扫描电子显微镜的构造和工作原理
- 格式:ppt
- 大小:764.00 KB
- 文档页数:15
实验五扫描电子显微镜的结构原理及图像衬度观察一、实验目的1.了解扫描电镜的基本结构和工作原理。
2.通过实际样品观察与分析,明确扫描电镜的用途。
二、基本结构与工作原理简介扫描电镜利用细聚电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像扫描电镜具有景深大、图像立体感强、放大倍数范围大且连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效工具。
扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。
扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整。
放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。
扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。
扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。
扫描电镜的基本结构可分为六大部分,电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。
图5-1是扫描电镜主机构造示意图。
试验时将根据实际设备具体介绍。
这一部分的实验内容可参照教材内容,并结合实验室现有的扫描电镜进行,在此不作详细介绍。
三、扫描电镜图像衬度观察1.样品制备扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可直接进行观察。
但在有些情况下需对样品进行必要的处理。
(1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。
(2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。
清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。
(3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5~10nm 为宜。
扫描电子显微镜的构造和工作原理扫描电子显微镜(Scanning Electron Microscope,SEM)是一种常用的高分辨率显微镜,它通过使用聚焦的电子束来替代传统显微镜中使用的光束,从而能够观察到非常小尺寸的物体或细节。
SEM的构造和工作原理如下:构造:1.电子源:SEM使用热电子发射或场致发射的方式产生电子束。
常用的电子源是热丝电子枪,其中一个被称为热阴极的钨丝加热电子产生材料,产生电子束。
2. 电子透镜系统:SEM中有两个电子透镜,分别称为透镜1(即准直透镜)和透镜2(即聚经透镜)。
透镜1和透镜2的作用是使电子束呈现较小的束斑(electron beam spot),从而提高分辨率和放大率。
3. 检测系统:SEM的检测系统包括两个主要部分,即二次电子检测器(Secondary Electron Detector,SED)和回散射电子检测器(Backscattered Electron Detector,BED)。
SED主要用于表面形貌观察,它能够检测到由扫描电子激发的二次电子。
BED则用于分析样品的成分和区分不同物质的特性。
4.微控样品台:SEM中的样品台可以精确调整样品位置,使其与电子束的路径重合,并且可以在不同的方向上转动,以便于观察不同角度的样品。
5.显示和控制系统:SEM使用计算机控制系统来控制电子束的扫描和样品台的移动,并将观察结果显示在计算机屏幕上。
工作原理:1.电子束的生成:SEM中的电子源产生高能电子束。
电子源加热电子发射材料,如钨丝,产生高速电子束。
2.电子透镜系统的聚焦:电子束经过透镜1和透镜2的聚焦,使其呈现出较小的束斑。
3.样品的扫描:样品台上的样品被置于电子束的路径中,并通过微控样品台控制样品的位置和方向。
电子束扫描过样品表面,通过电磁透镜和扫描线圈控制电子束的位置。
4.二次电子和回散射电子的检测:电子束与样品相互作用时,会产生二次电子和回散射电子。
二次电子是由电子束激发样品表面产生的电子,可以用来观察样品的表面形貌。
扫描电镜的成像原理扫描电子显微镜(Scanning Electron Microscope,SEM)是一种利用电子束成像的显微镜。
与传统光学显微镜不同,SEM使用电子束取代了光束,使其能够获得更高的分辨率和更大的放大倍数。
SEM的成像原理主要包括以下几个步骤:电子发射、电子束聚焦、电子束转换、排序和检测。
首先,SEM通过一个热丝发射电子。
这种方法通常通过加热丝使其发出电子,这些电子受到引力吸引到下方的电子透镜。
电子束通过发射针和折射电镜来聚集。
通常,SEM使用热阴极(发射丝)作为电子源。
其次,电子束从热阴极放射出来然后经过几个电子透镜进行聚焦。
这些透镜包括减速电场、主透镜和聚束透镜。
通过调整这些透镜的电场,可以调节电子束的方向和聚焦度,以便在样品表面形成一个尖锐且高度聚焦的电子束。
接下来,电子束扫描在样品上以产生显微图像。
电子束沿着样品表面扫描采集散射电子的信息。
扫描可以沿着两个轴进行:水平和垂直。
扫描过程以重复的方式在样品表面上移动,通过在每个扫描点测量所产生的散射电子数来生成显微图像。
扫描速度较快,可以在短时间内生成高分辨率的显微图像。
最后,检测获得的信号并转换为图像。
通过采集散射电子的数量来计算RGB值,经过数字化后形成图像。
接收到的散射电子信号被电子透镜转换为电压信号,然后经过放大和处理,形成图像。
SEM通常采取反应图像的形式,其中样品被扫描的电子束激发并产生信号。
图像可以通过监视器进行实时观察,也可以以数字形式存储和处理。
总而言之,扫描电子显微镜通过使用电子束而不是光束来观察样品表面的微观结构。
它通过电子的发射、聚焦、能量转换、扫描和检测来实现成像。
这使得SEM能够提供比传统光学显微镜更高的分辨率和更大的放大倍数,是一种非常强大的显微镜工具。
扫描电子显微镜工作原理扫描电子显微镜(Scanning Electron Microscope,SEM)是一种利用电子束来成像样品表面微观结构的高分辨率显微镜。
相比传统光学显微镜,SEM具有更高的放大倍数和更好的分辨率,能够观察到更小尺度的样品细节。
SEM的工作原理主要包括电子束的发射、样品的准备、电子-样品相互作用和信号检测等过程。
首先,SEM通过热阴极或场发射阴极发射出能量较高的电子束。
这些电子经过加速器的加速作用后,形成高速电子束并聚焦到样品表面,从而激发样品表面原子和分子的电子。
样品的准备非常重要,通常需要将样品表面涂覆一层导电性物质,以便在SEM中观察到清晰的图像。
样品表面的电子被激发后,会产生多种信号,包括二次电子、反射电子、X射线和荧光等。
其次,电子束与样品表面的相互作用是SEM成像的关键。
当电子束照射到样品表面时,会激发出二次电子和反射电子。
二次电子是由样品表面的原子和分子吸收电子能量后发射出来的,它们能够提供样品表面形貌和结构信息。
而反射电子是由样品内部的原子和分子反射出来的,能够提供有关样品成分和晶体结构的信息。
此外,样品表面还会发出X射线和荧光信号,它们可以提供样品的化学成分分布和元素分析信息。
最后,SEM通过探测器检测样品表面产生的二次电子、反射电子、X射线和荧光信号,并将这些信号转换成电子图像。
这样就可以在显示屏上观察到样品的微观形貌、结构和成分信息。
SEM的成像分辨率通常在纳米级别,能够观察到非常小的微观结构,因此在材料科学、生物学、医学和纳米技术等领域有着广泛的应用。
总之,扫描电子显微镜通过发射、相互作用和信号检测等过程实现对样品微观结构的成像。
它具有高分辨率、高放大倍数和丰富的信息获取能力,是一种非常重要的微观表征工具。
通过深入理解SEM的工作原理,可以更好地应用它来研究和分析各种样品的微观特征,推动科学研究和技术发展的进步。
扫描电子显微镜在高分子聚合物研究中的应用1扫描电子显微镜的原理及特点扫描电子显微镜作为一种有被的显微结构分析工具,可以对各种材料进行多种肜式的观察与分析,具有分辨率高,景深长、成像富有立体感等优点,利用扫描电镜分析显微结构,其内容丰富、方法直观。
扫描电子显徽镜的工作原理为:由热阴极电子枪发射出的电子在电场作用下加速.经过2个或3个电磁透镜的作用,在样品表面聚集成为极细的电子束。
该电子束在束透镜上方的双偏转线圈作用下.在样品表面扫描。
被加速的电子束与样品室中的样品相互作用,激发样品产,丰出各种物理信号.其强度随样品表面特征而变。
样品表而不同的特征信号,被按顺序、成比例地转换为视频信号。
通过对其中某种物理信号的检测、视频放大和信号处理.调制阴极射线管的电子束强度,从而在荧光屏上获得反映样品表面特征的扫描图像。
扫描电镜的成像原理就是以电子束作为照明源,把聚焦得很细的电子束以光栅状扫描方式照射到试样上,产牛各种与试样性质有关的信息,然后加以收集和处理从,而获得微观形貌放大像。
人工皮革是以纤维为增强材料,以高分子粘合剂为基体,通过涂敷或浸渍方式构成的复合材料。
随着科学技术的进步和市场的需求,纤维增强材料由以往棉纤维改进为合成纤维,由线密度较粗的纤维发展到超细纤维;纤维的集合体也由较早的仅用机织物、针织物,又增加了非织造布品种;而作为基体材料的粘合剂,又分为聚氯乙烯(PVC)和聚氨酯(PU)的两类。
纤维集合体之一的超细纤维材料又可以是通过共混纺丝法或复合纺丝法制得的。
而制得的人工皮革又有光面和绒面之别。
’显然,人工皮革形态结构的微细构造,只用人的手指去触摸或用眼睛去观察是无法准确与清晰的了解到的。
必须借助于近代分析仪器的手段给予准确的解析。
(1)未知样品A从市场得到两块人造皮革样品,手感柔软、舒适,适于作服装革。
使用扫描电镜(SEM)对其作了形态结构分析,EM照片如图1所示。
由SEM图1可得到如下信息:1)人工皮革是由一簇簇纤维构成的非织造布为增强材料,并被PU胶包覆;2)单纤维为直径约5微米的圆形纤维,即0.3---0.4dtex,且每根单纤维直径基本相同,推断是由海一岛型复合纺丝法制得的超细纤维,每根复合纤维中大约是由64个岛组成;3)非织造布有可能是采用先浸PV A,再浸PU胶的工艺;抽出过程中去除了PV A后,在纤维束PU胶之间形成空隙,为人工皮革提供了弹性;4)采用的是浸胶工艺,不是涂层工艺,但是提胶量很小;5)两个人工皮革样品均为双面起绒结构,绒毛较长者,内部结构略松散,手感更柔软,另一个样品绒毛较短,内部也较密实,手感略显硬。
简述扫描电镜的构造及成像原理,试分析其与透射电镜在样品表征方面的异同1、扫描电镜的构造扫描电镜由电子光学系统、信号收集与图像显示系统、与真空系统三部分组成。
1.1 电子光学系统(镜筒)电子光学系统包括电子枪、电磁透镜、扫描线圈与样品室。
1.1.1 电子枪扫描电子显微镜中的电子枪与透射电镜的电子枪相似,只是加速电压比透射电镜低。
1.1.2 电磁透镜扫描电子显微镜中各电磁透镜都不作成像透镜用,而是做聚光镜用,它们的功能只是把电子枪的束斑逐级聚焦缩小,使原来直径约为50um的束斑缩小成一个只有数个纳米的细小斑点,要达到这样的缩小倍数,必须用几个透镜来完成。
扫描电子显微镜一般都有三个聚光镜,前两个聚光镜是强磁透镜,可把电子束光斑缩小,第三个聚光镜是弱磁透镜,具有较长的焦距。
布置这个末级透镜(习惯上称之物镜)的目的在于使样品室与透镜之间留有一定空间,以便装入各种信号探测器。
扫描电子显微镜中照射到样品上的电子束直径越小,就相当于成像单元的尺寸越小,相应的分辨率就越高。
采用普通热阴极电子枪时,扫描电子束的束径可达到6nm左右。
若采用六硼化镧阴极与场发射电子枪,电子束束径还可进一步缩小。
1.1.3 扫描线圈扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作与显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。
1.1.4 样品室样品室内除放置样品外,还安置信号探测器。
各种不同信号的收集与相应检测器的安放位置有很大关系,如果安置不当,则有可能收不到信号或收到的信号很弱,从而影响分析精度。
样品台本身是一个复杂而精密的组件,它应能夹持一定尺寸的样品,并能使样品作平移、倾斜与转动等运动,以利于对样品上每一特定位置进行各种分析。
新式扫描电子显微镜的样品室实际上是一个微型试验室,它带有许多附件,可使样品在样品台上加热、冷却与进行机械性能试验(如拉伸与疲劳)。
1.2 信号的收集与图像显示系统二次电子、背散射电子与透射电子的信号都可采用闪烁计数器来检测。