高中数学 初升高课程衔接 第三章 对数函数、指数函数、幂函数 3.1.2 指数函数教案 苏教版必修1
- 格式:doc
- 大小:112.51 KB
- 文档页数:7
2017年高中数学初升高课程衔接第三章对数函数、指数函数、幂函数3.1.2 指数函数教案苏教版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高中数学初升高课程衔接第三章对数函数、指数函数、幂函数3.1.2 指数函数教案苏教版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高中数学初升高课程衔接第三章对数函数、指数函数、幂函数3.1.2 指数函数教案苏教版必修1的全部内容。
3.1.2 指数函数课标知识与能力目标1.理解指数函数的概念.2.掌握指数函数的图像和性质.3.掌握函数图像之间的基本初等变换.知识点1 指数函数1. 指数函数的定义:x ay (a>0,a≠1).2. 指数函数的图象与性质:1>a10<<a 图象性质定义域R值域(0,+∞)定点图象过定点(0,1)单调性单调增函数单调减函数x〈0时,0<y<1;x=0时,y=1;x>0时,y>1.x<0时,y>1;x=0时,y=1;x〉0时,0〈y〈1。
典型例题考点1:指数函数的概念例1 下列函数中,哪些是指数函数?(1)x y 10=; (2)110+=x y ; (3)x y 4-=;(4)x x y =; (5)αx y =(α是常数); (6)x a y )12(-=(1,21≠a a >).例2 函数x a a a y )33(2+-=是指数函数,求a 的值.考点2:指数函数的定义域和值域例1 求下列函数的定义域与值域. (1)312-=x y ; (2)1241++=+x x y .例2 求函数y =考点3:利用指数函数的单调性比较大小比较幂的大小的常用方法:1。
第2课时 对数的运算性质1.理解对数的运算性质,能灵活准确地进行对数式的化简与计算;2.了解对数的换底公式,并能将一般对数式转化为自然对数或常用对数,从而进行简单的化简与证明.1.对数的运算法则如果a >0,且a ≠1,M >0,N >0,n ∈R ,那么: 指数的运算法则⇒对数的运算法则 ①a m ·a n =a m +n⇒log a (MN )=log a M +log a N ;②a m a n =a m ·a -n =a m -n ⇒log a MN =log a M -log a N ; ③(a m )n =a mn ⇒log a (N n)=n ·log a N.积的对数变为加,商的对数变为减,幂的乘方取对数,要把指数提到前. 【做一做1-1】计算:(1)log 26-log 23=________;(2)log 53+log 513=__________.答案:(1)1 (2)0【做一做1-2】若2lg(x -2y )=lg x +lg y ,则x y的值是__________. 解析:由等式得(x -2y )2=xy , 从而(x -y )(x -4y )=0, 因为x >2y ,所以x =4y . 答案:4 2.换底公式 (1)log a b =log log c c ba,即有log c a ·log a b =log c b (a >0,a ≠1,c >0,c ≠1,b >0); (2)log b a =1log a b,即有log a b ·log b a =1(a >0,a ≠1,b >0,b ≠1); (3)log m na b =log a nb m(a >0,a ≠1,b >0).换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子. 【做一做2】已知lg N =a ,用a 的代数式表示: (1)log 100N =__________;(2)=__________. 答案:(1)12a (2)2a运用对数的运算性质应注意哪些问题? 剖析:对数的运算性质有三方面,它是我们对一个对数式进行运算、变形的主要依据.要掌握它们需注意如下几点:第一,要会推导,要求对每一条性质都会证明,通过推导加深对对数概念的理解和对对数运算性质的理解,掌握对数运算性质中三个公式的特征,以免乱造公式.例如:log n (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N 等都是错误的.第二,要注意对数运算性质成立的条件,也就是要把握各个字母取值的范围:a >0且a ≠1,M >0,N >0.例如,lg(-2)(-3)是存在的,但lg(-2)、lg(-3)都不存在,因而得不到lg(-2)(-3)=lg(-2)+lg(-3).第三,由于对数的运算性质是三个公式,因此在应用时不仅要掌握公式的“正用”,同时还应掌握公式的“逆用”.题型一 有关对数式的混合运算 【例1】求下列各式的值:(1)log 535+122log 2-log 5150-log 514;(2)lg 52+23lg 8+lg 5·lg 20+lg 22;(3)lg 2+lg 3-lg 10lg 1.8.分析:利用对数运算性质和“lg 2+lg 5=1”解答. 解:(1)log 535+122log 2-log 5150-log 514=log 535×5014+12122log 2=log 553-1=2. (2)lg 52+23lg 8+lg 5·lg 20+lg 22=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+lg 22=2lg 10+(lg 2+lg 5)2=2+1=3.(3)lg 2+lg 3-lg 10lg 1.8=12lg 2+lg 9-lg 10lg 1.8=lg 18102lg 1.8=12. 反思:对数的运算一般有两种方法:一种是将式中真数的积、幂、商、方根运用对数运算法则将它们化为对数的和、差、积、商,然后计算;另一种是将式中的和、差、积、商运用对数运算法则将它们化为真数的积、幂、商、方根,然后化简求值.另外注意利用“lg 2+lg 5=1”来解题.题型二 有关对数式的恒等证明【例2】已知4a 2+9b 2=4ab (a >0),证明lg 2a +3b 4=lg a +lg b 2.分析:运用对数运算性质对所证等式转化为lg 2a +3b4=lg ab ,因此只要利用条件证出真数相等即可.证明:由4a 2+9b 2=4ab ,得⎝ ⎛⎭⎪⎫2a +3b 42=ab , 因为a >0,所以b >0,两边取以10为底的对数,得lg ⎝ ⎛⎭⎪⎫2a +3b 42=lg(ab ), 即2lg 2a +3b 4=lg(ab ),lg 2a +3b 4=12lg(ab ),所以lg 2a +3b 4=12(lg a +lg b ).因此lg 2a +3b 4=lg a +lg b2,所以原等式成立.反思:在由一般等式证明对数式时,要注意使对数有意义,这里在取对数前要说明b >0.题型三 对数换底公式的应用【例3】已知log 23=a,3b=7,则log 1256=__________(用a ,b 表示).解析:方法一:∵log 23=a ,∴2a=3.又3b =7,∴7=(2a )b =2ab.故56=8×7=23+ab.又12=3×4=2a ×4=2a +2,从而33+22256=(2)=12ab ab a aa ++++.故log 1256=32123log 12=2ab a aba ++++. 方法二:∵log 23=a ,∴log 32=1a. 又3b=7,∴log 37=b .从而log 1256=log 356log 312=log 37+log 38log 33+log 34=log 37+3log 321+2log 32=b +3·1a 1+2·1a=ab +3a +2.方法三:∵log 23=lg 3lg 2=a ,∴lg 3=a lg 2.又3b=7,∴lg 7=b lg 3.∴lg 7=ab lg 2.从而log 1256=lg 56lg 12=3lg 2+lg 72lg 2+lg 3=3lg 2+ab lg 22lg 2+a lg 2=3+ab2+a.答案:3+ab 2+a反思:方法一是借助指数变形来解;方法二与方法三是利用换底公式来解,显得较简明.应用对数换底公式解这类题的关键是适当选取新的底数,从而把已知对数和所求对数都换成新的对数,再代入求值即可.题型四 有关对数的应用题【例4】科学研究表明,宇宙射线在大气中能够产生放射性14C.14C 的衰变极有规律,其精确性可以称为自然界的“标准时钟”,动植物在生长过程中衰变的14C ,可以通过与大气的相互作用而得到补充,所以活着的动植物每克组织中的14C 含量保持不变,死亡后的动植物,停止了与外界环境的相互作用,机体中原有的14C 按确定的规律衰减,我们已经知道其“半衰期”为5 730年.(1)设生物体死亡时,体内每克组织的14C 含量为1,试推算生物死亡t 年后体内每克组织中的14C 含量p ;(2)湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始含量的76.7%,试推算马王堆汉墓的年代.解:(1)设生物体死亡1年后,体内每克组织中14C 的残留量为x .由于死亡机体中原有的14C 按确定的规律衰减,所以生物体的死亡年数t 与其体内每克组织的14C 含量p 有如下关系:由于大约经过5 730年,死亡生物体的14C 含量衰减为原来的一半,所以12=x 5 730.于是x =5 73012=1573012⎛⎫ ⎪⎝⎭. 所以生物死亡t 年后体内每克组织中的14C 含量573012t p ⎛⎫=⎪⎝⎭.(2)由573012t p ⎛⎫=⎪⎝⎭可得125730log t p =.湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始含量的76.7%,即p =0.767. 所以125730log 0.767 2 193t =≈.故马王堆汉墓约是2 193年前的遗址.反思:生物体死亡后,机体中原有的14C 每年按相同的比率衰减,因此,可以根据“半衰期”得到这一比率.已知衰减比率,求若干年后机体内14C 的含量属于指数函数模型;反之,已知衰减比率和若干年后机体内14C 的含量,求衰减的年数应属于对数知识.1设lg a =1.02,则0.010.01的值为__________(用a 表示).解析:设0.010.01=x ,则lg x =lg 0.010.01=0.01lg 0.01=-0.02, ∴lg a +lg x =lg ax =-0.02+1.02=1.∴ax =10,x =10a.答案:10a2若lg 2=a ,lg 3=b ,则lg 0.18等于__________. 解析:lg 0.18=lg 18-2=2lg 3+lg 2-2=a +2b -2. 答案:a +2b -23已知=1-aa,则log 23=__________.解析:由条件得log 23=a 1-a ,所以log 23=2a 1-a.答案:2a1-a4计算:log 2748+log 212-12log 242. 解:原式=log 2⎝⎛⎭⎪⎫743×12×17×6=-12.5设x ,y ,z 为正数,且3x =4y =6z,求证:1z -1x =12y.证明:设3x =4y =6z=k ,且x ,y ,z 为正数, 所以k >1.那么x =log 3k ,y =log 4k ,z =log 6k ,所以1z -1x =1log 6k -1log 3k =log k 6-log k 3=log k 2=12log k 4=12log 4k =12y .所以1z -1x =12y.。
第2课时 指数函数的图象与性质的应用学 习 目 标核 心 素 养1.能掌握指数函数的图象和性质,会用指数函数的图象和性质解决相关的问题.(重点、难点)2.能应用指数函数及其性质解决实际应用题.(难点)通过学习本节内容,培养学生的逻辑推理核心素养,提升学生的数学运算核心素养.指数函数形如y =ka x(k ∈R ,且k ≠0,a >0且a ≠1)的函数是一种指数型函数,这是一种非常有用的函数模型.设原有量为N ,每次的增长率为p ,经过x 次增长,该量增长到y ,则y =N (1+p )x(x ∈N ).某人于今年元旦到银行存款a 万元,银行利率为月息p ,则该人9月1日取款时,连本带利共可以取出金额为________.a (1+p )8 [一个月后a (1+p ),二个月后a (1+p )(1+p )=a (1+p )2,…9月1日取款时共存款8个月,则本利和为a (1+p )8.]求函数的定义域、值域(1)y =21x -4;(2)y =1-2x ;(3)y =⎝ ⎛⎭⎪⎫12x 2-2x -3.思路点拨:使式子的每个部分有意义,即可求得各自的定义域,求值域时要把函数予以分解,求指数的范围,再求整个函数的值域.[解] (1)由x -4≠0,得x ≠4, 故y =21x -4的定义域为{x |x ≠4}.又1x -4≠0,即21x -4≠1, 故y =21x -4的值域为{y |y >0,且y ≠1}. (2)由1-2x≥0,得2x≤1,∴x ≤0, ∴y =1-2x 的定义域为(-∞,0]. 由0<2x≤1,得-1≤-2x<0, ∴0≤1-2x<1,∴y =1-2x 的值域为[0,1).(3)y =⎝ ⎛⎭⎪⎫12x 2-2x -3的定义域为R .∵x 2-2x -3=(x -1)2-4≥-4,∴⎝ ⎛⎭⎪⎫12x 2-2x -3≤⎝ ⎛⎭⎪⎫12-4=16.又∵⎝ ⎛⎭⎪⎫12x 2-2x -3>0,故函数y =⎝ ⎛⎭⎪⎫12x 2-2x -3的值域为(0,16].1.对于y =af (x )这类函数(1)定义域是指使f (x )有意义的x 的取值范围. (2)值域问题,应分以下两步求解: ①由定义域求出u =f (x )的值域;②利用指数函数y =a u的单调性或利用图象求得函数的值域. 2.对于y =m (a x )2+n (a x )+p (m ≠0)这类函数值域问题.利用换元法,借助二次函数求解.1.(1)函数f (x )=1-2x+1x +3的定义域为________.(2)求函数y =4-x -21-x+1在x ∈[-3,2]上的最大值和最小值.(-3,0][(1)由⎩⎪⎨⎪⎧1-2x≥0,x +3>0,得-3<x ≤0.所以函数的定义域是(-3,0].] (2)[解] y =4-x-21-x+1=⎝ ⎛⎭⎪⎫122x -2·⎝ ⎛⎭⎪⎫12x +1=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x -12,∵x ∈[-3,2],∴⎝ ⎛⎭⎪⎫12x ∈⎣⎢⎡⎦⎥⎤14,8,令t =⎝ ⎛⎭⎪⎫12x,得y =(t -1)2,其中t ∈⎣⎢⎡⎦⎥⎤14,8,∴y ∈[0,49],即最大值为49,最小值为0.指数函数的应用题为1.2%,试解答下列问题:(1)试写出x 年后该城市人口总数y (万人)与年份x (年)之间的函数关系式;(2)计算10年后该城市人口总数(精确到1万人).思路点拨:本题考查有关增长率的问题,若设原来人口总数为N ,年平均增长率为p ,则对于x 年后的人口总数y ,可以用y =N (1+p )x表示.[解] (1)1年后城市人口总数为:y =100+100×1.2%=100(1+1.2%).2年后城市人口总数为:y =100×(1+1.2%)+100×(1+1.2%)×1.2%=100(1+1.2%)2,同理3年后城市人口总数为y =100(1+1.2%)3, …故x 年后的城市人口总数为y =100(1+1.2%)x . (2)10年后该城市人口总数为:y =100(1+1.2%)10=100×1.01210≈100×1.127≈113(万人).故10年后该城市人口总数约为113万人. 解决实际应用题的步骤 1领会题意,并把题中的普通语言转化为数学语言; 2根据题目要求,分析量与量之间的关系,建立恰当的函数模型,并注意对变量的限制条件,加以概括;3对已经“数学化”的问题用所学的数学知识处理,求出解;4检验:将数学问题的解代入实际问题检查,舍去不符合题意的解,并作答.2.某乡镇现在人均一年占有粮食360千克,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x 年后若人均一年占有y 千克粮食,求出y 关于x 的函数解析式.[解] 设该乡镇现在人口数量为M ,则该乡镇现在一年的粮食总产量为360M 千克.经过1年后,该乡镇粮食总产量为360M (1+4%)千克,人口数量为M (1+1.2%).则人均占有粮食为360M 1+4%M 1+1.2%千克,经过2年后,人均占有粮食为360M 1+4%2M 1+1.2%2千克,…经过x 年后,人均占有粮食为y =360M 1+4%x M 1+1.2%x千克,即所求函数解析式为y =360⎝⎛⎭⎪⎫1.041.012x(x ∈N *).指数函数性质的综合应用[探究问题]通过指数函数y =2x,y =⎝ ⎛⎭⎪⎫12x的图象,可以抽象出指数函数的性质有哪些?[提示] 指数函数y =a x(a >0,且a ≠1)的图象和性质a >10<a <1图象定义域 R 值域 (0,+∞)性质过定点过点(0,1),即x =0时,y =1函数值的变化 当x >0时,y >1; 当x <0时,0<y <1 当x >0时,0<y <1; 当x <0时,y >1 单调性是R 上的增函数是R 上的减函数【例3】 已知定义域为R 的函数f (x )=2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围;(3)求f (x )在[-1,2]上的值域.思路点拨:(1)根据奇函数的定义,求出a ,b .(2)利用单调性和奇偶性去掉f 解不等式求k 的范围.(3)利用(2)中单调性求f (x )的值域.[解] (1)∵函数y =f (x )是定义域R 上的奇函数,∴⎩⎪⎨⎪⎧f0=0,f-1=-f1,∴⎩⎪⎨⎪⎧-1+b2+a=0,-2-1+b 20+a =--21+b 22+a ,∴b =1,a =2.(2)由(1)知f (x )=1-2x22x+1=-12+12x +1,设x 1,x 2∈R 且x 1<x 2,则f (x 2)-f (x 1)=12x 2+1-12x 1+1=2x 1-2x 22x 2+12x 1+1<0,∴f (x )在定义域R 上为减函数, 由f (t 2-2t )+f (2t 2-k )<0恒成立, 可得f (t 2-2t )<-f (2t 2-k )=f (k -2t 2), ∴t 2-2t >k -2t 2,∴3t 2-2t -k >0恒成立, ∴Δ=(-2)2+12k <0,解得k <-13,∴k的取值范围为⎝⎛⎭⎪⎫-∞,-13.(3)由(2)知f (x )在R 上单调递减, ∴f (x )在[-1,2]上单调递减,∴f (x )max =f (-1)=-12+11+12=16,f (x )min =f (2)=-12+14+1=-310,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-310,16.与指数函数有关的综合应用问题往往涉及到指数函数的定义域、值域、单调性、奇偶性、最值值域等问题,求解时可充分借助已学的知识逐项求解.3.设a >0,函数f (x )=4xa +a4x 是定义域为R 的偶函数.(1)求实数a 的值;(2)证明:f (x )在(0,+∞)上是增函数. [解] (1)由f (x )=f (-x ) 得4xa +a 4x =4-xa +a 4-x ,即4x ⎝ ⎛⎭⎪⎫1a -a +14x ⎝⎛⎭⎪⎫a -1a =0,所以⎝ ⎛⎭⎪⎫4x -14x ⎝ ⎛⎭⎪⎫1a -a =0,根据题意,可得1a-a =0,又a >0,所以a =1.(2)由(1)可知f (x )=4x+14x ,设任意的x 1,x 2∈(0,+∞),且x 1<x 2,则 f (x 1)-f (x 2)=4x 1+14x 1-4x2-14x 2=(4x 1-4x 2)⎝⎛⎭⎪⎪⎫1-14x 1+x 2.因为0<x 1<x 2,所以4x 1<4x 2,所以4x 1-4x2<0. 又x 1+x 2>0, 所以4x 1+x 2>1,所以1-14x 1+x 2=4x 1+x2-14x 1+x 2>0,所以f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2).于是知f (x )在(0,+∞)上是增函数.复合函数的单调性1.y =2x的单调性如何?y =x +1呢?y =2x +1呢?[提示] y =2x在R 上单调递增,y =x +1在R 上单调递增,y =2x +1在R 上单调递增.2.y =⎝ ⎛⎭⎪⎫12x与y =⎝ ⎛⎭⎪⎫12x +1的单调性分别如何?[提示]y =⎝ ⎛⎭⎪⎫12x 单调递减,y =⎝ ⎛⎭⎪⎫12x +1单调递减.3.y =-x 与y =2-x的单调性如何?[提示] y =-x 单调递减,y =2-x=⎝ ⎛⎭⎪⎫12x单调递减. 4.由以上3个探究,我们可以对由y =f (u ),u =g (x )复合而成的函数y =f (g (x ))的单调性做出什么猜想.[提示] y =f (g (x ))可以由y =f (u ),u =g (x )复合而成,复合而成的函数单调性与y =f (u ),u =g (x )各自单调的关系为“同增异减”.即f 与g 单调性相同,复合后单调递增,f 与g 单调性不同,复合后单调递减.5.用单调性的定义证明:当y =f (u ),u =g (x )均单调递减时y =f (g (x ))单调递增.[提示] 任取x 1,x 2∈D 且x 1<x 2.∵g (x )单调递减,∴g (x 1)>g (x 2),即u 1>u 2, 又f (x )单调递减,∴f (u 1)<f (u 2), 即f (g (x 1))<f (g (x 2)), ∴y =f (g (x ))单调递增. 【例4】判断f (x )=⎝ ⎛⎭⎪⎫13x 2-2x的单调性,并求其值域.思路点拨:先确定u =x 2-2x 的值域、单调性,再确定f (x )=⎝ ⎛⎭⎪⎫13u的单调性和值域. [解] 令u =x 2-2x ,则原函数变为y =⎝ ⎛⎭⎪⎫13u .∵u =x 2-2x =(x -1)2-1在(-∞,1]上递减,在[1,+∞)上递增,又∵y =⎝ ⎛⎭⎪⎫13u在(-∞,+∞)上递减,∴y =⎝ ⎛⎭⎪⎫13x 2-2x 在(-∞,1]上递增,在[1,+∞)上递减.∵u =x 2-2x =(x -1)2-1≥-1,∴y =⎝ ⎛⎭⎪⎫13u,u ∈[-1,+∞),∴0<⎝ ⎛⎭⎪⎫13u ≤⎝ ⎛⎭⎪⎫13-1=3,∴原函数的值域为(0,3].1.(变条件)本例中“x ∈R ”变为“x ∈[-1,2]”.判断f (x )的单调性,并求其值域.[解] 由本例解析知,又x ∈[-1,2],∴f (x )=⎝ ⎛⎭⎪⎫13x 2-2x (x ∈[-1,2])在[-1,1]上是增函数,在(1,2]上是减函数.∵u =x 2-2x (x ∈[-1,2])的最小值、最大值分别为u min =-1,u max =3,∴f (x )的最大值、最小值分别为f (1)=⎝ ⎛⎭⎪⎫13-1=3,f (-1)=⎝ ⎛⎭⎪⎫133=127.∴函数f (x )的值域为⎣⎢⎡⎦⎥⎤127,3.2.(变设问)在本例条件下,解不等式f (x )<f (1). [解]∵f (x )<f (1),即⎝ ⎛⎭⎪⎫13x 2-2x <⎝ ⎛⎭⎪⎫13-1,∴x 2-2x >-1,∴(x -1)2>0,∴x ≠1, ∴不等式的解集为{x |x ≠1}. 1.关于指数型函数y =af (x )(a >0,且a ≠1),它由两个函数y=a u,u =f (x )复合而成.其单调性由两点决定,一是底数a >1还是0<a <1;二是f (x )的单调性.2.求这种指数型函数的单调区间,首先求出函数的定义域,然后把函数分解成y =f (u ),u =φ(x ),通过考查f (u )和φ(x )的单调性,求出y =f (φ(x ))的单调性,其规则是“同增异减”.1.比较两个指数式值大小的主要方法(1)比较形如a m 与a n 的大小,可运用指数型函数y =a x 的单调性.(2)比较形如a m 与b n 的大小,一般找一个“中间值c ”,若a m <c 且c <b n ,则a m <b n ;若a m >c 且c >b n ,则a m >b n .2.指数型函数单调性的应用(1)形如y =af (x )的单调性:令u =f (x ),x ∈[m ,n ],如果两个函数y =a u 与u =f (x )的单调性相同,则函数y =a f (x )在[m ,n ]上是增函数;如果两者的单调性相异(即一增一减),则函数y =af (x )在[m ,n ]上是减函数. (2)形如a x >a y 的不等式,当a >1时,a x >a y⇔x >y ;当0<a <1时,a x >a y ⇔x <y .1.函数f (x )=1-3x +1x +5的定义域为( ) A .(-5,0)B .[-5,0)C .(-5,0]D .[-5,0] C [令⎩⎪⎨⎪⎧ 1-3x ≥0,x +5>0,∴-5<x ≤0.]2.函数f (x )=⎝ ⎛⎭⎪⎫13x-1,x ∈[-1,2]的值域为________.⎣⎢⎡⎦⎥⎤-89,2 [x ∈[-1,2]时,⎝ ⎛⎭⎪⎫13x ∈⎣⎢⎡⎦⎥⎤19,3, ∴f (x )∈⎣⎢⎡⎦⎥⎤-89,2.] 3.函数y =32-2x 2的单调递减区间是________.[0,+∞) [令y =3u ,u =2-2x 2,因为y =3u在R 上单调递增,u =2-2x 2在[0,+∞)上单调递减,所以y =32-2x 2的单调递减区间是[0,+∞).]4.设0≤x ≤2,y =4x -12-3×2x +5,试求该函数的最值.[解] 令t =2x ,0≤x ≤2,∴1≤t ≤4.则y =22x -1-3×2x+5=12t 2-3t +5. 又y =12(t -3)2+12,t ∈[1,4], ∴y =12(t -3)2+12在[1,3]上是减函数,在t ∈[3,4]上是增函数,∴当t =3时,y min =12; 当t =1时,y max =52. 故函数的最大值为52,最小值为12.。
2018版高中数学第三章指数函数、对数函数和幂函数3.1.2 第2课时指数函数的图象与性质的应用学业分层测评苏教版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第三章指数函数、对数函数和幂函数3.1.2 第2课时指数函数的图象与性质的应用学业分层测评苏教版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第三章指数函数、对数函数和幂函数3.1.2 第2课时指数函数的图象与性质的应用学业分层测评苏教版必修1的全部内容。
3。
1。
2 第2课时指数函数的图象与性质的应用(建议用时:45分钟)[学业达标]一、填空题1.函数y=a x-1的定义域是(-∞,0],则实数a的取值范围为________.【解析】由a x-1≥0,得a x≥1=a0,因为x∈(-∞,0],由指数函数的性质知0〈a<1。
【答案】(0,1)2.函数y=错误!的值域是________.【解析】∵x2-1≥-1,∴y≤错误!-1=2,又y>0,∴y∈(0,2].【答案】(0,2]3.若函数的定义域为R,则实数a的取值范围是________.【解析】依题意,对任意x∈R恒成立,即x2+2ax-a≥0恒成立,∴Δ=4a2+4a≤0,∴-1≤a≤0。
【答案】[-1,0]4.若函数f (x)=a|2x-4|(a〉0,a≠1),满足f (1)=错误!,则f (x)的单调递减区间是________.【解析】由f (1)=错误!,得a2=错误!,所以a=错误!错误!,即f (x)=错误!|2x-4|.由于y=|2x-4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x)在(-∞,2]上递增,在[2,+∞)上递减.【答案】[2,+∞)5.函数y=8-24-x(x≥0)的值域是________.【解析】∵x≥0,∴4-x∈(-∞,4],∴24-x∈(0,16],∴8-24-x∈[-8,8).【答案】[-8,8)6.已知函数f (x)=e|x-a|(a为常数),若f (x)在区间[1,+∞)上是增函数,则实数a 的取值范围是________.【解析】∵e>1,令y=|x-a|,∴y=|x-a|在[1,+∞)上为增函数,函数y=|x-a|的图象如图,可知当a≤1时,函数y=|x-a|在[1,+∞)上为增函数.【答案】(-∞,1]7.用清水漂洗衣服,若每次能洗去污垢的错误!,要使存留污垢不超过原来的1%,则至少要漂洗________次.【解析】设原来污垢数为1个单位,则经过第一次漂洗,存留量为原来的错误!;经过第二次漂洗,存留量为第一次漂洗后的错误!;也就是原来的错误!2;经过第三次漂洗,存留量为原来的错误!3;经过第四次漂洗,存留量为原来的错误!4,……,经过第x次漂洗,存留量为原来的错误! x.由题意,错误!x≤错误!,4x≥100,2x≥10,∴x≥4,即至少漂洗4次.【答案】48.已知函数f (x)是定义在R上的奇函数,当x>0时,f (x)=1-2-x,则不等式f (x)〈-错误!的解集是________.【解析】当x〈0时,-x〉0,f (-x)=1-2x=-f (x),则f (x)=2x-1.当x=0时,f (0)=0,由f (x)〈-错误!,解得x〈-1.【答案】(-∞,-1)二、解答题9.已知函数(1)若a=-1时,求函数f (x)的单调增区间;(2)如果函数f (x)有最大值3,求实数a的值.【解】(1)当a=-1时,令g(x)=-x2-4x+3=-(x+2)2+7,由于g(x)在(-2,+∞)上递减,y=错误!x在R上是减函数,∴f (x)在(-2,+∞)上是增函数,即f (x)的单调增区间是(-2,+∞).(2)令h(x)=ax2-4x+3,f (x)=错误!h(x),由于f (x)有最大值3,所以h(x)应有最小值-1.因此必有错误!解得a=1,即当f (x)有最大值3时,a的值为1.10.一个人喝了少量酒后,血液中酒精含量迅速上升到0.3 mg/mL,在停止喝酒后,血液中的酒精含量以每小时50%的速度减少.为了保障交通安全,某地交通规则规定,驾驶员血液酒精含量不得超过0.08 mg/mL,那么喝了少量酒的驾驶员,至少要过几小时才能驾驶?(精确到1小时)【解】1小时后驾驶员血液中的酒精含量为0.3(1-50%)mg/mL,…,x小时后其酒精含量为0.3(1-50%)x mg/mL,由题意知0.3(1-50%)x≤0.08,错误!x≤错误!.采用估算法,x=1时,错误!1=错误!>错误!,x=2时,错误!2=错误!=错误!〈错误!。
第2课时 对数的运算性质及换底公式1.了解对数的换底公式.2.理解对数的运算性质.3.掌握用对数的运算性质进行化简与证明.[学生用书P49]1.如果a >0,且a ≠1,M >0,N >0,那么 (1)log a (MN )=log a M +log a N ; (2)log a M N=log a M -log a N ; (3)log a M n=n log a M (n ∈R ). 2.换底公式一般地,称log a N =log c Nlog c a(a >0且a ≠1,c >0且c ≠1,N >0)为对数的换底公式.1.判断(正确的打“√”,错误的打“×”)(1)两个正数的积、商的对数可以化为这两个正数的对数的和、差.( ) (2)log a (xy )=log a x ·log a y .( ) (3)log 2(-5)2=2log 2(-5).( ) (4)由换底公式可得log a b =log (-2)blog (-2)a.( )答案:(1)√ (2)× (3)× (4)×2.已知a >0且a ≠1,则log a 2+log a 12=( )A .0B .12 C .1 D .2答案:A3.(1)lg 10=________;(2)已知ln a =0.2,则ln ea=________.答案:(1)12(2)0.84.log 29log 23=________. 答案:2对数的运算性质及应用[学生用书P49]计算下列各式:(1)12lg 3249-43lg 8+lg 245; (2)2lg 2+lg 31+12lg 0.36+13lg 8;(3)lg 25+23lg 8+lg 5lg 20+(lg 2)2.【解】 (1)原式=12(5lg 2-2lg 7)-43×32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5)=12lg 10=12. (2)2lg 2+lg 31+12lg 0.36+13lg 8=lg 4+lg 31+lg 0.6+lg 2=lg 12lg (10×0.6×2)=lg 12lg 12=1.(3)原式=2lg 5+2lg 2+(1-lg 2)(1+lg 2)+(lg 2)2=2(lg 5+lg 2)+1-(lg 2)2+(lg 2)2=2+1=3.(1)对于同底的对数的化简,常用的方法是:①“收”,将同底的两对数的和(差)收成积(商)的对数(逆用运算性质); ②“拆”,将积(商)的对数拆成对数的和(差)(正用运算性质).(2)对数式的化简,求值一般是正用或逆用公式.要养成正用、逆用、变形应用公式的习惯,lg 2+lg 5=1在计算对数值时会经常用到,同时注意各部分变形要化到最简形式.1.计算下列各式:(1)12lg 25+lg 2+lg 10+lg(0.01)-1;(2)2log 32-log 3329+log 38-3log 55.解:(1)法一:原式=lg[2512×2×1012×(10-2)-1] =lg (5×2×1012×102) =lg 1072=72.法二:原式=12lg 52+lg 2+12lg 10-lg 10-2=(lg 5+lg 2)+12-(-2)=lg 10+12+2=1+12+2=72.(2)法一:原式=log 322+log 3(32×2-5)+log 323-3 =log 3(22×32×2-5×23)-3 =log 332-3 =2-3=-1.法二:原式=2log 32-()5log 32-2+3log 32-3 =2-3=-1.换底公式的应用[学生用书P50](1)计算:(log 2125+log 425+log 85)·(log 52+log 254+log 1258); (2)已知log 189=a ,18b=5,求log 3645(用a ,b 表示). 【解】 (1)法一:原式=⎝⎛⎭⎪⎫log 253+log 225log 24+log 25log 28⎝ ⎛⎭⎪⎫log 52+log 54log 525+log 58log 5125 =⎝⎛⎭⎪⎫3log 25+2log 252log 22+log 253log 22⎝ ⎛⎭⎪⎫log 52+2log 522log 55+3log 523log 55 =⎝ ⎛⎭⎪⎫3+1+13log 25·(3log 52)=13log 25·log 22log 25=13. 法二:原式 =⎝ ⎛⎭⎪⎫lg 125lg 2+lg 25lg 4+lg 5lg 8⎝ ⎛⎭⎪⎫lg 2lg 5+lg 4lg 25+lg 8lg 125=⎝⎛⎭⎪⎫3lg 5lg 2+2lg 52lg 2+lg 53lg 2⎝ ⎛⎭⎪⎫lg 2lg 5+2lg 22lg 5+3lg 23lg 5=⎝⎛⎭⎪⎫13lg 53lg 2⎝ ⎛⎭⎪⎫3lg 2lg 5=13.(2)法一:因为18b=5,所以log 185=b , 又log 189=a ,于是log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b 2-a.法二:因为log 189=a ,18b=5,所以lg 9=a lg 18, lg 5=b lg 18,所以log 3645=lg 45lg 36=lg (9×5)lg 1829=lg 9+lg 52lg 18-lg 9=a lg 18+b lg 182lg 18-a lg 18=a +b2-a.法三:因为log 189=a ,所以18a=9. 又因为18b=5,所以45=5×9=18b·18a=18a +b.令log 3645=x ,则36x=45=18a +b,即36x=⎝ ⎛⎭⎪⎫183·183x=18a +b.所以⎝ ⎛⎭⎪⎫1829x=18a +b,所以x log 181829=a +b ,所以x =a +b log 18182-log 189=a +b 2-a ,即log 3645=a +b2-a.(1)具有换底功能的另两个结论:①log a c ·log c a =1,②log an b n=log a b .(a >0且a ≠1,b >0,c >0且c ≠1)(2)求条件对数式的值,可从条件入手,从条件中分化出要求的对数式,进行求值;也可以从结论入手,转化成能使用条件的形式;还可同时化简条件和结论,直至找到它们之间的联系.(3)本题主要考查已知一些指数值或对数值,利用这些条件来表示所要求的式子,解决该类问题必须熟练掌握所学性质和法则,并学会运用整体思想.2.(1)计算:(log 43+log 83)log 32=________.(2)计算:log22+log 279=________.解析:(1)原式=⎝ ⎛⎭⎪⎫1log 34+1log 38log 32=⎝⎛⎭⎪⎫12log 32+13log 32log 32=12+13=56.(2)原式=log 22log 2212+log 332log 333=112+23=2+23=83.答案:(1)56 (2)83对数的综合应用[学生用书P50]若a ,b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值. 【解】 原方程可化为2(lg x )2-4lg x +1=0, 设t =lg x ,则原方程可化为2t 2-4t +1=0.所以t 1+t 2=2,t 1t 2=12.由已知a ,b 是原方程的两个根,则t 1=lg a ,t 2=lg b ,即lg a +lg b =2,lg a ·lg b =12,所以lg(ab )·(log a b +log b a ) =(lg a +lg b )⎝⎛⎭⎪⎫lg b lg a +lg a lg b=(lg a +lg b )[(lg b )2+(lg a )2]lg a lg b=(lg a +lg b )·(lg b +lg a )2-2lg a lg blg a lg b=2×22-2×1212=12.即lg(ab )·(log a b +log b a )=12.应用对数的运算性质解对数方程的三种方法(1)定义法:解形如b =log a f (x )(a >0,a ≠1)的方程时,常借助对数函数的定义等价转化为f (x )=a b 求解.(2)转化法:形如log a f (x )=log a g (x )(a >0,a ≠1)的方程,等价转化为f (x )=g (x ),且⎩⎪⎨⎪⎧f (x )>0,g (x )>0求解. (3)换元法:适用于f (log a x )=0(a >0,a ≠1)形式的方程的求解问题,这类方程一般可通过设中间变量的方法(换元法)来解.3.(1)方程log 4(3x -1)=log 4(x -1)+log 4(x +3)的解为________.(2)已知lg(x +2y )+lg(x -y )=lg 2+lg x +lg y ,求x y的值. 解:(1)原方程可化为3x -1=(x -1)(x +3), 即x 2-x -2=0, 解得x =2或x =-1,而x =-1使真数3x -1和x -1小于0, 故方程的解是x =2.故填x =2. (2)由已知条件得⎩⎪⎨⎪⎧x +2y >0,x -y >0,x >0,y >0,(x +2y )(x -y )=2xy ,即⎩⎪⎨⎪⎧x >y ,y >0,(x +2y )(x -y )=2xy ,整理得⎩⎪⎨⎪⎧x >y ,y >0,(x -2y )(x +y )=0,所以x -2y =0,所以xy=2.1.对对数的运算性质的理解(1)利用对数的运算性质可以把求正数的乘、除、乘方的对数的运算转化为这些正数的对数的加、减、乘运算,反之亦然.但两个正数的和或差的对数没有运算性质.(2)对于每一条运算性质,都要注意只有当式子中所有的对数都有意义时,等式才成立. (3)能用语言准确叙述对数的运算性质log a (M ·N )=log a M +log a N →积的对数等于对数的和. log a M N=log a M -log a N →商的对数等于对数的差.log a M n=n log a M (n ∈R )→真数的n 次幂的对数等于对数的n 倍. 2.关于换底公式的两点说明(1)换底公式成立的条件是公式中的每一个对数式都有意义.(2)利用换底公式,可以“随意”地改变对数的底,应注意选择适当的底数,一般转化为常用对数或自然对数,化简和证明中常常用到换底公式.已知lg a +lg b =2lg(a -2b ),求log 2a b的值. [解] 因为lg a +lg b =2lg(a -2b ), 所以lg ab =lg(a -2b )2,ab =(a -2b )2,a 2-5ab +4b 2=0,即(a -b )(a -4b )=0, 所以a =b 或a =4b . 又因为a -2b >0,所以a =4b ,log 2a b=log 24=2.(1)错因:易忽视真数大于0的限制,导致出现增解. (2)防范:将对数化简、变形,不能忘记真数大于0的限制.1.化简12log 612-2log 62的结果为( )A .6 2B .12 2C .log 6 3D .12 解析:选C.原式=log 612-log 62=log 6122=log 6 3. 2.已知a =log 32,那么log 38-2log 36用a 表示是( ) A .a -2 B .5a -2 C .3a -(1+a )2D .3a -a 2解析:选A.log 38-2log 36=3log 32-2(log 32+1)=log 32-2=a -2. 3.(1)log 52·log 79log 513·log 734=________.(2)log 2()3+5- 3-5=________.解析:(1)原式=log 132·log 349=12lg 2-lg 3·2lg 323lg 2=-32.(2)原式=12log 2(3+5- 3-5)2=12log 2[](3+5)+(3-5)-2(3+5)(3-5) =12log 2(6-4) =12log 22=12. 答案:(1)-32 (2)124.用lg x ,lg y ,lg z 表示下列各式:(1)lg(xyz ); (2)lg xy 2z ;(3)lg xy 3z; (4)lg x y 2z .解:(1)lg(xyz )=lg x +lg y +lg z ;(2)lg xy 2z =lg(xy 2)-lg z =lg x +2lg y -lg z ;(3)lg xy 3z=lg(xy 3)-lg z=lg x +3lg y -12lg z ;(4)lgx y 2z=lg x -lg(y 2z ) =12lg x -2lg y -lg z . [学生用书P111(单独成册)])[A 基础达标]1.lg 8+3lg 5的值为( ) A .-3 B .-1 C .1D .3解析:选D.lg 8+3lg 5=lg 8+lg125=lg1 000=3. 2.设log 34·log 48·log 8m =log 416,则m 的值为( ) A.12B .9C .18D .27解析:选B.由题意得lg 4lg 3·lg 8lg 4·lg mlg 8=log 416=log 442=2, 所以lg m lg 3=2,即lg m =2lg 3=lg 9. 所以m =9,选B.3.若lg x =m ,lg y =n ,则lg x -lg ⎝ ⎛⎭⎪⎫y 102的值为( ) A.12m -2n -2 B .12m -2n -1 C.12m -2n +1 D .12m -2n +2 解析:选D.因为lg x =m ,lg y =n ,所以lg x -lg ⎝ ⎛⎭⎪⎫y 102=12lg x -2lg y +2=12m -2n +2.故选D.4.设lg 2=a ,lg 3=b ,则log 512等于( ) A.2a +b1+a B .a +2b1+a C.2a +b 1-aD .a +2b1-a解析:选C.log 512=lg 12lg 5=lg (22×3)lg (10÷2)=lg 22+lg 3lg 10-lg 2=2lg 2+lg 31-lg 2=2a +b1-a .故选C.5.已知2x=3,log 483=y ,则x +2y 等于( )A .3B .8C .4D .log 48解析:选A.因为2x=3,所以x =log 23. 又log 483=y ,所以x +2y =log 23+2log 483=log 23+2(log 48-log 43)=log 23+2⎝ ⎛⎭⎪⎫32log 22-12log 23 =log 23+3-log 23=3.故选A.6.已知m >0,且10x=lg(10m )+lg 1m,则x =________.解析:lg(10m )+lg 1m =lg 10+lg m +lg 1m=1,所以10x =1=100.所以x =0. 答案:07.方程log 3(x 2-10)=1+log 3x 的解是________.解析:原方程可化为log 3(x 2-10)=log 3(3x ),所以x 2-10=3x ,解得x =-2,或x =5.经检验知x =5.答案:x =58.已知2m =3n=36,则1m +1n=________.解析:m =log 236,n =log 336,所以1m =log 362,1n =log 363,所以1m +1n =log 366=12.答案:129.计算下列各式:(1)lg 8+log 39+lg 125+log 319;(2)[log 2(log 216)](2log 36-log 34);(3)⎝ ⎛⎭⎪⎫lg 4-lg 60lg 3+lg 53-45×2-11. 解:(1)原式=lg 8+lg 125+log 39+log 319=lg(8×125)+log 3⎝ ⎛⎭⎪⎫9×19=lg 1 000+log 31=3+0=3. (2)原式=(log 24)(log 336-log 34)=2log 3364=2log 39=4.(3)原式=⎝ ⎛⎭⎪⎪⎫lg 460lg 153-210×2-11=⎝ ⎛⎭⎪⎫-lg 15lg 153-2-1 =-1-12=-32.10.解下列关于x 的方程: (1)lg x -1=lg(x -1);(2)log 4(3-x )+log 0.25(3+x )=log 4(1-x )+log 0.25(2x +1).解:(1)原方程等价于⎩⎨⎧x -1=x -1,x -1>0.解之得x =2. 经检验x =2是原方程的解,所以原方程的解为x =2.(2)原方程可化为log 4(3-x )-log 4(3+x )=log 4(1-x )-log 4(2x +1).即log 43-x 3+x=log 41-x 2x +1. 整理得3-x x +3=1-x 2x +1,解之得x =7或x =0. 当x =7时,3-x <0,不满足真数大于0的条件,故舍去.x =0满足,所以原方程的解为x =0.[B 能力提升]1.若log 513·log 36·log 6x =2,则x 等于________. 解析:由换底公式,得-lg 3lg 5·lg 6lg 3·lg x lg 6=2, lg x =-2lg 5,x =5-2=125. 答案:1252.计算log 8(log 242)的值为________.解析:log 8(log 242)=log 814=-2log 82=-23. 答案:-233.若log a b +3log b a =132,则用a 表示b 的式子是________. 解析:原式可化为1log b a +3log b a =132, 整理得3(log b a )2+1-132log b a =0, 即6(log b a )2-13log b a +2=0;解得log b a =2或log b a =16, 所以b 2=a 或b 16=a , 即b =a 或b =a 6.答案: b =a 或b =a 64.(选做题)已知地震的震级R 与地震释放的能量E 的关系为R =23(lg E -11.4).若A 地地震级别为9.0级,B 地地震级别为8.0级,求A 地地震释放的能量是B 地地震释放的能量的多少倍.解:由R =23(lg E -11.4), 得32R +11.4=lg E , 故E =10(32R +11.4).设A 地和B 地地震释放的能量分别为E 1,E 2,则E 1E 2=10(32×9.0+11.4)10(32×8.0+11.4)=1010, 即A 地地震释放的能量是B 地地震释放的能量的1010倍.。
2019年高中数学 初升高课程衔接 第三章 对数函数、指数函数、幂函数 3.2.2 对数函数教案 苏教版必修1课标知识与能力目标1.理解对数函数的概念和意义.2.掌握对数函数的图像和性质.3.能利用对数函数进一步学习函数图像的平移、对称、翻折变换. 知识点1 对数函数1.概念:一般地,函数x a log y (a>0,a≠1)叫做对数函数,它的定义域是(0,+∞).2.对数函数的图象和性质:典型例题考点1:对数函数的概念例1 下列函数中,哪些是对数函数?①y=log 2x 3;②y=log 2x +3;③y=3log 8x ;④y=log x a 2(x>0且x≠1,a 为常数);⑤y=log 6x .例2 函数f(x)=(a 2-a +1)log (a +1)x 是对数函数,求实数a 的值.考点2:与对数函数有关的函数定义域问题 例1 求下列函数的定义域: (1)32log xy =; (2))34(log 5.0-=x y ;(3))416(log 1x x y -=+.例2 已知)(x f 的定义域为[0,1],则函数)]3([log 21x f y -=的定义域是__________.考点3:对数函数的图象问题注意:1.由图象来确定或判断参数的大小情况,需要抓住图象的本质特征和关键点.如本例中根据图中的四条曲线底数不同及图象的位置关系,利用log a a =1,结合图象判断. 2.在第一象限内,对数函数y =log a x(a>0,a≠1)的图象,底数越小越靠近y 轴.例1 图中曲线是对数函数y =log a x 的图象,已知a 取3,43,35,110,则相应于曲线C 1,C 2,C 3,C 4的a 的值依次为________.例2 已知a>0且a≠1,函数y =a x与y =log a (-x)的图象可能是________(填序号).考点4:利用对数函数的单调性比较大小 1.对数值比较大小的类型及方法:2.如果底数不确定时,常对底数分a>1或0<a<1分别求解.例1 比较下列各组数的大小:(1)log 0.14与log 0.54; (2)log 45与log 65; (3)log 323与log 565; (4)(lg m)1.9与(lg m)2.1(m>1).例2 若a =π3log ,b =6log 7,c =8.0log 2,则a 、b 、c 的大小关系是________.考点5:利用对数函数的单调性解决问题 例1(1)已知131log <a ,求实数a 的取值范围; (2)解不等式:log 2(3x -5)<log 2x +1.例2 已知)3(log ax y a -=在[0,2上是x 的减函数,求a 的取值范围.例3 求函数)3lg()2lg(2---=x x y 的最小值.能力提优题型1:对数函数综合应用 例1 已知函数f(x)=lg|x|. (1)判断函数f(x)的奇偶性; (2)画出函数f(x)的草图;(3)求函数f(x)的单调递减区间,并加以证明.例2 若b x x x f +-=2)(,且b a f =)(log 2,)1(2)]([log 2≠=a a f . (1)求)(log 2x f 的最小值及对应的x 值;(2)x 取何值时,)1()(log 2f x f >且)1()]([log 2f x f <?。
第1课时对数函数的概念、图象及性质1.了解对数函数的概念.2.会画对数函数的图象,记住对数函数的性质.3.掌握对数函数图象和性质的应用.[学生用书P52]1.对数函数的概念一般地,函数y=log a x(a>0,a≠1)叫做对数函数,对数函数的定义域是(0,+∞),值域为(-∞,+∞).2.对数函数的图象与性质定义y=log a x(a>0且a≠1)底数a>10<a<1图象定义域{x|x>0}值域R单调性增函数减函数共点性图象过点(1,0),即log a1=0函数值x∈(0,1)时,y∈(-∞,0);x∈[1,+∞)时,y∈[0,+∞)x∈(0,1)时,y∈(0,+∞);x∈[1,+∞)时,y∈(-∞,0]对称性函数y=log a x与y=log1ax的图象关于x轴对称趋势a值越大图象越靠近x,y轴a值越小图象越靠近x,y轴x趋于零,y趋于-∞;x趋于+∞,y趋于+∞x趋于零,y趋于+∞;x趋于+∞,y趋于-∞3.y=a x称为y=log a x的反函数,反之,y=log a x也称为y=a x的反函数,一般地,如果函数y =f(x)存在反函数,那么它的反函数记作y=f-1(x).1.判断(正确的打“√”,错误的打“×”)(1)y=log2x2与y=log x3都不是对数函数.( )(2)对数函数的图象一定在y轴右侧.( )(3)当0<a <1时,若x >1,则y =log a x 的函数值都大于零.( ) (4)函数y =log 2x 与y =x 2互为反函数.( ) 答案:(1)√ (2)√ (3)× (4)× 2.函数y =log 4.3x 的值域是________. 答案:R3.函数y =(a 2-4a +4)log a x 是对数函数,则a =________. 答案:34.函数f (x )=log 5(1-x )的定义域是________. 答案:{x |x <1}与对数函数有关的定义域问题[学生用书P52]求下列函数的定义域: (1)y =lg(x +1)+3x21-x; (2)y =log (2x -1)3x -2. 【解】 (1)要使函数有意义, 需⎩⎪⎨⎪⎧x +1>0,1-x >0,即⎩⎪⎨⎪⎧x >-1,x <1.所以-1<x <1.所以函数的定义域为(-1,1). (2)由⎩⎪⎨⎪⎧2x -1>0,2x -1≠1,3x -2>0,解得x >23,且x ≠1,所以函数的定义域为⎝ ⎛⎭⎪⎫23,1∪(1,+∞).若将例题(2)函数改为“y =log3x -2(2x -1)”,则其定义域应为________.解析:由⎩⎪⎨⎪⎧2x -1>0,3x -2>0,3x -2≠1,解得x >23,且x ≠1,所以函数的定义域为⎝ ⎛⎭⎪⎫23,1∪(1,+∞).答案:⎝ ⎛⎭⎪⎫23,1∪(1,+∞)(1)求与对数函数有关的函数定义域时应遵循的原则①分母不能为0;②根指数为偶数时,被开方数非负; ③对数的真数大于0,底数大于0且不为1. (2)求函数定义域的步骤①列出使函数有意义的不等式(组); ②化简并解出自变量的取值范围; ③确定函数的定义域.1.求下列函数的定义域:(1)y =1lg (x +1)-3;(2)y =log a (4x -3)(a >0,且a ≠1).解:(1)由⎩⎪⎨⎪⎧lg (x +1)-3≠0,x +1>0得⎩⎪⎨⎪⎧x +1≠103,x >-1, 所以x >-1,且x ≠999,所以函数的定义域为{x |x >-1,且x ≠999}. (2)log a (4x -3)≥0⇒log a (4x -3)≥log a 1. 当a >1时, 有4x -3≥1,x ≥1 . 当0<a <1时,有0<4x -3≤1,解得34<x ≤1.综上所述,当a >1时,函数的定义域为[1,+∞),当0<a <1时,函数的定义域为⎝ ⎛⎦⎥⎤34,1. 对数函数的图象和性质[学生用书P53](1)如图所示的曲线是对数函数y =log a x 的图象,已知a 的取值可为35,110,3,43,则相应曲线C 1,C 2,C 3,C 4的底数a 的值依次为________.(2)若函数y =log a (x +b )+c (a >0,a ≠1)的图象恒过定点(3,2),则实数b ,c 的值分别为________,________.【解析】 (1)由底数对对数函数图象的影响,可知C 4的底数<C 3的底数<C 2的底数<C 1的底数.故相应的曲线C 1,C 2,C 3,C 4的底数依次是3,43,35,110.(2)因为函数的图象恒过定点(3,2), 所以将(3,2)代入y =log a (x +b )+c , 得2=log a (3+b )+c .又当a >0,a ≠1时,log a 1=0恒成立, 所以log a (3+b )=0,所以b =-2,c =2. 【答案】 (1)3,43,35,110(2)-2 2(1)对数函数的性质可以结合图象去理解记忆.(2)对数函数图象的画法有两种:一是描点法;二是通过图象变换画出.2.已知a >0,且a ≠1,则函数y =a x与y =log a (-x )的图象可能是( )解析:选B.法一:若0<a <1,则函数y =a x的图象下降且过点(0,1),而函数y =log a (-x )的图象上升且过点(-1,0),以上图象均不符合.若a >1,则函数y =a x的图象上升且过点(0,1),而函数y =log a (-x )的图象下降且过点(-1,0),只有B 中图象符合.法二:首先指数函数y =a x的图象只可能在x 轴上方,函数y =log a (-x )的图象只可能在y 轴左方,从而排除A ,C ;再看单调性,y =a x与y =log a (-x )的单调性正好相反,排除D.只有B 中图象符合.法三:如果注意到y =log a (-x )的图象关于y 轴的对称图象为y =log a x ,又y =log a x 与y =a x互为反函数(图象关于直线y =x 对称),则可直接确定选B.利用对数函数的单调性比较大小[学生用书P53]比较下面各组数中两个值的大小. (1)log 33.4,log 38.5; (2)log 0.21.8,log 0.22.7;(3)log a 5.1,log a 5.9(a >0且a ≠1). 【解】 (1)考察对数函数y =log 3x ,因为它的底数3>1,所以它在(0,+∞)上是增函数, 于是log 33.4<log 38.5.(2)考察对数函数y =log 0.2x ,因为它的底数0.2<1,所以它在(0,+∞)上是减函数,于是log 0.21.8>log 0.22.7.(3)对数函数的增减性决定于对数的底数是大于1还是小于1,而已知条件并未明确指出底数a 与1哪个大,因此要对底数a 进行讨论:当a >1时,函数y =log a x 在(0,+∞)上是增函数, 于是log a 5.1<log a 5.9;当0<a <1时,函数y =log a x 在(0,+∞)上是减函数, 于是log a 5.1>log a 5.9.(1)如果同底,可直接利用单调性求解.如果底数为字母,则要分类讨论. (2)如果不同底,一种方法是化为同底对数,另一种方法是寻找中间变量.(3)如果不同底同真数,可利用图象的高低与底数的大小的关系解决或利用换底公式化为同底,再进行比较.(4)若底数、真数都不相同,则常借助中间量1,0,-1等进行比较.3.比较下列各组数的大小:(1)log 0.20.4,log 0.20.3,log 0.23; (2)log 123,log 133,log 143;(3)log 23,log 45,log 76.解:(1)因为函数y =log 0.2x 是区间(0,+∞)上的单调减函数,且0.3<0.4<3, 所以log 0.20.3>log 0.20.4>log 0.23.(2)因为函数f (x )=log 3x 在(0,+∞)上是增函数, 又0<14<13<12<1,所以log 314<log 313<log 312<0,即1log 143<1log 133<1log 123<0, 所以log 123<log 133<log 143. (3)log 23=log 49>log 45>1, 而log 76<log 77=1, 故log 76<log 45<log 23.1.关于对数函数概念的两点说明(1)对数函数的概念与指数函数类似,都是形式化定义,如y =2log 2x ,y =log 2x3都不是对数函数,可称其为对数型函数.(2)由指数式与对数式的关系知:对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞).2.a 对对数函数的图象的影响(1)底数a 与1的大小关系决定了对数函数图象的“升降”:当a >1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.(2)底数的大小决定了图象对应位置的高低:不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.函数f (x )=1log 2x -1的定义域为________.[解析] 要使函数有意义,则⎩⎪⎨⎪⎧x >0,log 2x -1>0,解得x >2.[答案] (2,+∞)(1)解答本题只注意被开方数大于零,而忽视真数大于零.(2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.1.下列函数表达式中,是对数函数的有( ) ①y =log x 2;②y =log a x (a ∈R );③y =log 8x ; ④y =ln x ;⑤y =log x (x +2). A .1个 B .2个 C .3个D .4个解析:选B.形如y =log a x (a >0且a ≠1)的函数即为对数函数,符合此形式的函数表达式有③、④,其他的均不符合.2.函数y =lg (x +1)x -1的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞)解析:选C.要使函数式有意义,需⎩⎪⎨⎪⎧x +1>0,x -1≠0,解得x >-1,且x ≠1,故函数的定义域为(-1,1)∪(1,+∞),故选C.3.函数y =2x的反函数为________.解析:由对数函数y =log a x (a >0,a ≠1)和y =a x (a >0,a ≠1)互为反函数知y =2x的反函数为y =log 2x .答案:y =log 2x4.若函数y =log a (x +a )(a >0且a ≠1)的图象过点(-1,0). (1)求a 的值; (2)求函数的定义域.解:(1)将(-1,0)代入y =log a (x +a )(a >0且a ≠1)中,有0=log a (-1+a ), 则-1+a =1,所以a =2.(2)由(1)知y =log 2(x +2),x +2>0,解得x >-2, 所以函数的定义域为{x |x >-2}.[学生用书P112(单独成册)])[A 基础达标]1.若f (x )=log a x +(a 2-4a -5)是对数函数,则a =( ) A .-1 B .5 C .-1或5D .1解析:选B.由对数函数的定义可知,⎩⎪⎨⎪⎧a 2-4a -5=0,a >0,a ≠1,解得a =5.2.已知a =log 0.60.5,b =ln 0.5,c =0.60.5,则( ) A .a >b >c B .a >c >b C .c >a >bD .c >b >a解析:选B.a =log 0.60.5>log 0.60.6=1,b =ln 0.5<0,0<c =0.60.5<0.60=1,故a >c >b .3.函数y =lg(x -1)+lg(x -2)的定义域为M ,函数y =lg(x 2-3x +2)的定义域为N ,则( ) A .MN B .N MC .M =ND .M ∩N =∅解析:选A.y =lg(x 2-3x +2) =lg[(x -1)(x -2)], 所以⎩⎪⎨⎪⎧x -1>0x -2>0或⎩⎪⎨⎪⎧x -1<0x -2<0,即x >2或x <1.所以N ={x |x >2或x <1}. 又M ={x |x >2}. 所以MN .4.已知函数f (x )=log a (x -m )的图象过点(4,0)和(7,1),则f (x )在定义域上是( ) A .增函数 B .减函数 C .奇函数D .偶函数解析:选A.将点(4,0)和(7,1)代入函数解析式,有⎩⎪⎨⎪⎧0=log a (4-m ),1=log a (7-m ).解得a =4和m =3,则有f (x )=log 4(x -3).由于定义域是{x |x >3},则函数不具有奇偶性.很明显函数f (x )在定义域上是增函数.5.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B .12x C .log 12xD .2x -2解析:选A.函数y =a x(a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以a =2.故f (x )=log 2x .6.下列四个数:0.2-0.1,log 1.20.3,log 0.20.3,log 0.20.5,由小到大的顺序为________.解析:因为0.2-0.1>1,log 1.20.3<0,0<log 0.20.5<log 0.20.3<log 0.20.2=1, 所以log 1.20.3<log 0.20.5<log 0.20.3<0.2-0.1. 答案:log 1.20.3<log 0.20.5<log 0.20.3<0.2-0.17.已知函数y =log a (x +3)-89(a >0,a ≠1)的图象恒过定点A ,若点A 也在函数f (x )=3x+b的图象上,则b =________.解析:当x +3=1,即x =-2时, 对任意的a >0,且a ≠1都有y =log a 1-89=0-89=-89,所以函数y =log a (x +3)-89的图象恒过定点A ⎝ ⎛⎭⎪⎫-2,-89,若点A 也在函数f (x )=3x+b 的图象上, 则-89=3-2+b ,所以b =-1.答案:-18.已知log a 3>log b 3>0,则a ,b 的大小关系是________. 解析:因为log a 3>log b 3>0,所以a >1,b >1. 由换底公式有1log 3a >1log 3b >0,所以log 3b >log 3a >0. 所以b >a . 答案:b >a9.求下列函数的定义域:①y =log 3(3x );②y =log 34x -5; ③y =1log 12x ;④y = log 2(2x +6).解:①由3x >0,得x >0,所以函数y =log 3(3x )的定义域为(0,+∞). ②由4x -5>0,得x >54,所以函数y =log 34x -5的定义域为⎝ ⎛⎭⎪⎫54,+∞. ③由x >0及log 12x ≠0得x >0且x ≠1,所以函数y =1log 12x的定义域为(0,1)∪(1,+∞).④log 2(2x +6)≥0,得2x +6≥1,即x ≥-52,所以函数y =log 2(2x +6)的定义域为⎣⎢⎡⎭⎪⎫-52,+∞.10.解不等式:log a (2x -5)>log a (x -1). 解:当a >1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5>x -1.解得x >4.所以原不等式的解集为{x |x >4}. 当0<a <1时,原不等式等价于 ⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1,解得52<x <4. 综上,当a >1时,不等式的解集为{x |x >4};当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪52<x <4.[B 能力提升]1.已知函数f (x )=lg|x |,设a =f (-3),b =f (2),则a 与b 的大小关系是________. 解析:f (x )=lg|x |定义域为(-∞,0)∪(0,+∞),是偶函数,且f (x )在(0,+∞)上为增函数.a =f (-3)=f (3),b =f (2),因为f (3)>f (2),所以a >b .答案:a >b2.已知f (x )=|lg x |,若1c>a >b >1,则f (a ),f (b ),f (c )的大小关系是________.解析:先作出函数y =lg x 的图象,再将图象在x 轴下方的部分沿x 轴翻折到上方,这样,我们便得到了y =|lg x |的图象,如图.由图可知,f (x )=|lg x |在(0,1)上单调递减,在(1,+∞)上单调递增,于是f ⎝ ⎛⎭⎪⎫1c>f (a )>f (b ),而f ⎝ ⎛⎭⎪⎫1c =⎪⎪⎪⎪⎪⎪lg 1c =|-lg c |=|lg c |=f (c ).所以f (c )>f (a )>f (b ).答案:f (c )>f (a )>f (b )3.已知函数f (x )=log (2a -1)(2x +1)在区间⎝ ⎛⎭⎪⎫32,+∞上满足f (x )>0,试求实数a 的取值范围. 解:当x ∈⎝ ⎛⎭⎪⎫32,+∞时,2x +1>4>1.因为log(2a -1)(2x +1)>0=log (2a -1)1,所以2a -1>1,即2a >2,解得a >1.即实数a 的取值范围是(1,+∞).4.(选做题)已知函数f (x )=log 21+x 1-x. (1)求证:f (x 1)+f (x 2)=f ⎝⎛⎭⎪⎫x 1+x 21+x 1x 2; (2)若f ⎝ ⎛⎭⎪⎫a +b 1+ab =1,f (-b )=12,求f (a )的值. 解:(1)证明:左边=log 21+x 11-x 1+log 21+x 21-x 2=log 2⎝ ⎛⎭⎪⎫1+x 11-x 1·1+x 21-x 2 =log 21+x 1+x 2+x 1x 21-x 1-x 2+x 1x 2. 右边=log 21+x 1+x 21+x 1x 21-x 1+x 21+x 1x 2=log 21+x 1+x 2+x 1x 21+x 1x 2-x 1-x 2. 所以左边=右边.(2)因为f (-b )=log 21-b 1+b =-log 21+b 1-b =12, 所以f (b )=log 21+b 1-b =-12, 利用(1)可知:f (a )+f (b )=f ⎝⎛⎭⎪⎫a +b 1+ab , 所以f (a )-12=1, 解得f (a )=32.。
3.1.2 指数函数
课标知识与能力目标 1.理解指数函数的概念. 2.掌握指数函数的图像和性质. 3.掌握函数图像之间的基本初等变换. 知识点1 指数函数
1. 指数函数的定义:x
a y =(a>0,a≠1).
2. 指数函数的图象与性质:
典型例题
考点1:指数函数的概念
例1 下列函数中,哪些是指数函数?
(1)x y 10=; (2)1
10+=x y ; (3)x y 4-=;
(4)x
x y =; (5)
αx y =(α
是常数);
(6)x
a y )12(-=(1,2
1≠a a >).
例2 函数x
a a a y )33(2
+-=是指数函数,求a 的值.
考点2:指数函数的定义域和值域 例1 求下列函数的定义域与值域. (1)3
1
2-=x y ; (2)12
41
++=+x x y .
例2 求函数y
考点3:利用指数函数的单调性比较大小 比较幂的大小的常用方法:
1.对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断.
2.对于底数不同,指数相同的两个幂的大小比较,可以利用指数函数图象的变化规律来判断.
3.对于底数不同,且指数也不同的幂的大小比较,则应通过中间值来比较.
例1 比较下列各组数的大小:
(1)24.0)65(-与41)65(-; (2)ππ-)1(与1; (3)2-8.0与21)4
5(.
例2 比较下列各组数的大小 (1)3
5
.27.17.1与; (2)2.01
.025.18.0与-; (3)1.39.09.07.1与.
例3 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____.
考点4:利用指数函数的单调性解不等式 解指数不等式问题,需注意三点:
1. 形如y x a a >的不等式,借助x
a y =的单调性求解,如果a 的取值不确定,需分a>1与0<a<1两种情况讨论.
2. 形如b a x
>的不等式,注意将b 化为以a 为底的指数幂的形式,再借助x
a y =的单调性求解.
3. 形如y
x
a a >的形式,利用图象求解. 例1 如果512-+≤x x a a (a>0,a≠1),求x 的取值范围.
例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________.
考点5:指数函数的最值问题
利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等.
例1 函数221(01)x x y a a a a =+->≠且在区间[11]
-,上有最大值14,则a 的值是_______.
例2 已知-1≤x≤2,求函数x x x f 9323)(1
-⋅+=+的最大值和最小值.
例3 已知函数)10(23)(2≠+-=a a a a
x f x x
且>,
(1)求)(x f 的最小值; (2)若0)(<x f ,求x 的取值范围.
考点6:解指数方程 例1 解方程803322
=--+x x .
考点7:函数图象的变换 函数图象变换的规律:
1.对于左右平移变换,可以简单记作:左加右减,它只变其中的x ,如
222)2(33+=−−−−→−=x y x y 个单位
左移.
2.对于上下平移变换,可简单记作:上加下减,它是作用于解析式整体,如
233222+=−−−−→−=x y x y 个单位上移.
3.对于对称变换的特点:关于x 轴对称:“y”变为“-y”;关于y 轴对称:“x”变为“-x”.可简单记作关于哪个轴对称,哪个轴对应的变量不变,即对称变换只分别作用于x 和y ,与它们的系数无关.
例1 利用函数x
x f )2
1
()(=的图象,作出下列各函数的图象.
(1))1(-x f ; (2))1(+x f ; (3))(x f -; (4))(x f -; (5)1)(-x f .
例 2 已知函数x
y )2
1(=,作出函数图象,求定义域、值域,并探讨)0()2
1(>x y x
=与
x
y )2
1(=的图象的关系.
考点8:指数函数的应用题
步骤:(1)领会题意,并把题中的普通语言转化为数学语言;
(2)根据题目要求,分析量与量之间的关系,建立恰当的函数模型,并注意对变量的限制条件,加以概括;
(3)对已经“数学化”的问题用所学的数学知识处理,求出解;
(4)检验:将数学问题的解代入实际问题检查,舍去不符合题意的解,并作答.
例1 某市现有人口总数为100万人,如果年平均增长率为1.2%,试解答下列问题:
(1)试写出x年后该城市人口总数y万人与x之间的函数关系式;
(2)计算10年后该城市人口总数(精确到1万人).
例2 某人承包了一片荒山,承包期限为10年,准备栽种5年可成材的树木.该树木从树苗到成材期间每年的木材增长率为18%,以后每年的木材增长率为10%,树木成材后,既可出售树木,重栽新树苗,也可让其继续生长至承包期满,问:哪一种方案可获得较多的成材木材量?(参考数据:1.15≈1.61)
能力提优
题型1:数形结合思想
例1 当m 为何值时,关于x 的方程m x
=)
2
1(,
(1)有唯一解?(2)有两个不同的解?(3)无解?
例2 若0>a 且1≠a ,函数|1|-=x
a y 与a y 2=的图像有两个交点,则实数a 的取值范围是__________.
题型2:指数函数性质的综合应用
例1 若函数1
212---⋅=x x a
a y 为奇函数.
(1)确定a 的值; (2)求函数的定义域; (3)求函数的值域; (4)讨论函数的单调性.
例2 若函数)(1
22
)(R x a x f x
∈+-
=.
(1)证明:对于任意a ,)(x f 在R 上为增函数; (2)试确定a 的值,使)(x f 为奇函数.。