人教版初二数学下册《18.2.1 第2课时 矩形的判定》导学案
- 格式:doc
- 大小:1.03 MB
- 文档页数:2
18.2.1 矩形第2课时矩形的判定一、新课导入1.导入课题工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?(板书课题)2.学习目标(1)能推导归纳判定一个四边形是矩形的几种方法.(2)能选取适当的判定方法判定一个四边形是矩形.3.学习重、难点重点:矩形的判定方法的探究.难点:矩形的性质与判定的综合运用.二、分层学习1.自学指导(1)自学内容:P53最后二行至P54例2前的内容.(2)自学时间:10分钟.(3)自学要求:用已学的矩形意义和性质推导出矩形的判定方法.(4)自学参考提纲:①按定义:有一个角是直角的平行四边形是矩形.②“矩形的对角线相等”的逆命题是对角线相等的平行四边形是矩形,这个命题成立吗?请给予证明.③有三个角是直角的四边形是矩形.④判断:a.对角线相等的四边形是矩形.(×)b.对角线相等且互相平分的四边形是矩形.(√)2.自学:结合自学指导自主学习.3.助学(1)师助生:①明了学情:关注学生是否能完成对两个判定定理的推导,命题证明存在的障碍在哪里?②差异指导:指导学生依据矩形定义完成两个定理的论证及证明一个四边形是矩形的方法步骤.(2)生助生:同桌之间相互研讨.4.强化归纳矩形的三种判定方法及几何推理格式:方法1:有一个角是直角的平行四边形是矩形;方法2:有三个角是直角的四边形是矩形;方法3:对角线相等的平行四边形是矩形.1.自学指导(1)自学内容:P54至P55例2.(2)自学时间:5分钟.(3)自学方法:边看例题,边思考解题思路及解答过程中的每步依据.(4)自学参考提纲:①课本中求∠OAB 的度数的思路是:50()OAD OAB DAB OAD ∠=︒∠=−−−−−→∠∠-求∠DAB 的度数→证明∠DAB=90°→证明四边形ABCD 是矩形.②(证明)解答第一步推理运用了平行四边形的性质:对角线互相平分.第二步由OA=OD 得到AC=BD 的依据是等量代换.第三步由AC=BD 得到四边形ABCD 是矩形的依据是对角线相等的平行四边形是矩形.③完成课本P55练习第2题,参照例2的思路写出解答过程.2.自学:结合自参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生是否理解例2的解题思路和步骤,存在的困难在哪里.②差异指导:对练习第2题的条件进行分析,猜测有什么结论.(2)生助生:学生之间相互交流帮助.4.强化(1)矩形的判定方法.(2)由条件到问题之间的联系如何分析.三、评价1.学生自我评价(围绕三维目标):各组学生代表介绍自己的学习方法、收获及困惑.2.教师对学生的评价:(1)表现性评价:点评学生课堂学习中的态度、学习方式、成果及不足之处.(2)纸笔评价:评价作业.3.教师的自我评价(教学反思).本节课通过观察、探究,让学生掌握矩形的三个判定方法:(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形.教学过程中应将矩形的判定与平行四边形的判定作比较,让同学之间相互交流,说出矩形与平行四边形的区别与联系,进而更好地掌握知识.在本节课的教学中,教师应最大限度地将课堂交给学生,提高学生学习的积极性主动性.(时间:12分钟满分:100分)一、基础巩固(50分)1.(20分)下列判定矩形的说法是否正确?什么?(1)有一个角是直角的四边形是矩形.(×)(2)四个角都相等的四边形是矩形.(√)(3)对角线相等的四边形是矩形.(×)(4)对角线互相平分,且有一个角是直角的四边形是矩形. (√)2.(10分)下列四边形中不一定是矩形的是 (C)A.有三个角直角的四边形B.四角都相等的四边形C.一组对边平行且对角相等的四边形D.对角线相等且互相平分的四边形3.(20分)如图:(1)当AC=BD 时, ABCD是矩形;(2)当∠ABC=∠BCD=∠CDA=90°时,四边形ABCD是矩形.二、综合应用(20分)4.已知平行四边形ABCD的对角线AC,BD交于点O,△AOB是等边三角形,AB=4cm.(1)这平行四边形是矩形吗?说明你的理由;(2)求这个平行四边形的面积.解:(1)是.∵△AOB是等边三角形,∴AO=BO,又∵AO=12AC,BO=12BD.(平行四边形的性质)∴AC=BD. ∴ ABCD 是矩形.(2)()212344163.2ABCD S cm =⨯⨯⨯= 三、拓展延伸(30分)5.如图,在△ABC 中,D 在AB 边上,AD=BD=CD ,DE ∥AC ,DF ∥BC.求证:四边形DECF 是矩形. 证明:∵AD=BD=CD ,∴△ABC 为直角三角形,∠FCE=90°,∵DE ∥AC,DF ∥BC,∴四边形DECF 为平行四边形,又∵∠FCE=90°,∴平行四边形DECF 是矩形.【素材积累】1、只要心中有希望存摘,旧有幸福存摘。
课题18.2.1矩形(2)判定1课时学习目标1、理解并掌握矩形的判定方法.2、能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步提高综合分析能力和。
学习重点矩形的判定方法探究、理解学习难点矩形判别条件的理解、区分,熟练应用矩形的知识分析问题达成目标导学流程设计二次备课在所学习的知识能力基础上设疑、探究新知识的出现及解决方法【知识链接课前自我学习】1、利用四边形的,改变平行四边形的,得到矩形。
2、如图,在矩形ABCD中,AB=3,BC=2,E为BC中点,F在AB上,且BF=2AF,则四边形AFEC的面积为.3、矩形ABCD的对角线交于点O,过点A作AE∥BD交CB的延长线于点E,若∠BOC=60°,53BD ,则△ACE的周长为.4、矩形两条对角线所成的钝角为120°,则对角线与矩形短边的长度之比为()A、3∶2 B、2∶1C、4∶3 D、1∶15、如图,宽为50 cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()A、400 cm2B、500 cm2C、600 cm2D、4000 cm2整理:1、矩形所有的性质:(1)边:__________________(2)角:_____________________ (3)对角线:_________________________________________________ 矩形与平行四边形有什么共同之处?有什么不同之处?共同之处:________________________________________不同之处:____________________________________【课堂新知探究】【环节一】新知探究1、平行四边形共有种判定方法,利用思想研究性质与判定。
2、李师傅要用两根长度相等的短木条和两根长度相等的长木条长短交替做一个四边形工件。
请你分析一下,注意从实践中得出猜想学会观察,在探索中发现问题,归纳出矩形的判定方法李师傅所做的工件一定是图形,理由是:如果李师傅想做一个矩形工件,还需要满足什么条件?理由是:【深化探究思想、推理论证】在前面的活动中,我们可以利用来判定一个四边形是否是矩形,那还有其他的方法吗?下面我们借助互逆思想来继续探究。
人教版数学八年级下册导学案18.2.1矩形(第2课时)学习目标1.经历探索矩形判定定理的过程,掌握矩形的判定定理.(重点)2.使学生能应用矩形定义、判定等知识,解决简单的证明题,发展学生的演绎推理能力.(重点、难点)一、合作探究1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?4.归纳矩形的判定方法(学生进行)(1)定义:是平行四边形,并且有一个角是.(2)对角线的关系:是平行四边形,并且.(3)角的关系:是四边形,并且有个角是直角.二、自主学习【例1】下列各句判定矩形的说法是否正确?(1)有一个角是直角的四边形是矩形; ()(2)四个角都相等的四边形是矩形; ()(3)对角线相等的四边形是矩形; ()(4)两组对边分别平行,且对角线相等的四边形是矩形.()【例2】已知▱ABCD的对角线AC,BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.解:∵四边形ABCD是∴AO=,BO=.∵AO=BO,∴AC=BD.∴▱ABCD是(的平行四边形是矩形).在Rt△ABC中,∵AB=4 cm,AC=,∴BC=(cm).∴S=8.三、跟踪练习1.判断题:(1)有四个角是直角的四边形是矩形; ()(2)对角线相等且互相垂直的四边形是矩形; ()(3)对角线相等,且有一个角是直角的四边形是矩形; ()(4)对角线互相平分且相等的四边形是矩形; ()(5)一组邻边垂直,一组对边平行且相等的四边形是矩形.()2.已知:如图ABCD的对角线AC,BD相交于点O,且∠OAD=∠ODA.求证:四边形ABCD是矩形.3、已知:如图,▱ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.四、变式演练1.如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24 cm,BC=26 cm,动点P从点A出发沿AD方向向点D 以1 cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3 cm/s的速度运动.点P,Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?2.如图,O是矩形ABCD的对角线的交点,E,F,G,H分别是OA,OB,OC,OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E,F,G,H分别是OA,OB,OC,OD的中点,且DG⊥AC,OF=2 cm,求矩形ABCD的面积.五、达标检测1.已知下列命题中:(1)矩形是轴对称图形,且有两条对称轴;(2)两条对角线相等的四边形是矩形;(3)有两个角相等的平行四边形是矩形;(4)两条对角线相等且互相平分的四边形是矩形,其中正确的有()A.4个B.3个C.2个D.1个2.如图,在四边形ABCD中,点E,F,G,H分别是AD,BD,BC,CA的中点,若四边形EFGH是矩形,则四边形ABCD 需满足的条件是()A.AB⊥DCB.AC=BDC.AC⊥BDD.AB=DC3.如图,四边形ABCD中,AC=8,BD=6,且AC⊥BD,连接四边形ABCD各边中点得到四边形EFGH,下列说法不正确的是()A.四边形EFGH是矩形B.四边形EFGH的周长是7C.四边形EFGH的面积是12D.四边形ABCD的面积是484.如图所示,△ABC绕AC的中点O顺时针旋转180°得△CDA,添加一个条件,使四边形ABCD为矩形.5.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是.6.用两张对边平行的纸条交叉重叠放在一起,则四边形ABCD为;两张纸条互相垂直时,四边形ABCD为.7.如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求点D,E的坐标;(2)F为坐标系内一点,且以C,D,E,F为顶点的四边形是平行四边形,则点F的坐标为(直接写出所有的结果);(3)点P是y轴上一动点,且以1个单位/秒的速度从点A向下运动.设点P运动的时间为t秒.求当t为多少时,△PCD是以CD为腰的等腰三角形?8.如图,在四边形ABCD中,AD∥BC,点E,F在边BC上,DE∥AB,AF∥DC,且AE∥DF.(1)AD与BC有何数量关系?请说明理由.(2)当四边形ABCD满足条件时,四边形AEFD是矩形(说明理由).9.如图,四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若DF⊥AC,∠ADF∶∠FDC=3∶2,则∠BDF的度数是多少?参考答案一、合作探究1.由两组对边分别平行的四边形叫做平行四边形;有一个角是直角的平行四边形叫矩形,2.矩形四个角都是直角;矩形的对角线相等;并且具有平行四边形的所有性质.3.矩形是特殊的平行四边形,一般的平行四边形不具有矩形的性质.4.(1)直角(2)对角线相等(3)三个二、自主学习略三、跟踪练习略四、变式演练1.解:(1)设经过t s,四边形PQCD为平行四边形,即PD=CQ,所以24-t=3t,解得t=6;(2)设经过t's,四边形PQBA为矩形,即AP=BQ,所以t'=26-3t',解得t'=.2.分析:(1)证明四边形EFGH对角线相等且互相平分;(2)根据题设求出矩形的边长CD和BC,然后根据矩形面积公式求得.(1)证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD.∵AE=BF=CG=DH,∴AO-AE=OB-BF=CO-CG=DO-DH,即OE=OF=OG=OH,∴四边形EFGH是矩形;(2)解:∵G是OC的中点,OG⊥AC,∴CD=OD.∵F是BO中点,OF=2 cm,∴BO=4 cm.∵四边形ABCD是矩形,∴DO=BO=4 cm,∴DC=4 cm,DB=8 cm,∴CB=-=4cm,∴S矩形ABCD=4×4=16(cm2).五、达标检测1.C2.A3.B4.∠B=90°5.对角线互相垂直6.平行四边形;矩形7.解:(1)依题意可知,折痕CD是四边形BCED的对称轴,∴在Rt△COE中,CE=BC=AO=10,OC=AB=8,∴OE=6,∴E(0,6).∴AE=10-6=4.在Rt△DAE中,AE2+AD2=DE2,又∵DE=BD,∴AD2+42=(8-AD)2,∴AD=3.∴D(3,10).(2)(11,4),(-5,16),(5,-10);(3)由(1)可知BD=5,所以CD==5,①当PD=CD=5时,AP=--=2, ∴t=2,②当PC=CD=5时,OP=--.∴AP=AO-AP=10-或AP=AO+OP=10+,∴t=10-或10+.8.(1)AD=BC.理由如下:∵AD∥BC,AB∥DE,AF∥DC,AE∥DF,∴四边形ABED、四边形AEFD和四边形AFCD都是平行四边形.∴AD=BE=EF=FC,∴AD=BC.(2)AB=CD.理由如下:∵四边形ABED和四边形AFCD都是平行四边形,∴DE=AB,AF=DC.∵AB=DC,∴DE=AF,又∵四边形AEFD是平行四边形,∴四边形AEFD是矩形.9.(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF∶∠FDC=3∶2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°-36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC-∠FDC=18°.导学案/学案人教版初中数学。
人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 矩形课时2矩形的判定教案【教学目标】知识与技能目标1.理解并掌握矩形的判定方法.2.使学生能应用矩形的定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.过程与方法目标1.从矩形性质定理的逆命题出发,提出猜想,发现结论,然后给出证明,进一步理解互逆命题的意义,体会矩形的性质与判定的区别与联系.2.让学生经历探索矩形判定定理的过程,理解并掌握矩形的判定方法,积累几何学习的经验,发展合情推理和演绎推理的能力.情感、态度与价值观目标在课堂活动中,通过观察、思考、猜想、证明,培养学生主动参与、乐于探究、勤于动手的学习习惯.【教学重点】矩形判定定理的运用.【教学难点】矩形判定方法的理解及应用.【教学准备】教师准备:教学中出示的教学插图和例题.学生准备:复习矩形的定义及其性质.【教学过程设计】一、情境导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分;2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究知识点一:有一个角是直角的平行四边形是矩形例1如图,在△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E.求证:四边形ADCE是矩形.解析:首先利用外角性质得出∠B=∠ACB=∠F AE=∠EAC,进而得到AE∥BC,即可得出四边形AEDB是平行四边形,再利用平行四边形的性质得出四边形ADCE是平行四边形,再根据AD是高即可得出四边形ADCE是矩形.证明:∵AB=AC,∴∠B=∠ACB.∵AE是△BAC的外角平分线,∴∠F AE =∠EAC.∵∠B+∠ACB=∠F AE+∠EAC,∴∠B=∠ACB=∠F AE=∠EAC,∴AE∥BC.又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD.又∵AB=AC,AD⊥BC,∴BD=DC,∴AE平行且等于DC,故四边形ADCE 是平行四边形.又∵∠ADC=90°,∴平行四边形ADCE是矩形.方法总结:平行四边形的判定与性质以及矩形的判定常综合运用,解题时利用平行四边形的判定得出四边形是平行四边形再证明其中一角为直角即可.知识点二:对角线相等的平行四边形是矩形例2如图,在平行四边形ABCD中,对角线AC、BD相交于点O,延长OA 到N,ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.解析:首先由平行四边形ABCD可得OA=OC,OB=OD.若ON=OB,那么ON=OD.而CM=AN,即ON=OM.由此可证得四边形NDMB的对角线相等且互相平分,即可得证.证明:∵四边形ABCD为平行四边形,∴AO=OC,OD=OB.∵AN=CM,ON=OB,∴ON=OM=OD=OB,∴MN=BD,∴四边形NDMB为矩形.方法总结:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.知识点三:有三个角是直角的四边形是矩形例3如图,▱ABCD各内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.解析:利用“有三个内角是直角的四边形是矩形”证明四边形EFGH是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∵AH,BH分别平分∠DAB与∠ABC,∴∠HAB=12∠DAB,∠HBA=12∠ABC,∴∠HAB+∠HBA=12(∠DAB+∠ABC)=12×180°=90°,∴∠H=90°.同理∠HEF=∠F=90°,∴四边形EFGH是矩形.方法总结:题设中隐含多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.探究点四:矩形的性质和判定的综合运用【类型一】矩形的性质和判定的运用例4如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.解析:(1)证明四边形EFGH对角线相等且互相平分;(2)根据题设求出矩形的边长CD和BC,然后根据矩形面积公式求得.(1)证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD.∵AE=BF=CG=DH,∴AO-AE=OB-BF=CO-CG=DO-DH,即OE=OF=OG=OH,∴四边形EFGH是矩形;(2)解:∵G是OC的中点,∴GO=GC.∵DG⊥AC,∴∠DGO=∠DGC=90°.又∵DG=DG,∴△DGC≌△DGO,∴CD=OD.∵F是BO中点,OF=2cm,∴BO=4cm.∵四边形ABCD是矩形,∴DO=BO=4cm,∴DC=4cm,DB=8cm,∴CB=DB2-DC2=43cm,∴S矩形ABCD=4×43=163(cm2).方法总结:若题设条件与这个四边形的对角线有关,要证明一个四边形是矩形,通常证这个四边形的对角线相等且互相平分.【类型二】矩形的性质和判定与动点问题例5如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?解析:(1)设经过t s时,四边形PQCD是平行四边形,根据DP=CQ,代入后求出即可;(2)设经过t′s时,四边形PQBA是矩形,根据AP=BQ,代入后求出即可.解:(1)设经过t s,四边形PQCD为平行四边形,即PD=CQ,所以24-t =3t,解得t=6;(2)设经过t′s,四边形PQBA为矩形,即AP=BQ,所以t′=26-3t′,解得t′=13 2.方法总结:①证明一个四边形是平行四边形,若题设条件与这个四边形的边有关,通常证这个四边形的一组对边平行且相等;②题设中出现一个直角时,常采用“有一角是直角的平行四边形是矩形”来判定矩形.三、教学小结师生一起归纳总结:矩形的判定方法分两类:从四边形来判定和从平行四边形来判定.常用的判定方法有三种:①矩形的定义:有一个角是直角的平行四边形是矩形;②矩形的判定定理:对角线相等的平行四边形是矩形;③矩形的判定定理:三个角都是直角的四边形是矩形.四、学习检测1.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BEB.DE⊥DCC.∠ADB=90°D.CE⊥DE 解析:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,AB=CD,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形.A.∵AB=BE,AB=CD,∴BE=CD,∴平行四边形DBCE为矩形,故本选项错误;B.∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不可能是矩形,故本选项正确;C.∵∠ADB=90°,∴∠EDB=90°,∴平行四边形DBCE为矩形,故本选项错误;D.∵CE⊥DE,∴∠CED=90°,∴平行四边形DBCE为矩形,故本选项错误.故选B.2.工人师傅在做门框或矩形零件时,常用测量平行四边形两条对角线是否相等来检测直角的精度,工人师傅依据的几何道理是.解析:工人师傅根据“对角线相等的平行四边形是矩形”,通过测量平行四边形两条对角线是否相等可判断做的门框或零件是否为矩形,进而判断直角的精度.故填对角线相等的平行四边形是矩形.3.如图,要使平行四边形ABCD成为矩形,应添加的条件是(只填一个). 解析:∵有一个角是直角的平行四边形叫做矩形,∴可填∠ABC=90°(或其余三个内角中的一个为90°);又∵对角线相等的平行四边形是矩形,∴可填“AC=BD”.故可填∠ABC=90°(答案不唯一).4.如图所示,矩形ABCD的对角线AC,BD相交于O,E,F,G,H分别是OA,OB,OC,OD 的中点.求证:四边形EFGH是矩形.证明:∵矩形ABCD的对角线AC,BD相交于O,∴AO=BO=CO=DO.又∵E,F,G,H分别是OA,OB,OC,OD的中点,∴EO=FO=GO=HO.∴四边形EFGH为平行四边形,EG=HF,∴四边形EFGH是矩形.【板书设计】18.2 特殊的平行四边形 18.2.1 矩形课时2 矩形的判定1.矩形的判定有一角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.矩形的性质和判定的综合运用3.学习检测【教学反思】在本节数学课的教学中,不仅要让学生掌握矩形判定的几种方法,更要注重学生在学习的过程中是否真正掌握了探究问题的基本思路和方法.教师在例题练习的教学中,若能适当地引导学生多做一些变式练习,类比、迁移地思考、做题,就能进一步拓展学生的思维,提高课堂教学的效率.人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 矩形课时2矩形的判定学案【学习目标】1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理;2.能应用矩形的判定解决简单的证明题和计算题.【学习重点】经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理.【学习难点】能应用矩形的判定解决简单的证明题和计算题.【自主学习】一、知识回顾1.矩形的定义是什么?2.矩形有哪些性质?二、新知探究知识点1:二次根式的乘法想一想 1.类比平行四边形的定义也是判定平行四边形的一种方法,那么矩形的定义也是判定矩形的一种方法.除了定义以外,判定矩形的方法还有没有呢?2.上节课我们已经知道“矩形的对角线相等”,反过来,小明猜想对角线相等的四边形是矩形,你觉得对吗?如果不对,你的猜想是什么?对角线_______的__________________是矩形.证一证已知:如图,在□ABCD中,AC,DB是它的两条对角线, AC=DB.求证:□ABCD是矩形.证明:∵AB = DC,BC = CB,AC = DB,∴△ABC______△DCB ,∴∠ABC______∠DCB.∵AB∥CD,∴∠ABC + ∠DCB =______°,∴∠ABC = _______°,∴□ ABCD是__________.思考数学来源于生活,事实上工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,窗框一定是矩形,你现在知道为什么了吗?要点归纳:矩形的判定定理:对角线相等的平行四边形是矩形.几何语言描述:在平行四边形ABCD中,∵AC=BD,∴平行四边形ABCD是矩形.【典例探究】例1如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.【跟踪练习】1.如图,在▱ABCD中,AC和BD相交于点O,则下面条件能判定▱ABCD是矩形的是( )A.AC=BDB.AC=BCC.AD=BCD.AB=AD2.如图,在平行四边形ABCD中, ∠1= ∠2中.此时四边形ABCD是矩形吗?为什么?知识点2:有三个角是直角的四边形是矩形想一想 1.上节课我们研究了矩形的四个角,知道它们都是直角,它的逆命题是什么?成立吗?2.至少有几个角是直角的四边形是矩形?猜测:有_____个角是直角的四边形是矩形.证一证已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.证明:∵∠A=∠B=∠C=90°,∴∠A+∠B=_______°,∠B+∠C=_______°,∴AD_____BC,AB_____CD.∴四边形ABCD是______________,∴四边形ABCD是________.思考一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?要点归纳:矩形的判定定理:有三个角是直角的四边形是矩形.几何语言描述:在四边形ABCD中,∵∠A=∠B=∠C=90°,∴四边形ABCD是矩形.【典例探究】例3如图,□ ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形EFGH为矩形.例4 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,求证:四边形ADCE为矩形.【跟踪练习】在判断“一个四边形门框是否为矩形”的数学活动课上,一个合作学习小组的4位同学分别拟定了如下的方案,其中正确的是( )A.测量对角线是否相等B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三个角是否都为直角三、知识梳理内容矩形的判定定义:有一个角是直角的平行四边形是矩形.判定定理:对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.四、学习过程中我产生的疑惑【学习检测】1.下列说法错误的是( )A.对角线相等的四边形是矩形B.对角线相等的平行四边形是矩形C.有一个角是直角的平行四边形是矩形D.有三个角是直角的四边形是矩形A(解析:根据矩形的判定方法进行判断.)2.在四边形ABCD中,AC和BD的交点为O,则下列条件中不能判定四边形ABCD是矩形的是( )A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠BAD=90°C.∠BAD=∠BCD,∠ABC+∠ADC=180°,∠AOB=∠BOCD.AB∥CD,AB=CD,∠BAD=90°C(解析:AB=CD,AD=BC,由两组对边分别相等的四边形是平行四边形,知四边形ABCD是平行四边形,又AC=BD,由对角线相等的平行四边形是矩形知▱ABCD是矩形,故A正确;AO=CO,BO=DO,故四边形ABCD是平行四边形,又∠BAD=90°,故平行四边形ABCD是矩形,故B正确;AB∥CD,AB=CD,故四边形ABCD是平行四边形,又∠BAD=90°,故平行四边形ABCD是矩形,故D正确.故选C.)3.如果平行四边形各内角的平分线能够围成一个四边形,则这个四边形是( )A.正方形B.矩形C.梯形D.平行四边形B(解析:平行四边形相邻两角的平分线相交成直角,根据有三个角是直角的四边形是矩形可判断.故选B.)4.如图所示,E,F,G,H分别是四边形ABCD的四边中点,要使四边形EFGH为矩形,则四边形ABCD应具备的条件是( )A.一组对边平行而另一组对边不平行B.对角线相等C.对角线互相垂直D.对角线互相平分C(解析:由三角形的中位线平行于第三边并且等于第三边的一半知四边形EFGH 是平行四边形,由四边形ABCD的对角线互相垂直可得∠EFG=90°,根据有一个角是直角的平行四边形是矩形可解答.故选C.)5.要从一张长40 cm,宽20 cm的矩形纸片中剪出长为18 cm,宽为12 cm的矩形纸片,则最多能剪出( )A.1个B.2个C.3个D.4个C(解析:在矩形纸片的长上依次截取三个12 cm,再在纸片的宽上截取一个18 cm,可知共3个.故选C.)6.下列各句判定矩形的说法是否正确?(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有三个角都相等的四边形是矩形;(5)有三个角是直角的四边形是矩形;(6)四个角都相等的四边形是矩形;(7)对角线相等,且有一个角是直角的四边形是矩形;(8)一组对角互补的平行四边形是矩形.7.如图,在四边形ABCD中,AB∥CD,∠BAD=90°,AB=5,BC=12,AC=13.求证:四边形ABCD是矩形.8.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,延长CD到点E,使得DE=CD.连接AE,BE,求证四边形ACBE为矩形.证明:∵在△ABC中,∠ACB=90°,CD为AB边上的中线,∴AD=BD.∵DE=CD,∴四边形ACBE为平行四边形,又∵∠ACB=90°,∴四边形ACBE为矩形.9.如图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.10.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,BD,DE交BC于点O.(1)求证△ABD≌△BEC;(2)若∠BOD=2∠A,求证四边形BECD是矩形.证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,BE∥CD.又∵AB=BE,∴BE=DC,∴四边形BECD为平行四边形,∴BD=EC.在△ABD与△BEC中,∴△ABD≌△BEC(SSS).(2)由(1)知四边形BECD为平行四边形,则OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD,∴OC+OB=OD+OE,即BC=ED,∴平行四边形BECD为矩形.11. 如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.12.如图,直线MN经过线段AC的端点A,点B,D分别在∠NAC和∠MAC的平分线AE,AF上,BD交AC于点O,如果O是BD的中点,当点O在AC的什么位置时,四边形ABCD是矩形?并说明理由.解:O是AC的中点时,四边形ABCD是矩形.理由如下:因为AO=CO,BO=DO,所以四边形ABCD是平行四边形,又∠F AC=∠MAC,∠CAE=∠CAN,所以∠F AE=∠F AC+∠CAE=(∠MAC+∠CAN)=×180°=90°,所以四边形ABCD是矩形.13. 如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从A出发沿A方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?14.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠ACD的平分线于点F.(1)求证OE=OF;(2)当点O运动到何处时,四边形AECF是矩形?说明理由.(1)证明:∵MN∥BC,∴∠OEC=∠BCE.∵CE平分∠BCA,∴∠BCE=∠OCE,∴∠OEC=∠OCE.∴OC=OE.同理可证OC=OF.∴OE=OF.(2)解:当点O运动到AC中点时,四边形AECF是矩形.理由如下:∵OA=OC,OE=OF,∴四边形AECF是平行四边形,又∠ACF=∠ACD,∠ACE=∠ACB,所以∠ECF=∠ACF+∠ACE=(∠ACD+∠ACB)=×180°=90°.∴四边形AECF是矩形.。
18.2.1 第2课时矩形的判定(教案)一、教学目标1.理解矩形的定义及性质;2.掌握矩形的判定方法;3.能够运用所学知识判断一个图形是否为矩形。
二、教学重难点1.矩形的定义及性质的理解;2.矩形的判定方法的掌握;3.运用所学知识进行矩形判定的能力。
三、教学准备1.教师:黑板、粉笔、投影仪;2.学生:课本、计算器。
四、教学过程1. 导入新知识通过观察一些几何图形,询问学生是否会将它们称为矩形,并引导学生思考,什么样的图形才能被称为矩形。
导入问题:以下图形中,哪些是矩形?为什么?(图片展示)2. 矩形的定义及性质定义:引导学生回顾并默写矩形的定义:定义:有四条边的四边形,且对角线相等且垂直,就叫做矩形。
性质:1.矩形的四条边都相等;2.矩形的对角线相等且垂直;3.矩形的四个内角都是直角。
3. 矩形的判定方法方法一:判断四边是否相等如果一个四边形的四条边都相等,那么它就是矩形。
方法二:判断对角线是否相等且垂直如果一个四边形的对角线相等且垂直,那么它就是矩形。
4. 判定例题讲解例题1:判断下列图形是否为矩形。
(图片展示)解答:根据方法一,四边相等的矩形的判定方法,我们可以测量一下各边的长度。
•AB = 6cm•BC = 8cm•CD = 6cm•DA = 8cm由上述测量结果可知,AB ≠ CD且BC ≠ DA,不满足四边相等的条件,因此这个四边形不是矩形。
五、课堂练习1. 判断题选择1.下列几何图形中,哪个不是矩形?A. 图1B. 图2C. 图3D. 图42.若一个四边形的对角线互相垂直,并且对角线相等,那么这个四边形一定是矩形。
()2. 计算题根据所学知识,判断下列图形是否为矩形。
(图片展示)六、课堂小结通过本节课的学习,我们学习了矩形的定义及性质,并掌握了矩形的判定方法。
在实际应用中,我们可以用这些知识来判断一个图形是否是矩形。
七、作业布置1.完成课堂练习题;2.思考并回答以下问题:哪些图形不是矩形,但拥有部分矩形的性质?八、教学反思本节课的教学重点是矩形的定义及性质,通过引导学生观察、思考和讨论,能够充分激发学生的学习兴趣和动手能力。
八年级数学下册 18.2.1 矩形(2)矩形的判定学案(新版)新人教版1、理解矩形的判定定理并会用矩形的判定定理证明一个四边形(平行四边形)是矩形、2、会有条理的思考与表达,并逐步学会分析与综合的思考方法、3、会综合运用矩形的性质定理与判定定理进行计算与证明、导学过程【问题探究】问题1:矩形的定义:_______________________________________叫做矩形、问题2:工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?问题3:李芳同学用“边直角、边直角、边直角、边”这样四步,画出了一个四边形,她说这就是一个矩形,她的判断对吗?为什么?归纳矩形的判定定理:ABOCD【应用范例】例1、如图,在□ABCD中,对角线AC和BD相交于点O,△OAB 是等边三角形,且AB=4,求□ABCD的面积例2、已知:如图,□ABCD的四个内角的平分线分别相交于点E、F、G、H、求证:四边形EFGH是矩形、例3、已知,如图、矩形ABCD的对角线AC、BD相交于点O,且E、F、G、H分别是AO、BO、CO、DO的中点,求证:四边形EFGH是矩形、【课堂达标】1、四边形ABCD中,∠A =∠B =∠C =∠D, 则四边形ABCD 是;2、下列命题是真命题的是();A、有一个角是直角的四边形是矩形B、两条对角线相等的四边形是矩形C、有三个角是直角的四边形是矩形D、对角线互相垂直的四边形是3、已知:如图,在△ABC中,∠C=90,CD为AB边上中线,延长CD到点E,使得 DE=CD、连结AE,BE、求证:四边形ACBE为矩形、4、□ABCD 中,E是CD的中点,△A BE是等边三角形,求证:四边形ABCD是矩形【课后作业】5、在平行四边形□ABCD 中,增加下列条件中的一个,就能断定它是矩形的是()A、∠A+∠C=180B、AB=BCC、AC⊥BDD、AC=2AB6、甲、乙、丙、丁四位同学到木工厂参观时,一木工师傅拿尺子要他们帮助检测一个窗框是否是矩形,他们各自做了如下检测,检测后,他们都说窗框是矩形,你认为最有说服力的是()A、甲量得窗框两组对边分别相等B、乙量得窗框对角线相等C、丙量得窗框的一组邻边相等D、丁量得窗框的两组对边分别相等且两条对角线也相等7、如图3-14,□ ABCD的四个内角的平分线相交于点E、F、G、H、求证:EG = FH、8、如图3-12,□ABCD中,∠DAC=∠ADB, 求证:四边形ABCD是矩形、ADBCFE9、已知:如图,在△ABC中,∠ACB=90,D是AB的中点,DE、DF分别是∠BDC、∠ADC的角平分线、求证:四边形DECF是矩形、。
: : :18.2 特殊的平行四边形18.2.1 矩形第 2 课时 矩形的判定学习目标:1、学习矩形的判定定理,解决简单的证明题和计算题,进一步培养分析能力;2、培养综合应用知识分析解决问题的能力.重难点:掌握矩形的判定定理学习过程:一、复习旧知二、探究新知1、探究归纳矩形的判定定理,并用模式表示:(1)你能确定有三个角是直角的四边形是矩形吗?(自己探究)判定定理 1(从四边形 ⇒ 矩形):有三个角是直角的四边形是矩形。
AD几何语言 在四边形ABCD 中, ∵∴BC(2)我们知道矩形的定义:有一个角是直角的平行四边形叫做矩形。
由此这个定义可以作为一个判定吗?判定定理 2(从平行四边形 ⇒ 矩形):有一个角是直角(900)的平行四边形是矩形。
几何语言 在平行四边形ABCD 中, ∵或 或 或∴A DB(3)矩形的对角线,对角线相等的平行四边形是矩形吗?(证明你的回答)C证明:ADOBC判定定理 3(从平行四边形 ⇒ 矩形):对角线相等的平行四边形是矩形。
几何语言 在平行四边形ABCD 中, ∵AD ∴OBC【归纳总结】矩形的判定方法:1、有一个角是的平行四边形是矩形;2、四个角都是的四边形是矩形;3、对角线的四边形是矩形。
或者说,对角线的平行四边形是矩形三、课堂练习思考:下列命题是否正确,正确的加以证明,不正确的通过举反例或画图加以说明(1)有一个角是直角的四边形是矩形(2)对角线互相平分且又相等的四边形是矩形(3)四个角都相等的四边形是矩形四、课堂小结(1)证明四边形是矩形的方法:一般先证明它是平行四边形,然后再证明一个直角或者对角线相等(2)证明平行四边形是矩形的方法:一般可在角上找条件,也可在对角线上找条件。
判定方法:从角的条件看、(种)从对角线的条件看。
五、课后作业1、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A、测量对角线是否相互平分B、测量两组对边是否分别相等C、测量一组对角是否都为直角D、测量其中三个角是否都为直角2、如图,已知ABCD的对角线AC、BD相交于△O,ABO是等边三角形,AB=4cm,求这个平行四边形的面积六、课后反思。
八年级数学下册 18.2.1 矩形第2课时矩形的判定学案 (新版)新人教版课前预习要点感知矩形的判定:①有一个角是直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形、预习练习如图所示,已知▱ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明▱ABCD是矩形的有①④(填写序号)、02当堂训练知识点1 有一个角是直角的平行四边形是矩形1、如图,在四边形ABCD中,AD∥BC,∠D=90,若再添加一个条件,就能推出四边形ABCD是矩形,你所添加的条件是答案不唯一,如AD=BC或AB∥CD等、(写出一种情况即可)2、如图,在△ABC中,AB=AC,AD是BC边上的中线,四边形ADBE是平行四边形、求证:四边形ADBE是矩形、证明:∵AB =AC,AD是BC边上的中线,∴AD⊥BC、∴∠ADB=90、又∵四边形ADBE是平行四边形,∴四边形ADBE是矩形、知识点2 对角线相等的平行四边形是矩形3、能判断四边形是矩形的条件是(C)A、两条对角线互相平分B、两条对角线相等C、两条对角线互相平分且相等D、两条对角线互相垂直4、如图所示,矩形ABCD的对角线相交于点O,E、F、G、H 分别是AO、BO、CO、DO的中点,请问四边形EFGH是矩形吗?请说明理由、解:四边形EFGH是矩形、理由如下:∵四边形ABCD 是矩形,∴AC=BD,AO=BO=CO=DO、∵E、F、G、H分别是AO、BO、CO、DO的中点,∴EO=FO=GO=HO、∴OE=OG,OF=OH、∴四边形EFGH是平行四边形、∵EO+GO=FO+HO,即EG=FH,∴四边形EFGH是矩形、知识点3 有三个角是直角的四边形是矩形5、如图,直角∠AOB内的任意一点P到这个角的两边的距离之和为6,则图中四边形的周长为12、6、已知:如图,在▱ABCD中,AF,BH,CH,DF分别是∠BAD,∠ABC,∠BCD,∠ADC的平分线、求证:四边形EFGH为矩形、证明:∵四边形ABCD是平行四边形,∴∠DAB+∠ADC=180、∵AF,DF平分∠DAB,∠ADC,∴∠FAD=∠BAE=∠DAB、∴∠ADF=∠CDF=∠ADC、∴∠FAD+∠FDA=90、∴∠AFD=90、同理:∠BHC=∠HEF=90、∴四边形EFGH是矩形、03课后作业7、已知O为四边形ABCD对角线的交点,下列条件能使四边形ABCD成为矩形的是(D)A、OA=OC,OB=ODB、AC=BDC、AC⊥BDD、∠ABC=∠BCD=∠CDA=908、下面命题正确的个数是(C)(1)矩形是轴对称图形;(2)矩形的对角线不小于夹在两对边间的任意线段;(3)两条对角线相等的四边形是矩形;(4)有两个角相等的平行四边形是矩形;(5)两条对角线相等且互相平分的四边形是矩形、A、5个B、4个C、3个D、2个9、(呼和浩特中考)如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点、若AC=8,BD=6,则四边形EFGH的面积为12、10、(聊城中考)如图,在△ABC中,AB=BC,BD平分∠ABC,四边形ABED是平行四边形,DE交BC于点F,连接CE、求证:四边形BECD是矩形、证明:∵BD平分∠ABC,∴∠ABD=∠CBD、∵AB=BC,BD平分∠ABC,∴AD=CD、又∵四边形ABED是平行四边形,∴AD∥BE且AD=BE,AB =DE、∵AD=CD,∴CD∥BE且CD=BE、∴四边形BECD是平行四边形、∵AB=BC,∴BC=DE、∴四边形BECD是矩形、11、(百色中考)如图,已知点E,F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由、证明:(1)∵DE∥BF,∴∠E=∠F、又∵∠1=∠2,AE=CF,∴△AED≌△CFB(AAS)(2)四边形ABCD是矩形,理由如下:∵△AED≌△CFB,∴AD=CB,∠EAD=∠FCB、∴180-∠EAD=180-∠FCB,即∠DAC=∠BCA、∴AD∥BC、∴四边形ABCD为平行四边形、∵AD⊥CD,∴∠ADC=90、∴▱ABCD为矩形、挑战自我12、(张家界中考)如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC、设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F、(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由、解:(1)证明:∵CF平分∠ACD,且MN∥BD,∴∠ACF=∠FCD=∠CFO、∴OF=OC、同理可证:OC=OE、∴OE=OF、(2)由(1)知:OF=OC,OC =OE,∴∠OCF=∠OFC,∠OCE=∠OEC、∴∠OCF+∠OCE=∠OFC+∠OEC、而∠OCF+∠OCE+∠OFC+∠OEC=180,∴∠ECF=∠OCF +∠OCE=90、∴EF===13、∴OC=EF=、(3)当点O移动到AC中点时,四边形AECF 为矩形、理由如下:连接AE、AF、由(1)知OE=OF,当点O移动到AC中点时有OA=OC,∴四边形AECF为平行四边形、又∵∠ECF =90,∴四边形AECF为矩形、。
18.2 特殊的平行四边形
18.2.1 矩形
第2课时 矩形的判定
学习目标:
1、学习矩形的判定定理,解决简单的证明题和计算题,进一步培养分析能力;
2、培养综合应用知识分析解决问题的能力.
重难点:掌握矩形的判定定理 学习过程:
一、复习旧知
二、探究新知
1、探究归纳矩形的判定定理,并用模式表示:
(1)你能确定有三个角是直角的四边形是矩形吗?(自己探究)。
判定定理1(从四边形⇒矩形):有三个角是直角的四边形是矩形。
几何语言: 在四边形ABCD 中,
∵ ∴
(2)我们知道矩形的定义:有一个角是直角的平行四边形叫做矩形。
由此这个定义可以作为一个判定吗?
判定定理2(从平行四边形⇒矩形):有一个角是直角(900
)的平行四边形是矩形。
几何语言: 在平行四边形ABCD 中, ∵ 或 或 或 ∴
(3)矩形的对角线 ,对角线相等的平行四边形是矩形吗?(证明你的回答) 证明:
判定定理3(从平行四边形⇒矩形):对角线相等的平行四边形是矩形。
几何语言: 在平行四边形ABCD 中, ∵ ∴
A B
D A B
D D
C
D
C
B
【归纳总结】矩形的判定方法:
1、有一个角是 的平行四边形是矩形;
2、四个角都是 的四边形是矩形;
3、对角线 的四边形是矩形。
或者说,对角线 的平行四边形是矩形
三、课堂练习
思考:下列命题是否正确,正确的加以证明,不正确的通过举反例或画图加以说明
(1)有一个角是直角的四边形是矩形 (2)对角线互相平分且又相等的四边形是矩形 (3)四个角都相等的四边形是矩形 四、课堂小结
(1)证明四边形是矩形的方法:
一般先证明它是平行四边形,然后再证明一个直角或者对角线相等 (2)证明平行四边形是矩形的方法: 一般可在角上找条件,也可在对角线上找条件。
判
定方法 : 从角的条件看 、 ( 种)
从对角线的条件看 。
五、课后作业
1、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).
A 、测量对角线是否相互平分
B 、测量两组对边是否分别相等
C 、测量一组对角是否都为直角
D 、测量其中三个角是否都为直角 2、如图,已知
ABCD 的对角线AC 、BD 相交于O ,△ABO 是等边三角形,AB=4cm ,求这个
平行四边形的面积
六、课后反思。