()g x 在(0,1)上递增,在(1,e]上递减,所以max ()(1)20g x g m ==--≤,解得2m ≥-,又102e m <≤,所以102em <≤; ③当112e 2m <<时,1(1)()2()2x x m g x m x--'=⋅,此时11e 2m <<, 由()0g x '>,得01x <<或1e 2x m <≤,由()0g x '<,得112x m <<, 所以()g x 在(0,1)和1(,e]2m 上递增,在1(1,)2m 上递减,所以11,2x x m==分别是函数()g x 的极大值点和极小值点, 因此有()(1)2011(e)e e 1202e 21122g m g m m m m e⎧⎪=--≤⎪=--≤⇒<<⎨⎪⎪<<⎩; ④当12m =时,()21()0x g x x-'=≥,所以()g x 在(]0,e 上单调递增,所以(e)0g ≤, 即1e 2m ≤-,所以12m =; ⑤当12m >时,1(1)()2()2x x m g x m x--'=⋅,此时1012m <<, 由()0g x '>,得102x m <<或1e x <≤,由()0g x '<,得112x m <<, 所以()g x 在1(0,)2m 和(1,e]上递增,在1(,1)2m 上递减, 所以112x x m==,分别是函数()g x 的极大值点和极小值点,因此有()1()02(e)e e 12012g m g m m m ⎧≤⎪⎪=--≤⇒⎨⎪⎪>⎩1ln 22041e 212m m m m ⎧---≤⎪⎪⎪≤⎨-⎪⎪>⎪⎩112e 2m ⇒<≤-; 综上可知,实数m 的取值范围是12e 2⎡⎤-⎢⎥-⎣⎦,. 【总结提升】1.不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.()f x a >:min max max ()()()f x a f x a f x a ⇔>⎧⎪⇔>⎨⎪⇔≤⎩恒成立有解无解2.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.题型四:利用导数证明不等式例10.(2022·北京·高考真题)已知函数.(1)求曲线在点处的切线方程;(2)设,讨论函数在上的单调性;(3)证明:对任意的,有.【答案】(1)(2)在上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令,,即证,由第二问结论可知在[0,+∞)上单调递增,()e ln(1)x f x x =+()y f x =(0,(0))f ()()g x f x '=()g x [0,)+∞,(0,)s t ∈+∞()()()f s t f s f t +>+y x =()g x [0,)+∞()()()m x f x t f x =+-(,0)x t >()(0)m x m >()m x即得证.(1)解:因为,所以,即切点坐标为,又, ∴切线斜率∴切线方程为:(2)解:因为, 所以, 令, 则, ∴在上单调递增,∴∴在上恒成立,∴在上单调递增.(3)解:原不等式等价于,令,,即证,∵,, 由(2)知在上单调递增, ∴,∴∴在上单调递增,又因为, ()e ln(1)x f x x =+()00f =()0,01()e (ln(1))1x f x x x=+++'(0)1k f '==y x =1()()e (ln(1))1x g x f x x x=++'=+221()e (ln(1))1(1)x g x x x x =++-++'221()ln(1)1(1)h x x x x =++-++22331221()01(1)(1)(1)x h x x x x x +=-+=>++++'()h x [0,)+∞()(0)10h x h ≥=>()0g x '>[0,)+∞()g x [0,)+∞()()()(0)f s t f s f t f +->-()()()m x f x t f x =+-(,0)x t >()(0)m x m >()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+e e ()e ln(1)e ln(1)()()11x t xx t x m x x t x g x t g x x t x++=+++-+-=+-++'+1()()e (ln(1))1x g x f x x x =++'=+[)0,∞+()()g x t g x +>()0m x '>()m x ()0,∞+,0x t >∴,所以命题得证.例11.(2021·全国·高考真题(理))设函数,已知是函数的极值点. (1)求a ;(2)设函数.证明:. 【答案】(1);(2)证明见详解【解析】【分析】(1)由题意求出,由极值点处导数为0即可求解出参数;(2)由(1)得,且,分类讨论和,可等价转化为要证,即证在和上恒成立,结合导数和换元法即可求解【详解】(1)由,,又是函数的极值点,所以,解得;(2)[方法一]:转化为有分母的函数由(Ⅰ)知,,其定义域为. 要证,即证,即证. (ⅰ)当时,,,即证.令,因为,所以在区间内为增函数,所以. (ⅱ)当时,,,即证,由(ⅰ)分析知在区间内为减函数,所以.综合(ⅰ)(ⅱ)有.[方法二] 【最优解】:转化为无分母函数由(1)得,,且, ()(0)m x m >()()ln f x a x =-0x =()y xf x =()()()x f x g x xf x +=()1g x <1a ='y a ()()ln 1()ln 1x x g x x x +-=-1x <0x ≠()0,1x ∈(),0x ∈-∞()1g x <()()ln 1ln 1x x x x +->-()0,1x ∈(),0x ∈-∞()()()n 1'l a f x a x f x x ⇒==--()()'ln x y a x x ay xf x ⇒=-=+-0x =()y xf x =()'0ln 0y a ==1a =ln(1)11()ln(1)ln(1)+-==+--x x g x x x x x (,0)(0,1)-∞()1g x <111ln(1)+<-x x 1111ln(1)-<-=-x x x x(0,1)x ∈10ln(1)<-x 10x x-<ln(1)1->-x x x ()ln(1)1=---x F x x x 2211()01(1)(1)--=-=>--'-x F x x x x ()F x (0,1)()(0)0F x F >=(,0)x ∈-∞10ln(1)>-x 10x x ->ln(1)1->-x x x ()F x (,0)-∞()(0)0F x F >=()1g x <()()ln 1f x x =-()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-1x <0x ≠当 时,要证,, ,即证,化简得;同理,当时,要证,, ,即证,化简得;令,再令,则,, 令,,当时,,单减,故;当时,,单增,故;综上所述,在恒成立.[方法三] :利用导数不等式中的常见结论证明令,因为,所以在区间内是增函数,在区间内是减函数,所以,即(当且仅当时取等号).故当且时,且,,即,所以. (ⅰ)当时,,所以,即,所以. (ⅱ)当时,,同理可证得. 综合(ⅰ)(ⅱ)得,当且时,,即. 【整体点评】(2)方法一利用不等式的性质分类转化分式不等式:当时,转化为证明,当时,转化为证明,然后构造函数,利用导数研究单调性,进而证得;方法二利用不等式的性质分类讨论分别转化为整式不等式:当时,成立和当时,成立,然后换元构造,利用导数研究单调性进而证得,通性通法,运算简洁,为最优解;方法三先构造函数,利用导数分析单调性,证得常见常用结论(当且仅当时取等号).然后换元得到,分类讨论,利用不等式的基本性质证得要证得不等式,有一定()0,1x ∈()()ln 1()1ln 1x x g x x x +-=<-()0,ln 10x x >-<()ln 10x x ∴-<()()ln 1ln 1x x x x +->-()()1ln 10x x x +-->(),0x ∈-∞()()ln 1()1ln 1x x g x x x +-=<-()0,ln 10x x <->()ln 10x x ∴-<()()ln 1ln 1x x x x +->-()()1ln 10x x x +-->()()()1ln 1h x x x x =+--1t x =-()()0,11,t ∈+∞1x t =-()1ln t t t t ϕ=-+()1ln 1ln t t t ϕ'=-++=()0,1t ∈()0t ϕ'<()t ϕ()()10t ϕϕ>=()1,t ∈+∞()0t ϕ'>()t ϕ()()10t ϕϕ>=()()ln 1()1ln 1x x g x x x +-=<-()(),00,1x ∈-∞()ln (1)ϕ=--x x x 11()1x x x x ϕ-'=-=()ϕx (0,1)(1,)+∞()(1)0x ϕϕ≤=ln 1≤-x x 1x =1x <0x ≠101x >-111x≠-11ln 111<---x x ln(1)1--<-x x x ln(1)1->-x x x (0,1)x ∈0ln(1)1>->-x x x 1111ln(1)-<=--x x x x 111ln(1)+<-x x ()1g x <(,0)x ∈-∞ln(1)01->>-x x x ()1g x <1x <0x ≠ln(1)1ln(1)+-<-x x x x ()1g x <(0,1)x ∈ln(1)1->-x x x (,0)x ∈-∞ln(1)1->-x x x ()0,1x ∈()()1ln 10x x x +-->(),0x ∈-∞()()1ln 10x x x +-->()ln (1)ϕ=--x x x ln 1≤-x x 1x =ln(1)1->-x x x的巧合性.例12.(2021·全国高考真题)已知函数.(1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:. 【答案】(1)的递增区间为,递减区间为;(2)证明见解析.【分析】(1)求出函数的导数,判断其符号可得函数的单调区间;(2)设,原不等式等价于,前者可构建新函数,利用极值点偏移可证,后者可设,从而把转化为在上的恒成立问题,利用导数可证明该结论成立.【详解】(1)函数的定义域为,又,当时,,当时,,故的递增区间为,递减区间为.(2)因为,故,即, 故, 设,由(1)可知不妨设. 因为时,,时,,故.先证:,若,必成立.若, 要证:,即证,而,故即证,即证:,其中.()()1ln f x x x =-()f x a b ln ln b a a b a b -=-112e a b<+<()f x ()0,1()1,+∞1211,x x a b==122x x e <+<21x tx =12x x e +<()()1ln 1ln 0t t t t -+-<()1,+∞()0,∞+()1ln 1ln f x x x '=--=-()0,1x ∈()0f x '>()1,+x ∈∞()0f x '<()f x ()0,1()1,+∞ln ln b a a b a b -=-()()ln 1ln +1b a a b +=ln 1ln +1a b a b+=11f f a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1211,x x a b ==1201,1x x <<>()0,1x ∈()()1ln 0f x x x =->(),x e ∈+∞()()1ln 0f x x x =-<21x e <<122x x +>22x ≥122x x +>22x <122x x +>122x x >-2021x <-<()()122f x f x >-()()222f x f x >-212x <<设,则,因为,故,故,所以,故在为增函数,所以,故,即成立,所以成立,综上,成立.设,则,结合,可得:, 即:,故,要证:,即证,即证, 即证:,即证:, 令,则, 先证明一个不等式:.设,则, 当时,;当时,,故在上为增函数,在上为减函数,故,故成立由上述不等式可得当时,,故恒成立, 故在上为减函数,故,故成立,即成立.综上所述,. 【总结提升】1.无论不等式的证明还是解不等式,构造函数,运用函数的思想,利用导数研究函数的性质(单调性和最()()()2,12g x f x f x x =--<<()()()()2ln ln 2g x f x f x x x '''=+-=---()ln 2x x =--⎡⎤⎣⎦12x <<()021x x <-<()ln 20x x -->()0g x '>()g x ()1,2()()10g x g >=()()2f x f x >-()()222f x f x >-122x x +>122x x +>21x tx =1t >ln 1ln +1a b a b +=1211,x x a b==()()11221ln 1ln x x x x -=-()111ln 1ln ln x t t x -=--11ln ln 1t t t x t --=-12x x e +<()11t x e +<()1ln 1ln 1t x ++<()1ln ln 111t t t t t --++<-()()1ln 1ln 0t t t t -+-<()()()1ln 1ln ,1S t t t t t t =-+->()()112ln 11ln ln 111t S t t t t t t -⎛⎫'=++--=+- ⎪++⎝⎭()ln 1x x ≤+()()ln 1u x x x =+-()1111x u x x x -'=-=++10x -<<()0u x '>0x >()0u x '<()u x ()1,0-()0,+∞()()max 00u x u ==()ln 1x x ≤+1t >112ln 11t t t ⎛⎫+≤< ⎪+⎝⎭()0S t '<()S t ()1,+∞()()10S t S <=()()1ln 1ln 0t t t t -+-<12x x e +<112e a b<+<值),达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题,是解题的法宝.2.利用导数证明不等式f(x)>g(x)的基本方法(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.3.不等式存在性问题的求解策略“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)≥g(a)对于x∈D恒成立,应求f(x)的最小值;若存在x∈D,使得f(x)≥g(a)成立,应求f(x)的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立,以免细节出错.。
专题四:导数应用的题型与方法题型一:利用导数几何意义求切线方程例1.(1)曲线y =e x 在点A (0,1)处的切线斜率为( ) A .1 B .2 C .e D.1e(2)与直线2x -6y +1=0垂直,且与曲线f (x )=x 3+3x 2-1相切的直线方程是______ __.题型二:利用导数研究函数的单调性、极值、最值。
例2.(1)若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 等于( )A .2B .3C .4D .5(2)已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).①当a =2时,求函数f (x )的单调递增区间;②函数f (x )是否为R 上的单调递减函数,若是,求出a 的取值范围;若不是,请说明理由.练习:已知函数f (x )=x 2+3x -2ln x ,则函数f (x )的单调减区间为________.例3 已知f (x )=e x -ax -1. (1)求f (x )的单调增区间;(2)若f (x )在定义域R 内单调递增,求a 的取值范围.练习1:已知函数f(x)=3ax4-2(3a+1)x2+4x.(1)当a=16时,求f(x)的极值;(2)若f(x)在(-1,1)上是增函数,求a的取值范围.变式:设f(x)=e x1+ax2,其中a为正实数.(1)当a=43时,求f(x)的极值点;(2)若f(x)为R上的单调函数,求a的取值范围.练习2:已知实数a>0,函数f(x)=ax(x-2)2(x∈R)有极大值32.(1)求函数f(x)的单调区间;(2)求实数a的值.练习3:f (x )的导函数f ′(x )的图象如图所示,则函数f (x )的图象最有可能是图中的 ( )例4.(教材习题改编) 函数f (x )=12x -x 3在区间[-3,3]上的最小值是 ( )A .-9B .-16C .-12D .-11练:①函数g (x )=ln(x +1)-x 的最大值是______.②函数f (x )=12x 2-ln x 的最小值为________.例5.已知函数f (x )=(x -k )e x(1)求f (x )的单调区间; (2)求f (x )在区间[0,1]上的最小值.变式:本题条件不变,求f (x )在区间[0,1]上的最大值.练(1):函数f (x )=x 3+ax 2+b 的图象在点p (1,0)处的切线与直线3x +y =0平行. ①求a ,b ;②求函数f (x )在[0,t ](t >0)内的最大值和最小值.练(2):设函数f (x )=ln x -12ax 2-bx .(1)当a =b =12时,求f (x )的最大值;(2)令F (x )=f (x )+12ax 2+bx +ax (0<x ≤3),其图象上任意一点P (x 0,y 0)处的切线的斜率k ≤12恒成立,求实数a 的取值范围.题型三、不等式与导数例6、已知f(x)=x ln x.(1)求g(x)=f(x)+kx(k∈R)的单调区间;(2)证明:当x≥1时,2x-e≤f(x)恒成立.方法总结:证明f(x)<g(x),等价于证明f(x)-g(x)<0,即可证明F(x)=f(x)-g(x)的最大值小于0,从而转化成用导数求最值问题.可见等价转化是本题思维的核心.练习:已知函数f(x)=a ln xx+1+bx,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1)求a,b的值;(2)证明:当x>0,且x≠1时,f(x)>ln xx-1.11.已知函数f (x )=x 3-32ax 2+b (a ,b 为实数,且a >1)在区间[-1,1]上的最大值为1,最小值为-2.(1)求f (x )的解析式;(2)若函数g (x )=f (x )-mx 在区间[-2,2]上为减函数,求实数m 的取值范围.例3已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1(Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式;(Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围题型五:利用单调性、极值、最值情况,求参数取值范围例13:已知函数()()()331,5f x x ax g x f x ax =+-=--,其中()'f x 是的导函数(Ⅰ)对满足11a -≤≤的一切a 的值,都有()0g x <,求实数x 的取值范围;(Ⅱ)设2a m =-,当实数m 在什么范围内变化时,函数()y f x =的图象与直线3y = 只有一个公共点 解:(Ⅰ)由题意()2335g x x ax a =-+- 令()()2335x x a x ϕ=-+-,11a -≤≤ 对11a -≤≤,恒有()0g x <,即()0a ϕ<∴()()1010ϕϕ<⎧⎪⎨-<⎪⎩ 即22320380x x x x ⎧--<⎨+-<⎩ 解得213x -<<故2,13x ⎛⎫∈-⎪⎝⎭时,对满足11a -≤≤的一切a 的值,都有()0g x < (Ⅱ)()'2233f x x m =-①当0m =时,()31f x x =-的图象与直线3y =只有一个公共点 0m ≠2211f x f x m m ==--<-极小又∵()f x 的值域是R ,且在(),m +∞上单调递增∴当x m >时函数()y f x =的图象与直线3y =只有一个公共点。
当x m <时,恒有()()f x f m ≤-由题意得()3f m -<即3221213m m m -=-<解得()()30,2m ∈ ;综上,m 的取值范围是(例14.(2006年江西卷)已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值(1)求a 、b 的值与函数f (x )的单调区间 (2)若对x ∈〔-1,2〕,不等式f (x )<c 2恒成立,求c 的取值范围。
解:(1)f (x )=x3+ax2+bx +c ,f '(x )=3x2+2ax +b 由f '(23-)=124a b 093-+=,f '(1)=3+2a +b =0得a =12-,b =-2f '(x )=3x 2-x -2=(3x +2)(x -1),函数f (x )的单调区间所以函数f (x )的递增区间是(-∞,-3)与(1,+∞),递减区间是(-23,1)(2)f (x )=x 3-12x 2-2x +c ,x ∈〔-1,2〕,当x =-23时,f (x )=2227+c 为极大值,而f (2)=2+c ,则f (2)=2+c 为最大值。
要使f (x )<c 2(x ∈〔-1,2〕)恒成立,只需c 2>f (2)=2+c ,解得c <-1或c >2题型四:导数与解析几何、立体几何的结合。
例9: 所以如图所示,曲线段OMB 是函数2(),(06)f x x x =<<的图像,BA x ⊥轴于A ,曲线段OMB 上一点(,())M t f t 处的切线PQ 交x 轴于P ,交线段AB 于Q. (1)试用t 表示切线PQ 的方程;(2)设△QAP 的面积为()g t ,若函数()g t 在(,)m n 上单调递减,试求出m 的最小值;(3)121[,64]4QAP S ∆∈,试求出点P 横坐标的取值范围.解:(1)()2,k f t t '== 切线PQ的方程222(),2(06).y t t x t y tx t t -=-=-<<即 (2)令y=0得2;6,12.2tx x y t t ===-令 32211()||||(6)(12)636.2224t t g t AP AQ t t t t ∴==--=-+由'23()123604g t t t =-+<解得 412t <<. 又0<t<6, ∴4<t<6, g (t)在(m, n)上单调递减,故(m, n )min (4,6). 4.m ⊆∴= (3)当04,()0,()t g t g t '<<>时∴在(0,4)上单调递增,32121121(4)64,(6)54,636(04) 1.444121[,64]1 6.,42QAP t g g t t t t t S t P x ∆==>-+=<<=∈⇔≤<=解方程得∴又点的横坐标∴P 的横坐标的取值范围为1[,3)2.例10:用长为90cm,宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?解:设容器的高为x ,容器的体积为V , 则V=(902)(482)x x x --,(0<V<24)=3242764320x x x -+ ∵V ′=2125524320x x -+由V ′=21255243200x x -+=得1210,36x x ==∵010x 时,V ′>0,10<x<36时,V ′<0,x>36时,V ′>0, 所以,当x=10,V 有极大值V(10)=1960,并且又是最大值 所以当x=10,V 有最大值V(10)=1960 题型六:利用导数研究方程的根例15:已知平面向量a =(3,-1). b =(21,23). (1)若存在不同时为零的实数k 和t ,使x =a +(t2-3)b ,y =-k a +t b ,x ⊥y ,试求函数关系式k=f(t) ;(2) 据(1)的结论,讨论关于t 的方程f(t)-k=0的解的情况. 解:(1)∵x ⊥y ,∴x y ⋅=0 即[a +(t 2-3) b ]·(-k a +t b )=0.整理后得-k 2a +[t-k(t 2-3)] a b ⋅+ (t 2-3)·2b =0∵a b ⋅=0,2a =4,2b =1,∴上式化为-4k+t(t 2-3)=0,即k=41t(t 2-3) (2)讨论方程41t(t 2-3)-k=0的解的情况,可以看作曲线f(t)= 41t(t 2-3)与直线y=k 的交点个数. 于是f ′(t)= 43(t 2-1)= 43(t+1)(t-1).令f ′(t)=0,解得t 1=-1,t 2=1.当t 变化时,f ′(t)、f(t)的变化情当t=-1时,f(t)有极大值,f(t)极大值=2.当t=1时,f(t)有极小值,f(t)极小值=-21函数f(t)=41t(t 2-3)的图象如图13-2-1所示,可观察出:(1)当k >21或k <-21时,方程f(t)-k=0有且只有一解; (2)当k=21或k=-21时,方程f(t)-k=0有两解;(3) 当-21<k <21时,方程f(t)-k=0有三解.例16:设a 为实数,函数32()f x x x x a =--+. (Ⅰ)求()f x 的极值;(Ⅱ)当a 在什么范围内取值时,曲线()y f x =与x 轴仅有一个交点. 解:2()321,f x x x '=--令121()0,,13f x x x '==-=,当x 变化时,(),()f x f x '的变化情况如下表所示x 1(,)3-∞- 13-1(,1)3- 1(1,)+∞()f x '+ 0— 0+ ()f x极大值极小值所以()f x 的极大值=15()327f a -=+,极小值(1)1f a =-。