高中数学 11.1随机事件的概率补充说明与例题
- 格式:ppt
- 大小:143.50 KB
- 文档页数:14
第十一章概率与统计一概率【考点阐述】随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.【考试要求】(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n次独立重复试验中恰好发生κ次的概率.【考题分类】(一)选择题(共8题)1.(福建卷理5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是()A.16625B.96625C.192625D.256625【标准答案】B【试题解析】由222444196 (2)55625 P C⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭【高考考点】独立重复实验的判断及计算【易错提醒】容易记成二项展开式的通项,当然这题因为数字的原因不涉及.【学科网备考提示】请考生注意该公式与二项展开式的通项的区别,所以要强化公式的记忆.2.(福建卷文5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是()A.12125B.16125C.48125D.96125【标准答案】C【标准答案】由212334148 (2)55125 P C⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭【高考考点】独立重复实验的判断及计算【易错提醒】容易记成二项展开式的通项.【学科网备考提示】请考生注意该公式与二项展开式的通项的区别,所以要强化公式的记忆.3.(江西卷理11文11)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为()A.1180B.1288C.1360D.1480【标准答案】C.【标准答案】一天显示的时间总共有24601440⨯=种,和为23总共有4种,故所求概率为1360. 4. (辽宁卷理7文7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .34【答案】:C 【解析】:本小题主要考查等可能事件概率求解问题。
【鼎尖教案】人教版高中数学必修系列:11.1随机事件的概率(备课资料)一、参考例题[例1]先后抛掷3枚均匀的一分,二分,五分硬币. (1)一共可能出现多少种不同的结果?(2)出现“2枚正面,1枚反面”的结果有多少种? (3)出现“2枚正面,1枚反面”的概率是多少?分析:(1)由于对先后抛掷每枚硬币而言,都有出现正面和反面的两种情况,所以共可能出现的结果有2×2×2=8种.(2)出现“2枚正面,1枚反面”的情况可从(1)中8种情况列出.(3)因为每枚硬币是均匀的,所以(1)中的每种结果的出现都是等可能性的. 解:(1)∵抛掷一分硬币时,有出现正面和反面2种情况, 抛掷二分硬币时,有出现正面和反面2种情况, 抛掷五分硬币时,有出现正面和反面2种情况, ∴共可能出现的结果有2×2×2=8种.故一分、二分、五分的顺序可能出现的结果为: (正,正,正),(正,正,反), (正,反,正),(正,反,反), (反,正,正),(反,正,反), (反,反,正),(反,反,反).(2)出现“2枚正面,1枚反面”的结果有3个,即(正,正,反),(正,反,正),(反,正,正).(3)∵每种结果出现的可能性都相等,∴事件A “2枚正面,1枚反面”的概率为P (A )=83. [例2]甲、乙、丙、丁四人中选3名代表,写出所有的基本事件,并求甲被选上的概率.分析:这里从甲、乙、丙、丁中选3名代表就是从4个不同元素中选3个元素的一个组合,也就是一个基本事件.解:所有的基本事件是:甲乙丙,甲乙丁,甲丙丁,乙丙丁选为代表. ∵每种选为代表的结果都是等可能性的,甲被选上的事件个数m =3,∴甲被选上的概率为43. [例3]袋中装有大小相同标号不同的白球4个,黑球5个,从中任取3个球. (1)共有多少种不同结果?(2)取出的3球中有2个白球,1个黑球的结果有几个? (3)取出的3球中至少有2个白球的结果有几个? (4)计算第(2)、(3)小题表示的事件的概率.分析:(1)设从4个白球,5个黑球中,任取3个的所有结果组成的集合为I ,所求结果种数n 就是I 中元素的个数.(2)设事件A :取出的3球,2个是白球,1个是黑球,所以事件A 中的结果组成的集合是I 的子集.(3)设事件B :取出的3球至少有2个白球,所以B 的结果有两类:一类是2个白球,1个黑球;另一类是3个球全白.(4)由于球的大小相同,故任意3个球被取到的可能性都相等.故由P (A )=)(card )(card I A ,P (B )=)(card )(card I B ,可求事件A 、B 发生的概率.解:(1)设从4个白球,5个黑球中任取3个的所有结果组成的集合为I , ∴card(I )=39C =84.∴共有84个不同结果. (2)设事件A :“取出3球中有2个白球,1个黑球”的所有结果组成的集合为A , ∴card(A )=24C ·15C =30.∴共有30种不同的结果. (3)设事件B :“取出3球中至少有2个白球”的所有结果组成的集合为B , ∴card(B )=34C +24C ·15C =34.∴共有34种不同的结果.(4)∵从4个白球,5个黑球中,任取3个球的所有结果的出现可能性都相同, ∴事件A 发生的概率为1458430=,事件B 发生的概率为42178434=. 二、参考练习1.选择题(1)如果一次试验中所有可能出现的结果有n 个,而且所有结果出现的可能性相等,那么每一个基本事件的概率A.都是1B.都是C.都是D.不一定 答案:B(2)抛掷一个均匀的正方体玩具(它的每一面上分别标有数字1,2,3,4,5,6),它落地时向上的数都是3的概率是A.31 B.1 C.21D.61 答案:D(3)把十张卡片分别写上0,1,2,3,4,5,6,7,8,9后,任意搅乱放入一纸箱内,从中任取一张,则所抽取的卡片上数字不小于3的概率是A.101B.103 C.105D.107答案:D(4)从6名同学中,选出4人参加数学竞赛,其中甲被选中的概率为A.31 B.21 C.53D.32答案:D(5)甲袋内装有大小相等的8个红球和4个白球,乙袋内装有大小相等的9个红球和3个白球,从2个袋内各摸出一个球,那么125等于 A.2个球都是白球的概率B.2个球中恰好有一个是白球的概率C.2个球都不是白球的概率D.2个球都是白球的概率 答案:B(6)某小组有成员3人,每人在一个星期(7天)中参加一天劳动,如果劳动日可任意安排,则3人在不同的3天参加劳动的概率为A.73 B.353 C.4930D.701答案:C 2.填空题(1)随机事件A 的概率P (A )应满足________. 答案:0≤P (A )≤1(2)一个口袋内装有大小相同标号不同的2个白球,2个黑球,从中任取一个球,共有________种等可能的结果.答案:4(3)在50瓶饮料中,有3瓶已经过期,从中任取一瓶,取得已过期的饮料的概率是________.答案:503 (4)一年以365天计,甲、乙、丙三人中恰有两人在同天过生日的概率是________.解析:P (A )=22233651092365364C =⨯. 答案:23651092 (5)有6间客房准备安排3名旅游者居住,每人可以住进任一房间,且住进各房间的可能性相等,则事件A :“指定的3个房间各住1人”的概率P (A )=________;事件B :“6间房中恰有3间各住1人”的概率P (B )=________;事件C :“6间房中指定的一间住2人”的概率P (C )=________.解析:P (A )=3616A 333=;P (B )=956A C 33336=⋅; P (C )=72565C 323=⋅. 答案:36195 725 3.有50张卡片(从1号到50号),从中任取一张,计算: (1)所取卡片的号数是偶数的情况有多少种? (2)所取卡片的号数是偶数的概率是多少? 解:(1)所取卡片的号数是偶数的情况有25种. (2)所取卡片的号数是偶数的概率为P =5025=21. ●备课资料 一、参考例题[例1]一栋楼房有六个单元,李明和王强住在此楼内,试求他们住在此楼的同一单元的概率.分析:因为李明住在此楼的情况有6种,王强住在此楼的情况有6种,所以他们住在此楼的住法结果有6×6=36个,且每种结果的出现的可能性相等.而事件A :“李明和王强住在同一单元”含有6个结果.解:∵李明住在这栋楼的情况有6种,王强住在这栋楼的情况有6种, ∴他们同住在这栋楼的情况共有6×6=36种. 由于每种情况的出现的可能性都相等, 设事件A :“李明和王强住在此楼的同一单元内”,而事件A 所含的结果有6种,∴P (A )=61366=. ∴李明和王强住在此楼的同一单元的概率为61. 评述:也可用“捆绑法”,将李明和王强视为1人,则住在此楼的情况有6种.[例2]在一次口试中,要从10道题中随机选出3道题进行回答,答对了其中2道题就获得及格.某考生会回答10道题中的8道,那么这名考生获得及格的概率是多少?分析:因为从10道题中随机选出3道题,共有310C 种可能的结果,而每种结果出现的可能性都相等,故本题属于求等可能性事件的概率问题.解:∵从10题中随机选出3题,共有等可能性的结果310C 个.设事件A :“这名考生获得及格”,则事件A 含的结果有两类,一类是选出的3道正是他能回答的3题,共有38C 种选法;另一类是选出的3题中有2题会答,一题不会回答,共有28C ·12C 种选法,所以事件A 包含的结果有38C +28C ·12C 个. ∴P (A )=1514C C C C 310122838=+.∴这名考生获得及格的概率为1514. [例3]7名同学站成一排,计算: (1)甲不站正中间的概率;(2)甲、乙两人正好相邻的概率; (3)甲、乙两人不相邻的概率.分析:因为7人站成一排,共有77A 种不同的站法,这些结果出现的可能性都相等. 解:∵7人站成一排,共有77A 种等可能性的结果, 设事件A :“甲不站在正中间”; 事件B :“甲、乙两人正好相邻”; 事件C :“甲、乙两人正好不相邻”; 事件A 包含的结果有666A 个; 事件B 包含的结果有66A 22A 个;事件C 包含的结果有55A ·26A 个.(1)甲不站在正中间的概率P (A )=76A 6A 7766=.(2)甲、乙两人相邻的概率P (B )=72A A A 772666=. (3)甲、乙两人不相邻的概率P (C )=75A A A 772655=. [例4]从1,2,3,…,9这九个数字中不重复地随机取3个组成三位数,求此数大于456的概率.分析:因为从1,2,3,…,9这九个数字中组成无重复数字的三位数共有39A =504个,且每个结果的出现的可能性都相等,故本题属求等可能性事件的概率问题.由于比456大的三位数有三类:(1)百位数大于4,有15A ·28A =280个;(2)百位数为4,十位数大于5,有14A ·17A =28个;(3)百位数为4,十位数为5,个位数大于6有2个,因此,事件“无重复数字且比456大的三位数”包含的结果有280+28+3=311个.解:∵由数字1,2,3,…,9九个数字组成无重复数字的三位数共有39A =504个,而每种结果的出现的可能性都相等.其中,事件A :“比456大的三位数”包含的结果有311个,∴事件A 的概率P (A )=504311.∴所求的概率为504311. [例5]某班有学生36人,现从中选出2人去完成一项任务,设每人当选的可能性都相等,若选出的2人性别相同的概率是21,求该班男生、女生的人数. 分析:由于每人当选的可能性都相等,且从全班36人中选出2人去完成一项任务的选法有236C 种,故这些当选的所有结果出现的可能性都相等.解:设该班男生有n 人,则女生(36-n )人.(n ∈N *,n ≤36)∵从全班的36人中,选出2人,共有236C 种不同的结果,每个结果出现的可能性都相等.其中,事件A :“选出的2人性别相同”含有的结果有(2C n +236C n -)个,∴P (A )=21C C C 2362362=+-nn . ∴n 2-36n +315=0.∴n =15或n =21.∴该班有男生15人,女生21人,或男生21人,女生15人.评述:深刻理解等可能性事件概率的定义,能够正确运用排列、组合的知识对等可能性事件进行分析、计算.二、参考练习 1.选择题(1)十个人站成一排,其中甲、乙、丙三人彼此不相邻的概率为A.151 B.457 C.158D.157答案:D(2)将一枚均匀硬币先后抛两次,恰好出现一次正面的概率是A.21 B.41 C.43D.31答案:A(3)从数字0,1,2,3,4,5这六个数字中任取三个组成没有重复数字的三位数,则这个三位数是奇数的概率等于A.253 B.2512 C.2516D.2524答案:B(4)盒中有100个铁钉,其中有90个是合格的,10个是不合格的,从中任意抽取10个,其中没有一个不合格铁钉的概率为A.0.9B.91 C.0.1D.1010010090C C 答案:D(5)将一枚硬币先后抛两次,至少出现一次正面的概率是A.21 B.41 C.43D.1答案:C 2.填空题(1)从甲地到乙地有A 1,A 2,A 3,A 4共4条路线,从乙地到丙地有B 1,B 2,B 3共3条路线,其中A 1B 1是甲地到丙地的最短路线,某人任选了一条从甲地到丙地的路线,它正好是最短路线的概率为________.答案:121 (2)袋内装有大小相同的4个白球和3个黑球,从中任意摸出3个球,其中只有一个白球的概率为________.答案:3512 (3)有数学、物理、化学、语文、外语五本课本,从中任取一本,取到的课本是理科课本的概率为________.答案:53 (4)从1,2,3,…,10这10个数中任意取出4个数作为一组,那么这一组数的和为奇数的概率是________.答案:2110 (5)一对酷爱运动的年轻夫妇,让刚好十个月大的婴儿把“0,0,2,8,北,京”六张卡片排成一行,若婴儿能使得排成的顺序为“2008北京”或“北京2008”,则受到父母的夸奖,那么婴儿受到夸奖的概率为________.解:由题意,知婴儿受到夸奖的概率为P =1801A A 22266=. (6)在2004年8月18日雅典奥运会上,两名中国运动员和4名外国运动员进入双多向飞蝶射击决赛.若每名运动员夺得奖牌(金、银、铜牌)的概率相等,则中国队在此项比赛中夺得奖牌的概率为________.解:由题意可知中国队在此项比赛中不获得奖牌的概率为P 1=51)A A (C C 66343634=或.则中国队获得奖牌的概率为P =1-P 1=1-5451=. 3.解答题(1)在10枝铅笔中,有8枝正品和2枝次品,从中任取2枝,求: ①恰好都取到正品的概率;②取到1枝正品1枝次品的概率; ③取到2枝都是次品的概率.解:①4528C C 21028=.②4516C C C 2101218=⋅. ③451C C 21022=. (2)某球队有10人,分别穿着从1号到10号的球衣,从中任选3人记录球衣的号码,求:①最小的号码为5的概率; ②最大的号码为5的概率.解:①121C C 31025=.②201C C 31024=. (3)一车间某工段有男工9人,女工5人,现要从中选3个职工代表,求3个代表中至少有一名女工的概率.解:1310C C C C C C 3143519252915=+⋅+⋅. (4)从-3,-2,-1,0,5,6,7这七个数中任取两数相乘而得到积,求:①积为零的概率; ②积为负数的概率; ③积为正数的概率.解:①72C C 2716=; ②73C C C 271313=; ③72C C C 272323=+.(5)甲袋内有m 个白球,n 个黑球;乙袋内有n 个白球,m 个黑球,从两个袋子内各取一球.求:①取出的两个球都是黑球的概率; ②取出的两个球黑白各一个的概率; ③取出的两个球至少一个黑球的概率.解:①2)(m n mn +⋅; ②222)(n m n m ++; ③222)(n m n m n m +⋅++. ●备课资料 一、参考例题[例1]一个均匀的正方体玩具,各个面上分别标以数1,2,3,4,5,6.求: (1)将这个玩具先后抛掷2次,朝上的一面数之和是6的概率. (2)将这个玩具先后抛掷2次,朝上的一面数之和小于5的概率.分析:以(x 1,x 2)表示先后抛掷两次玩具朝上的面的数,x 1是第一次朝上的面的数,x 2是第二次朝上的面的数,由于x 1取值有6种情况,x 2取值也有6种情况,因此先后两次抛掷玩具所得的朝上面数共有6×6=36种结果,且每一结果的出现都是等可能性的.解:设(x 1,x 2)表示先后两次抛掷玩具后所得的朝上的面的数,其中x 1是第一次抛掷玩具所得的朝上的面的数,x 2是第二次抛掷玩具所得的朝上的面的数.∵先后两次抛掷这个玩具所得的朝上的面的数共有6×6=36种结果,且每一结果的出现的可能性都相等.(1)设事件A 为“2次朝上的面的数之和为6”, ∵事件A 含有如下结果:(1,5)(2,4),(3,3),(4,2),(5,1)共5个,∴P (A )=365. (2)设事件B 为“2次朝上的面上的数之和小于5”, ∵事件B 含有如下结果:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个, ∴P (B )=61366=. [例2]袋中有硬币10枚,其中2枚是伍分的,3枚是贰分的,5枚是壹分的.现从中任取5枚,求钱数不超过壹角的概率.分析:由于从10枚硬币中,任取5枚所得的钱数结果出现的可能性都相等. 记事件A :“取出的5枚对应的钱数不超过壹角”, ∴事件A 含有结果有:①1枚伍分,1枚贰分,3枚壹分共12C ·13C ·35C 种取法. ②1枚伍分,4枚壹分,共12C ·45C 种取法.③3枚贰分,2枚壹分,共33C ·25C 种取法. ④2枚贰分,3枚壹分,共23C ·35C 种取法. ⑤1枚贰分,4枚壹分,共13C ·45C 种取法.⑥5枚壹分共C 55种取法.∴P (A )=510554513352325334512351312C C C C C C C C C C C C C +⋅+⋅+⋅+⋅+⋅⋅=21252126=. [例3]把10个足球队平均分成两组进行比赛,求两支最强队被分在:(1)不同组的概率;(2)同一组的概率.分析:由于把10支球队平均分成两组,共有510C 21种不同的分法,而每种分法出现的结果的可能性都相等.(1)记事件A :“最强两队被分在不同组”,这时事件A 含有2248A C 21⋅种结果. ∴P (A )=95C 21A C 215102248=⋅. (2)记事件B :“最强的两队被分在同一组”,这时事件B 含有552238C C C ⋅⋅种. ∴P (B )=94C 21C 51038=. [例4]已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8}在平面直角坐标系中,点(x ,y )的坐标x ∈A , y ∈A ,且x ≠y ,计算:(1)点(x ,y )不在x 轴上的概率; (2)点(x ,y )正好在第二象限的概率.分析:由于点(x ,y )中,x 、y ∈A,且x ≠y ,所以这样的点共有210A 个,且每一个结果出现的可能性都相等.解:∵x ∈A,y ∈A,x ≠y 时,点(x ,y )共有210A 个,且每一个结果出现的可能性都相等,(1)设事件A 为“点(x ,y )不在x 轴上”,∴事件A 含有的结果有19A ·19A 个.∴P (A )=10991099=⨯⨯.(2)设事件B 为“点(x ,y )正好在第二象限”, ∴x <0,y >0.∴事件B 含有15A ·14A 个结果. ∴P (B )=92A A A 2101415=⋅. [例5]从一副扑克牌(共52张)里,任意取4张,求:(1)抽出的是J 、Q 、K 、A 的概率; (2)抽出的是4张同花牌的概率.解:∵从一副扑克牌(52张)里,任意抽取4张,共有452C 种抽法.每一种抽法抽出的结果出现的可能性都相等, (1)设事件A :“抽出的4张是J ,Q ,K ,A ”,∵抽取的是J 的情况有14C 种, 抽取的是Q 的情况有14C 种, 抽取的是K 的情况有14C 种, 抽取的是A 的情况有14C 种, ∴事件A 含有的结果共有44个.∴P (A )=4522C 4=812175768.(2)设事件B :“抽出的4张是同花牌”,∴事件B 中含14C ·413C 个结果. ∴P (B )=41651054C C C 45241314=⋅. 二、参考练习1.选择题(1)某一部四册的小说,任意排放在书架的同一层上,则各册自左到右或自右到左的顺序恰好为第1,2,3,4册的概率等于A.81 B.161 C.121D.241答案:C(2)在100件产品中,合格品有96件,次品有4件,从这100件产品中任意抽取3件,则抽取的产品中至少有两件次品的概率为A.310019624C CC ⋅B.31003424C C C +C.31003419624C C C C +⋅D.310034C C答案:C(3)从3台甲型彩电和2台乙型彩电中任选3台,其中两种品牌的彩电都齐全的概率是A.53 B.107 C.54D.109答案:D(4)正三角形各顶点和各边中点共有6个点,从这6个点中任意取出3个点构成的三角形恰为正三角形的概率是A.41 B.51 C.174D.175答案:D(5)在由1,2,3组成的不多于三位的自然数(可以有重复数字)中任意抽取一个,正好抽出两位自然数的概率是A.133 B.31 C.152D.52答案:A 2.填空题(1)设三位数a 、b 、c ,若b <a ,c >a ,则称此三位数为凹数.现从0,1,2,3,4,5这六个数字中任取三个数字,组成三位数,其中是凹数的概率是________.答案:52 (2)将一枚硬币连续抛掷5次,则有3次出现正面的概率是________.答案:5352C(3)正六边形的各顶点和中心共有7个点,从这7个点中任意取3个点构成三角形,则构成的三角形恰为直角三角形的概率是________.解:P =8332123C 2637==-⨯.答案:83 (4)商品A 、B 、C 、D 、E 在货架上排成一列,A 、B 要排在一起,C 、D 不能排在一起的概率是________.解:P =55232222A A A A ⋅⋅=12345622⨯⨯⨯⨯⨯⨯=51.答案:51 (5)在平面直角坐标系中,点(x ,y )的x 、y ∈{0,1,2,3,4,5}且x ≠y ,则点(x ,y )在直线y =x 的上方的概率是________.解:P =2612131415A 1C C C C ++++=5615⨯=21. 答案:213.解答题(1)已知集合A ={a ,b ,c ,d ,e },任意取集合A 的一个子集B ,计算: ①B 中仅有3个元素的概率; ②B 中一定含有a 、b 、c 的概率.解:①P =1652C 535=.②P =81211C 512=++. (2)某号码锁有六个拨盘,每个拨盘上有从0到9共十个数字,当6个拨盘上的数字组成某一个六位数号码(开锁号码)时,锁才能打开.如果不知道开锁号码,试开一次就能打开锁的概率是多少?如果未记准开锁号码的最后两位数字,在使用时随意拨下最后两位数字,正好把锁打开的概率是多少?解:①P =6101. ②P =10011012=.(3)9国乒乓球队内有3国是亚洲国家,抽签分成三组进行预赛(每组3队),试求: ①三个组中各有一个亚洲国家球队的概率; ②三个亚洲国家集中在某一组的概率. 解:①P =[222426CC C ⋅⋅]÷[33333639A C C C ⋅⋅]=289. ②P =36C 21·33C ÷[33333639A C C C ⋅⋅]=281. (4)将m 个编号的球放入n 个编号的盒子中,每个盒子所放的球数k 满足0≤k ≤m ,在各种放法的可能性相等的条件,求:①第一个盒子无球的概率; ②第一个盒子恰有一球的概率.解:①P =(n n 1-)m. ②P =n m ·(nn 1-)n -1.。
高中数学《随机事件的概率》典型例题例1、指出下列事件是必然事件,不可能事件,还是随机事件。
(1)某体操运动员将在某次运动会上获得全能冠军;(2)一个三角形的大边对的角小,小边对的角大;(3)如果,那么;(4)某人购买福利彩票中奖。
答案:(1)(4)是随机事件,(2)是不可能事件,(3)是必然事件例2、在下列试验中,哪些试验给出的随机事件是等可能的?(1)投掷一枚均匀的硬币,“出现正面”与“出现反面”;(2)一个盘子中有三个大小完全相同的球,其中红球、黄球、黑球各一个,从中任取一球,“取出的是红球”“取出的是黄球”“取出的是黑球”;(3)一个盒子中有四个大小完全相同的球,其中红球、黄球各一个,黑球两个,从中任取一球,“取出的是红球”“取出的是黄球”“取出的是黑球”。
解:(1)中给出的随机事件“出现正面”与“出现反面”是等可能的。
(2)中给出的三个随机事件:“取出的是红球”“取出的是黄球”“取出的是黑球”,由于球的大小、个数相同,因此这三个事件是等可能的。
(3)中给出的随机事件:“取出的是红球”“取出的是黄球”“取出的是黑球”,由于三种球的数量不同,因此这三个事件不是等可能的。
例3、有5副不同的手套,甲先任取一只,乙再任取一只,然后甲又任取一只,最后乙再取一只,求下列事件的概率:(1)A={甲正好取到2只配对手套};(2)B={乙正好取到2只配对手套}。
解:(1)A含基本事件数:① 先取一双,方法数为;② 将取到的一双放到第一、三位,分法数为2;③ 在余下的8只手套中,任取2只放到二、四位,分法数为,由分步计数原理,A含基本事件数为,故;(2)B含基本事件数:① 先取一双,放到二、四位,分法数为;② 在余下的8只手套中任取2只放到一、三位,分法数为。
由分步计数原理,B含基本事件数为,故。
例4、从1,2,3,4,5五个数字中,任意有放回地连续抽取三个数字,求下列事件的概率。
(1)三个数字完全不同;(2)三个数字中不含1和5;(3)三个数字中5恰好出现两次。
第十一章 概率●网络体系总览●考点目标定位1.了解等可能性事件的概率的意义,会用排列组合公式计算一些等可能性事件的概率.2.了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.3.了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率,会计算事件在n 次独立重复试验中恰好发生k 次的概率.11.1 随机事件的概率●知识梳理1.随机事件:在一定条件下可能发生也可能不发生的事件.2.必然事件:在一定条件下必然要发生的事件.3.不可能事件:在一定条件下不可能发生的事件.4.事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率nm总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P (A ).由定义可知0≤P (A )≤1,显然必然事件的概率是1,不可能事件的概率是0.5.等可能性事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1.如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=nm . 6.使用公式P (A )=nm计算时,确定m 、n 的数值是关键所在,其计算方法灵活多变,没有固定的模式,可充分利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏.●点击双基1.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是A.95B.94C.2111D.2110 解析:基本事件总数为C 39,设抽取3个数,和为偶数为事件A ,则A 事件数包括两类:抽取3个数全为偶数,或抽取3数中2个奇数1个偶数,前者C 34,后者C 14C 25.∴A 中基本事件数为C 34+C 14C 25.∴符合要求的概率为39251434C C C C +=2111. 答案:C2.某校高三年级举行的一次演讲比赛共有10位同学参加,其中一班有3位,二班有2位,其他班有5位.若采取抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为A.101 B.201 C.401 D.1201解析:10位同学总参赛次序A 1010.一班3位同学恰好排在一起,而二班的2位同学没有排在一起的方法数为先将一班3人捆在一起A 33,与另外5人全排列A 66,二班2位同学不排在一起,采用插空法A 27,即A 33A 66A 27.∴所求概率为1010276633AA A A =201. 答案:B3.将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是A.2165 B.21625 C.21631 D.21691 解析:质地均匀的骰子先后抛掷3次,共有6×6×6种结果.3次均不出现6点向上的掷法有5×5×5种结果.由于抛掷的每一种结果都是等可能出现的,所以不出现6点向上的概率为666555⨯⨯⨯⨯=216125,由对立事件概率公式,知3次至少出现一次6点向上的概率是1-216125=21691. 答案:D4.一盒中装有20个大小相同的弹子球,其中红球10个,白球6个,黄球4个,一小孩随手拿出4个,求至少有3个红球的概率为________.解析:恰有3个红球的概率P 1=420110310C C C =32380.有4个红球的概率P 2=420410C C =32314. 至少有3个红球的概率P =P 1+P 2=32394. 答案:323945.在两个袋中各装有分别写着0,1,2,3,4,5的6张卡片.今从每个袋中任取一张卡片,则取出的两张卡片上数字之和恰为7的概率为________.解析:P =1616C C 4⋅=91. 答案:91 ●典例剖析【例1】用数字1,2,3,4,5组成五位数,求其中恰有4个相同数字的概率.解:五位数共有55个等可能的结果.现在求五位数中恰有4个相同数字的结果数:4个相同数字的取法有C 15种,另一个不同数字的取法有C 14种.而这取出的五个数字共可排出C 15个不同的五位数,故恰有4个相同数字的五位数的结果有C 15C 14C 15个,所求概率P =51514155C C C =1254. 答:其中恰恰有4个相同数字的概率是1254. 【例2】 从男女生共36人的班中,选出2名代表,每人当选的机会均等.如果选得同性代表的概率是21,求该班中男女生相差几名? 解:设男生有x 名,则女生有(36-x )人,选出的2名代表是同性的概率为P =2362-362C C C xx +=21, 即3536)1(⨯-x x +3536)35)(36(⨯--x x =21,解得x =15或21.所以男女生相差6人.【例3】把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),计算: (1)无空盒的概率;(2)恰有一个空盒的概率.解:4个球任意投入4个不同的盒子内有44种等可能的结果. (1)其中无空盒的结果有A 44种,所求概率P =4444A =323. 答:无空盒的概率是323. (2)先求恰有一空盒的结果数:选定一个空盒有C 14种,选两个球放入一盒有C 24A 13种,其余两球放入两盒有A 22种.故恰有一个空盒的结果数为C 14C 24A 13A 22,所求概率P (A )=4221324144A A C C =169. 答:恰有一个空盒的概率是169. 深化拓展把n +1个不同的球投入n 个不同的盒子(n ∈N *).求: (1)无空盒的概率;(2)恰有一空盒的概率. 解:(1)121A C ++n nnn n .(2)111222121311A )A C C C (C +---++⋅⋅+⋅n n n n n n nn.【例4】某人有5把钥匙,一把是房门钥匙,但忘记了开房门的是哪一把.于是,他逐把不重复地试开,问:(1)恰好第三次打开房门锁的概率是多少? (2)三次内打开的概率是多少?(3)如果5把内有2把房门钥匙,那么三次内打开的概率是多少?解:5把钥匙,逐把试开有A 55种等可能的结果. (1)第三次打开房门的结果有A 44种,因此第三次打开房门的概率P (A )=5544A A =51. (2)三次内打开房门的结果有3A 44种,因此,所求概率P (A )=5544A A 3=53. (3)方法一:因5把内有2把房门钥匙,故三次内打不开的结果有A 33A 22种,从而三次内打开的结果有A 55-A 33A 22种,所求概率P (A )=55223355A A A A -=109. 方法二:三次内打开的结果包括:三次内恰有一次打开的结果有C 12A 13A 12A 33种;三次内恰有2次打开的结果有A 23A 33种.因此,三次内打开的结果有C 12A 13A 12A 33+A 23A 33种,所求概率P (A )=55332333121312A A A A A A C +=109. 特别提示1.在上例(1)中,读者如何解释下列两种解法的意义.P (A )=3524A A =51或P (A )=54·43·31=51. 2.仿照1中,你能解例题中的(2)吗?●闯关训练夯实基础1.从分别写有A 、B 、C 、D 、E 的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率为A.51B.52C.103D.107 解析:P =25C 4=52. 答案:B 2.甲、乙二人参加法律知识竞赛,共有12个不同的题目,其中选择题8个,判断题4个.甲、乙二人各依次抽一题,则甲抽到判断题,乙抽到选择题的概率是A.256 B.2521 C.338 D.3325 解析:甲、乙二人依次抽一题有C 112·C 111种方法, 而甲抽到判断题,乙抽到选择题的方法有C 14C 18种.∴P =1111121814C C C C =338. 答案:C3.从数字1、2、3、4、5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为A.12513 B.12516 C.12518 D.12519解析:从数字1、2、3、4、5中,允许重复地随机抽取3个数字,这三个数字和为9的情况为5、2、2;5、3、1;4、3、2;4、4、1;3、3、3.∴概率为32333332351C A A C ++++=12519.答案:D4.一次二期课改经验交流会打算交流试点学校的论文5篇和非试点学校的论文3篇.若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是________.(结果用分数表示)解析:总的排法有A 88种.最先和最后排试点学校的排法有A 25A 66种.概率为886625A A A ⋅=145. 答案:1455.甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙二人中至少有一人抽到选择题的概率是多少? 分析:(1)是等可能性事件,求基本事件总数和A 包含的基本事件数即可.(2)分类或间接法,先求出对立事件的概率.解:(1)基本事件总数甲、乙依次抽一题有C 110C 19种,事件A 包含的基本事件数为C 16C 14,故甲抽到选择题,乙抽到判断题的概率为191101416C C C C =154. (2)A 包含的基本事件总数分三类:甲抽到选择题,乙抽到判断题有C 16C 14; 甲抽到选择题,乙也抽到选择题有C 16C 15; 甲抽到判断题,乙抽到选择题有C 14C 16. 共C 16C 14+C 16C 15+C 14C 16. 基本事件总数C 110C 19,∴甲、乙二人中至少有一人抽到选择题的概率为19110161415161416C C C C C C C C ++=1513或P (A )=191101314C C C C =152,P (A )=1-P (A )=1513. 6.把编号为1到6的六个小球,平均分到三个不同的盒子内,求: (1)每盒各有一个奇数号球的概率; (2)有一盒全是偶数号球的概率.解:6个球平均分入三盒有C 26C 24C 22种等可能的结果.(1)每盒各有一个奇数号球的结果有A 33A 33种,所求概率P (A )=2224463333C C C A A =52. (2)有一盒全是偶数号球的结果有(C 23C 13)·C 24C 22,所求概率P (A )=22242622241323C C C C C )C (C ⋅=53. 培养能力7.已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(1)A 、B 两组中有一组恰有两支弱队的概率; (2)A 组中至少有两支弱队的概率.(1)解法一:三支弱队在同一组的概率为4815C C +4815C C =71, 故有一组恰有两支弱队的概率为1-71=76. 解法二:有一组恰有两支弱队的概率为482523C C C +482523C C C =76. (2)解法一:A 组中至少有两支弱队的概率为482523C C C +481533C C C =21. 解法二:A 、B 两组有一组至少有两支弱队的概率为1,由于对A 组和B 组来说,至少有两支弱队的概率是相同的,所以A 组中至少有两支弱队的概率为21. 8.从1,2,…,10这10个数字中有放回地抽取3次,每次抽取一个数字,试求3次抽取中最小数为3的概率.解:有放回地抽取3次共有103个结果,因最小数为3又可分为:恰有一个3,恰有两个3,恰有三个3.故最小数为3的结果有C 13·72+C 23·7+C 33,所求概率P (A )=3332321310C 7C 7C +⋅+⋅=0.169.答:最小数为3的概率为0.169.探究创新9.有点难度哟!将甲、乙两颗骰子先后各抛一次,a 、b 分别表示抛掷甲、乙两颗骰子所出现的点数.(1)若点P(a,b)落在不等式组⎪⎩⎪⎨⎧≤+>>4,0,0yxyx表示的平面区域的事件记为A,求事件A的概率;(2)若点P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率最大,求m的值.解:(1)基本事件总数为6×6=36.当a=1时,b=1,2,3;当a=2时,b=1,2;当a=3时,b=1.共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6个点落在条件区域内,∴P(A)=366=61.(2)当m=7时,(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共有6种,此时P=366= 61最大.●思悟小结求解等可能性事件A的概率一般遵循如下步骤:(1)先确定一次试验是什么,此时一次试验的可能性结果有多少,即求出A.(2)再确定所研究的事件A是什么,事件A包括结果有多少,即求出m.(3)应用等可能性事件概率公式P=nm计算.●教师下载中心教学点睛1.一个随机事件的发生既有随机性(对单次试验),又存在着统计规律(对大量重复试验),这是偶然性和必然性的对立统一.2.随机事件A的概率P(A)满足0≤P(A)≤1.(3)P(A)=nm既是等可能性事件的概率的定义,又是计算这种概率的基本方法.拓展题例【例1】某油漆公司发出10桶油漆,其中白漆5桶,黑漆3桶,红漆2桶.在搬运中所有标签脱落,交货人随意将这些标签重新贴上,问一个定货3桶白漆、2桶黑漆和1桶红漆的顾客,按所定的颜色如数得到定货的概率是多少?解:P(A)=610122335CCCC=72.答:顾客按所定的颜色得到定货的概率是72. 【例2】 一个口袋里共有2个红球和8个黄球,从中随机地接连取3个球,每次取一个.设{恰有一个红球}=A ,{第三个球是红球}=B .求在下列条件下事件A 、B 的概率.(1)不返回抽样; (2)返回抽样. 解:(1)不返回抽样,P (A )=310281312A A C C =157,P (B )=3102912A A C = 51. (2)返回抽样, P (A )=C 13102(108)2=12548,P (B )=32121010C = 51.。
高中数学概率与统计中的随机事件与条件概率解析概率与统计是高中数学中的重要内容,其中随机事件与条件概率是基础且常见的考点。
在本文中,我将通过具体题目的举例,对随机事件与条件概率进行解析,帮助高中学生和他们的父母更好地理解和掌握这一知识点。
一、随机事件的概念与性质随机事件是指在一次试验中可能发生也可能不发生的事件。
我们以一个例子来说明。
例题1:一颗骰子投掷一次,事件A为“出现奇数点数”,事件B为“出现偶数点数”。
求事件A和事件B的关系。
解析:骰子有6个面,每个面上的点数是1、2、3、4、5、6。
事件A中包含的样本点有1、3、5,事件B中包含的样本点有2、4、6。
从样本点的角度看,事件A和事件B没有共同的样本点,即事件A和事件B互不相容。
因此,事件A和事件B是互斥事件。
通过这个例子,我们可以了解到随机事件的概念以及互斥事件的性质。
在解题过程中,需要注意对事件的定义和样本空间的确定,以便准确地判断事件之间的关系。
二、条件概率的计算与应用条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
我们通过一个实际问题来说明。
例题2:某班级有60名学生,其中30名男生和30名女生。
从中随机抽取一名学生,已知这名学生是男生,求他的身高大于170cm的概率。
解析:设事件A为“抽取的学生是男生”,事件B为“抽取的学生身高大于170cm”。
根据题意可知,事件A的概率为P(A) = 30/60 = 1/2。
事件B的概率为P(B) = (男生中身高大于170cm的人数)/60。
由于题目没有给出具体的数据,我们暂时无法计算P(B)。
但是,已知学生是男生,即事件A发生,我们可以在男生中进行考察。
假设在男生中,身高大于170cm的有20人,那么事件A和事件B同时发生的概率为P(A∩B) = 20/60。
根据条件概率的定义,我们有P(B|A) = P(A∩B)/P(A) = (20/60)/(1/2) = 2/3。
通过这个例题,我们可以看到条件概率的计算过程。
随机事件的概率-例题解析1.有了概率的统计定义,我们可以通过频率与概率,估计不同事件发生的可能性的大小. 【例1】 为了确定某类种子的发芽率,从一大批种子中抽出若干批做发芽试验,其结果如下.从以上的数据可以看出,这类种子的发芽率约为0.9.比较本例和教科书中的“掷图钉试验”的结果,我们可以说,这类种子的发芽率比“钉尖朝上”的概率(约为0.6)要大得多.2.对随机事件和基本事件的理解既是一个重点,也是一个难点.我们可以把随机事件理解为基本事件空间的子集.下面通过一个例子来说明什么是基本事件、基本事件空间和怎样用基本事件来表示一个事件.【例2】连续掷3枚硬币,观察落地后这3枚硬币是出现正面还是反面. (1)写出这个试验的基本事件空间;解:用(正,反,正)来表示连续掷3次硬币,第一次出现正面,第二次出现反面,第三次出现正面. 这个试验的基本事件空间用Ω表示.Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)};(2)求这个试验的基本事件的总数; 解:基本事件的总数是8;(3)“恰有两枚正面朝上”这一事件包含哪几个基本事件?解:“恰有两枚正面朝上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).典型例题规律发现【例题】掷一枚硬币,出现“正面朝上”的概率是21,是指一枚硬币掷两次恰好出现1次“正面朝上”吗?如果不是,应如何理解?分析:前提是掷一枚硬币,出现“正面朝上”的概率是21,后面的解释偷换概念,误解了概率的意义.解:不是.掷一枚硬币,出现“正面朝上”的概率为21,是指抛掷一次的话,其可能性是21;若抛掷多次,出现“正面朝上”的可能性是21.也就是说,重复多次这样的试验,“正面朝上”的次数接近一半.概率是对一件事是否发生而言的,是一种预测,不是一种结果.【例1】甲、乙两人做出拳游戏(锤子、剪刀、布).求:(1)平局的概率; (2)甲赢的概率; (3)乙赢的概率.解:甲有3种不同的出拳方法,每一种出法是等可能的,乙同样有等可能的3种不同出法.一次出拳游戏共有3×3=9种不同的结果,可以认为这9种结果是等可能的,所以一次游戏(试验)是古典概型,它的基本事件总数为9.平局的含义是两人出法相同.例如都出了锤.甲赢的含义是甲出锤且乙出剪,甲出剪且乙出布,甲出布且乙出锤这3种情况.乙赢的含义是乙出锤且甲出剪,乙出剪且甲出布,乙出布且甲出锤这3种情况.设平局为事件A ,甲赢为事件B ,乙赢为事件C.甲布剪锤※※※☉☉☉△△△ 由上图容易得到:(1)平局含3个基本事件(图中的△); (2)甲赢含3个基本事件(图中的☉); (3)乙赢含3个基本事件(图中的※). 由古典概率的计算公式,可得P (A )=93=31;P (B )=93=31;P (C )=93=31.【例2】 抛掷两枚骰子,求: (1)点数之和出现7点的概率;解:作图,从图中容易看出基本事件空间与点集S ={(x ,y )|x ∈N ,y ∈N ,1≤x ≤6,1≤y ≤6}中的元素一一对应.因为S 中点的总数是6×6=36(个),所以基本事件总数n =36.Ox123456记“点数之和出现7点”的事件为A ,6个:(6,1)、(5,2)、(4,3)、(3,4)、(2,5)、(1,6),所以P (A )=366(2)出现两个4点的概率.解:记“出现两个4点”的事件为B ,则从图中可看到事件B 包含的基本事件数只有1个:(4,4).所以P (B )=361.。
专题11.1 随机事件的概率【考情分析】1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别;2.了解两个互斥事件的概率加法公式. 【重点知识梳理】 知识点一 概率与频率(1)频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率.(2)概率:对于给定的随机事件A ,由于事件A 发生的频率f n (A )随着试验次数的增加稳定于概率P (A ),因此可以用频率f n (A )来估计概率P (A ).知识点二 事件的关系与运算知识点三 概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率P (E )=1. (3)不可能事件的概率P (F )=0. (4)互斥事件概率的加法公式⊇如果事件A 与事件B 互斥,则P (A ⊇B )=P (A )+P (B ). ⊇若事件B 与事件A 互为对立事件,则P (A )=1-P (B ). 【知识必备】1.从集合的角度理解互斥事件和对立事件(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.(2)事件A 的对立事件A -所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集. 2.概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时, 要用到概率加法公式的推广,即P (A 1⊇A 2⊇…⊇A n )=P (A 1)+P (A 2)+…+P (A n ).【典型题分析】高频考点一 随机事件的关系【例1】(2020·辽宁省抚顺模拟)把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与“乙分得红牌”是( )A .对立事件B .互斥但不对立事件C .不可能事件D .以上都不对【方法技巧】判断互斥、对立事件的两种方法(1)定义法:判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.对立事件是互斥事件的充分不必要条件.(2)集合法:⊇由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.⊇事件A 的对立事件A 所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集. 【变式探究】(2020·湖南省邵阳模拟)把语文、数学、英语三本学习书随机地分给甲、乙、丙三位同学,每人一本,则事件A :“甲分得语文书”,事件B :“乙分得数学书”,事件C :“丙分得英语书”,则下列说法正确的是( )A.A与B是不可能事件B.A+B+C是必然事件C.A与B不是互斥事件D.B与C既是互斥事件也是对立事件高频考点二随机事件的频率与概率【例2】【2020·山东卷】某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A.62%B.56%C.46%D.42%【变式探究】【2020·江苏卷】将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.【变式探究】(2019·北京卷)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B 的学生的支付金额分布情况如下:(1)估计该校学生中上个月A,B两种支付方式都使用的人数;(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【方法技巧】1.计算简单随机事件频率或概率的解题思路(1)计算出所求随机事件出现的频数及总事件的频数.(2)由频率与概率的关系得所求.2.求解以统计图表为背景的随机事件的频率或概率问题的关键点求解该类问题的关键是由所给频率分布表、频率分布直方图或茎叶图等图表,计算出所求随机事件出现的频数,进而利用频率与概率的关系得所求.【变式探究】(2020·浙江省宁波模拟)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.高频考点三互斥事件与对立事件的概率【例3】【2020·天津卷】已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.【变式探究】(2018·全国卷⊇)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A .0.3B .0.4C .0.6D .0.7【方法技巧】1.求解本题的关键是正确判断各事件之间的关系,以及把所求事件用已知概率的事件表示出来.2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P (A )=1-P (A -)求解.当题目涉及“至多”、“至少”型问题,多考虑间接法.【变式探究】(2020·黑龙江省双鸭山模拟)某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.专题11.1 随机事件的概率【考情分析】1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别;2.了解两个互斥事件的概率加法公式. 【重点知识梳理】 知识点一 概率与频率(1)频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率.(2)概率:对于给定的随机事件A ,由于事件A 发生的频率f n (A )随着试验次数的增加稳定于概率P (A ),因此可以用频率f n (A )来估计概率P (A ).知识点二 事件的关系与运算知识点三 概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率P (E )=1. (3)不可能事件的概率P (F )=0. (4)互斥事件概率的加法公式⊇如果事件A 与事件B 互斥,则P (A ⊇B )=P (A )+P (B ). ⊇若事件B 与事件A 互为对立事件,则P (A )=1-P (B ). 【知识必备】1.从集合的角度理解互斥事件和对立事件(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.(2)事件A 的对立事件A -所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集. 2.概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时, 要用到概率加法公式的推广,即P (A 1⊇A 2⊇…⊇A n )=P(A1)+P(A2)+…+P(A n).【典型题分析】高频考点一随机事件的关系【例1】(2020·辽宁省抚顺模拟)把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.以上都不对【答案】B【解析】事件“甲分得红牌”与“乙分得红牌”不会同时发生,两者是互斥事件,但仍然有可能甲、乙均不能分得红牌,所以二者不是对立事件,故选B。
概率-随机事件的概率关键词: 概率 频率 随机事件 互斥事件 对立事件学习目标:理解概率的意义,掌握概率的一些基本概念,会求古典概型。
知识点讲解1.随机事件的概念在一定的条件下所出现的某种结果叫做事件。
(1)随机事件:在一定条件下可能发生也可能不发生的事件;(2)必然事件:在一定条件下必然要发生的事件;(3)不可能事件:在一定条件下不可能发生的事件。
2.随机事件的概率事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率nm 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P (A )。
由定义可知0≤P (A )≤1,显然必然事件的概率是1,不可能事件的概率是0。
3.事件间的关系(1)互斥事件:不能同时发生的两个事件叫做互斥事件;(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件;(3)包含:事件A 发生时事件B 一定发生,称事件A 包含于事件B (或事件B 包含事件A );4.事件间的运算(1)并事件(和事件)若某事件的发生是事件A 发生或事件B 发生,则此事件称为事件A 与事件B 的并事件。
注:当A 和B 互斥时,事件A +B 的概率满足加法公式:P (A +B )=P (A )+P (B )(A 、B 互斥);且有P (A +A )=P (A )+P (A )=1。
(2)交事件(积事件)若某事件的发生是事件A 发生和事件B 同时发生,则此事件称为事件A 与事件B 的交事件。
5.古典概型(1)古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A ; 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1。