2017年秋季学期新版新人教版九年级数学上学期24.3、正多边形和圆同步练习9
- 格式:doc
- 大小:139.50 KB
- 文档页数:4
度第一学期人教版九年级数学上册_2424.3 正多边形和圆同步检测考试总分: 100 分考试时间: 90分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题〔共 10 小题,每题 3 分,共 30 分〕1.假定正多边形面积是100,周长是40,那么它的边心距是〔〕A.5B.2.5C.10D.202.正六边形的边长等于2,那么这个正六边形的面积等于〔〕A.4√3B.6√3C.7√3D.8√33.用48m长的篱笆在空地上围成一个正六边形的绿化场地,那么这个场地的面积为〔〕A.16√3m2B.32√3m2C.√3m2D.96√3m24.如图,圆中有四条弦,每一条弦都将圆联系成面积比为1:3的两个局部,假定这些弦的交点恰是一个正方形的顶点,那么这个正方形的外接圆的面积与图中阴影局部面积的比值为〔〕A.√2πB.2−πC.πD.2π5.如图,五边形ABCDE是⊙O的内接正五边形,对角线AC、BD相交于点P,以下结论:①∠BAC=36∘;②PB=PC;③四边形APDE是菱形;④AP=2BP.其中正确的结论是〔〕A.①②③④B.①②③C.②③④D.①②④6.如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,那么劣弧MN的长度为〔〕A.1 5πB.25π C.√35π D.13π7.如图,在正五边形ABCDE中,衔接AC、AD、CE,CE交AD于点F,衔接BF,以下说法不正确的选项是〔〕A.△CDF的周长等于AD+CDB.FC平分∠BFDC.AC2+BF2=4CD2D.DE2=EF⋅CE8.以下说法中,正确的个数为〔〕(1)经过三个点一定可以作圆;(2)恣意一个三角形一定有一个外接圆,并且只要一个外接圆;(3)在同圆或等圆中,相等的弦那么所对的弧相等;(4)正多边形既是中心对称图形又是轴对称图形;(5)三角形的内心到三角形各边的距离相等;(6)三角形的外心到三角形各个顶点的距离相等.A.2B.4C.3D.59.如图,两正方形彼此相邻且内接于半圆,假定半圆的半径为5cm,那么小正方形的边长为〔〕A.2cmB.2.5cmC.√5cmD.5√33cm10.先作半径为√22的圆的内接正方形,接着作上述内接正方形的内切圆,再作上述内切圆的内接正方形,…,那么按以上规律作出的第7个圆的内接正方形的边长为〔 〕A.(√22)6B.(√22)7C.(√2)6D.(√2)7 二、填空题〔共 10 小题 ,每题 3 分 ,共 30 分 〕11.假设一个正六边形的边心距的长度为√3cm ,那么它的半径的长度为________cm .12.正六边形的边长为2,那么它的半径为________,中心角为________,面积为________.13.一个正六边形的内切圆半径是√3,那么这个正六边形的周长是________.14.半径为4的正六边形的中心角为________,边心距为________,面积为________.15.如图,⊙O 的外切正六边形与内接正六边形的边长之比是________. 16.假定一边长为40cm 的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,那么铁圈直径的最小值为________cm .〔铁丝粗细疏忽不计〕 17.如图,把正△ABC 的外接圆对折,使点A 落在弧BC 的中点F 上,假定BC =5,��折痕在△ABC 内的局部DE 长为________.18.假定正n 边形的一个内角等于它的中心角的1.5倍,那么n =________.19.正六边形的两条对边相距20cm ,那么它的边长是________.20.假定同一个圆的内接正三角形、正方形、正六边形的边心距区分为r 3、r 4、r 6,那么r 3:r 4:r 6=________.三、解答题〔共 5 小题 ,每题 8 分 ,共 40 分 〕21.如下图,图形(1),(2),(3),(4)区分由两个相反的正三角形,正方形,正五边形,正六边形组成.此题中我们探求各图形顶点,边数,区域三者之间的关系.〔例我们规则如图(2)的顶点数为16;边数为24,像A 1A ,AH 为边,AH 不能再算边,边与边不能堆叠;区域数为9,它们由八个小三角形区域和中间区域ABCDEFGH 组成,它们相互独立.〕(1)每个图形中各有多少个顶点?多少条边?多少个区域?请将结果填入表格中.①假定P 是圆内接正三角形ABC 的外接圆的BC^上一点,那么PB +PC =PA ;②假定P是圆内接正四边形ABCD的外接圆的BC^上一点,那么PB+PD=√2PA;③假定P是圆内接正五边形ABCDE的外接圆的BC^上一点,请问PB+PE与PA有怎样的数量关系,写出结论,并加以证明;④假定P是圆内接正n边形A1A2A3...A n的外接圆的A2A3^上一点,请问PA2+ PA n与PA1又有怎样的数量关系,写出结论,不要求证明.23.正方形ABCD内接于⊙O,E、F区分为DA、DC的中点,过E、F作弦MN,假定⊙O的半径为12.(1)求弦MN的长;(2)连结OM、ON,求圆心角∠MON的度数.24.如图,O是正六边形ABCDEF的中心,衔接BD、DF、FB,(1)设△BDF的面积为S1,正六边形ABCDEF的面积为S2,那么S1与S2的数量关系是________;(2)△ABF经过旋转可与△CBD重合,请指出旋转中心和最小旋转角的度数.25.如图③,点E,D区分是正三角形ABC,正四边形ABCM,正五边形ABCMN 中以点C为顶点的一边延伸线和另一边反向延伸线上的点,且△ABE与△BCD能相互重合,DB的延伸线交AE于点F.(1)在图①中,求∠AFB的度数;(2)在图②中,∠AFB的度数为________,图③中,∠AFB的度数为________;(3)继续探求,可将此题推行到普通的正n边形状况,用含n的式子表示∠AFB的度数.答案1.A2.B3.D4.C5.B6.B7.B8.B9.C10.A11.212.260∘6√313.1214.60∘2√324√315.2√3:316.20√317.10318.519.20√33cm20.1:√2:√321.解:22.解:③PB+PE与PA满足的数量关系是:PB+PE=2PA⋅cos36∘;理由如下:作AM⊥PB于M,AN⊥PE于N,∵∠APM=∠APN∴Rt△AMP≅Rt△ANP,∴AM=AN,PM=PN;∵AB=AE,∴Rt△AMB≅Rt△ANE,∴MB=NE,∴PB+PE=(PM−MB)+(PN+NE)=2PN;∵∠APE=12∠AOE,且ABCDE为正五边形,∴∠AOE=360∘5=72∘,∴∠APE=36∘;在Rt△ANP中,PNPA=cos∠APN,∴PN=PA⋅cos36∘,∴PB+PE=2PA⋅cos36∘.④假定P是圆内接正n边形A1A2A3...A n的外接圆的A2A3^上一点时,PA2+PA n与PA1满足的数量关系是:PA2+PA n=2PA1cos(180n)0.23.解:(1)衔接OE,OF,OD,OM,ON,∵E、F区分为DA、DC的中点,∴OE⊥AD,OF⊥CD,∵正方形ABCD内接于⊙O,∴∠ADC =90∘,AD =CD ,∴四边形OEDF 是矩形,OE =OF ,∴四边形OEDF 是正方形,∴OG =12OD =12×12=6,OD ⊥MN ,∴MG =√OA 2−OG 2=6√3,∴MN =2MG =12√3;(2)∵在Rt △MOG 中,OM =2OG ,∴∠M =30∘,∵OM =ON ,∴∠N =∠M =30∘,∴∠MON =120∘.24.解:(1)S 2=2S 1,如右图所示,衔接OD 、OF 、OB , ∵六边形ABCDEF 是正六边形,∴△BDF 是正三角形,∴△ABF 、△BDC 、△DEF 、△DOF 、△BOF 、△BOD 都是全等的, ∴S 2=2S 1;(2)旋转中心是O ,最小旋转角是120∘,由于正n 边形关于对称中心O 旋转360∘n 与自身重合,而经过观察可知△ABF 必需逆时针旋转才可以与△CBD 重合, 故旋转的角度=360∘3=120∘. 25.90∘,108∘;90∘108∘(3)由(1)(2)可知,在正n 边形中,∠AFB =(n−2)⋅180∘n .。
第24章 24.3《正多边形和圆》同步练习及答案 (1) 1.边长为a的正六边形的边心距是__________,周长是____________,面积是___________。
2.如图1,正方形的边长为a,以顶点B、D为圆心,以边长a为半径分别画弧,在正方形内两弧所围成图形的面积是___________。
(1) (2) (3)3.圆内接正方形ABCD的边长为2,弦AE平分BC边,与BC交于F,则弦AE的长为__________。
4.正六边形的面积是183,则它的外接圆与内切圆所围成的圆环面积为_________。
5.圆内接正方形的一边截成的小弓形面积是2π-4,则正方形的边长等于__________。
6.正三角形的内切圆半径、外接圆半径和高的比为___________。
7.在半径为R的圆中,内接正方形与内接正六边形的边长之比为___________。
8.同圆的内接正n边形与外切正n边形边长之比是______________。
9.正三角形与它的内切圆及外接圆的三者面积之比为_____________。
10.正三角形的外接圆半径为4cm,以正三角形的一边为边作正方形,则此正方形的外接圆半径长为___________。
B卷1.正方形的内切圆半径为r,这个正方形将它的外接圆分割出四个弓形,其中一个弓形的面积为_________。
2.如果正三角形的边长为a,那么它的外接圆的周长是内切圆周长的_______倍。
3.如图2,正方形边长为2a,那么图中阴影部分的面积是__________。
4.正多边形的一个内角等于它的一个外角的8倍,那么这个正多边形的边数是________。
5.半径为R的圆的内接正n边形的面积等于__________。
6.如果圆的半径为a,它的内接正方形边长为b,该正方形的内切圆的内接正方形的边长为c,则a,b,c间满足的关系式为___________。
7.如图3,正△ABC内接于半径为1cm的圆,则阴影部分的面积为___________。
24.3 正多边形和圆知识点1.________________相等,______________也相等的多边形叫做正多边形.2.把一个圆分成几等份,连接各点所得到的多边形是________________,它的中心角等于______________________________________________.3.一个正多边形的外接圆的____________叫做这个正多边形的中心,外接圆的__________叫做正多边形的半径,正多边形每一边所对的__________叫做正多边形的中心角,中心到正多边形的一边的____________叫做正多边形的边心距.4.正n边形的半径为R,边心距为r,边长为a,(1)中心角的度数为:______________.(2)每个内角的度数为:_______________________.(3)每个外角的度数为:____________.(4)周长为:_________,面积为:_________.5.正n边形都是轴对称图形,当边数为偶数时,它的对称轴有_______条,并且还是中心对称图形;当边数为奇数时,它只是_______________.(填“轴对称图形”或“中心对称图形”)一、选择题1.下列说法正确的是()A.各边相等的多边形是正多边形B.各角相等的多边形是正多边形C.各边相等的圆内接多边形是正多边形D.各角相等的圆内接多边形是正多边形2.(2013•天津)正六边形的边心距与边长之比为()A.:3 B.:2 C.1:2 D.:23.(2013山东滨州)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )A.6,32 B.32,3C.6,3 D.62,324. 如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是().A.60° B.45° C.30° D.22.5°第4题5.半径相等的圆的内接正三角形,正方形,正六边形的边长的比为()A.1:2:3B.3:2:1C.3:2:1D.1:2:36. 圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是().A .36°B .60°C .72°D .108°7.(2013•自贡)如图,点O 是正六边形的对称中心,如果用一副三角板的角,借助点O (使该角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能取值的个数是( )A.4B.5C.6D.7 8.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O的内接正方形,BC ∥QR ,则∠AOQ 的度数是 ( )A.60°B.65°C.72°D.75°二、填空题9.一个正n 边形的边长为a ,面积为S ,则它的边心距为__________.10.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于__________度.11.若正六边形的面积是243cm 2,则这个正六边形的边长是__________.12.已知正六边形的边心距为3,则它的周长是_______.13.点M 、N 分别是正八边形相邻的边AB 、BC 上的点,且AM=BN ,点O 是正八边形的中心,则∠MON =_____________.14.边长为a 的正三角形的边心距、半径(外接圆的半径)和高之比为_________________.15.要用圆形铁片截出边长为4cm 的正方形铁片,则选用的圆形铁片的直径最小要__________cm.16.若正多边形的边心距与边长的比为1:2,则这个正多边形的边数是__________.17.一个正三角形和一个正六边形的周长相等,则它们的面积比为__________.18.(2013•徐州)如图,在正八边形ABCDEFGH 中,四边形BCFG 的面积为20cm 2,则正八边形的面积为________cm 2.三、解答题19.比较正五边形与正六边形,可以发现它们的相同点与不同点.第7题 第8题 第13题第18题正五边形 正六边形例如 它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.相同点:(1)____________________________________________________________________;(2)___________________________________________________________________. 不同点:(1)____________________________________________________________________;(2)__________________________________________________________________.20.已知,如图,正六边形ABCDEF 的边长为6cm ,求这个正六边形的外接圆半径R 、边心距r 6、面积S 6.21.如图,⊙O 的半径为2,⊙O 的内接一个正多边形,边心距为1,求它的中心角、边长、面积.22.已知⊙O 和⊙O 上的一点A.(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.第20题第21题23.如图1、图2、图3、…、图n,M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.(1)求图1中∠MON的度数;(2)图2中∠MON的度数是_________,图3中∠MON的度数是_________;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).24.3 正多边形和圆知识点1.各边 各角2.正多边形 正多边形每一边所对的圆心角3.圆心 半径 圆心角 距离4.360(2)180360(1)(2)(3)(4)(5)2n nar na n n n ︒-︒︒g 5.n 轴对称图形一、选择题1.C2.B3.B4.C5.B6.C7.B解:根据圆内接正多边形的性质可知,只要把此正六边形再化为正多边形即可,即让周角除以30的倍数就可以解决问题.360÷30=12;360÷60=6;360÷90=4;360÷120=3;360÷180=2.因此n 的所有可能的值共五种情况,故选B .8.D二、填空题9. 2S na10.144 11.4cm 12.12 13.45° 14.1:2:3 15. 42 16.四 17.2:318.40三、解答题19.相同点:(1)每个内角都相等(或每个外角都相等或对角线都相等);(2)都是轴对称图形(或都有外接圆和内切圆).不同点:(1)正五边形的每个内角是108°,正六边形的每个内角是120°;(2)正五边形的对称轴是5条,正六边形的对称轴是6条.20.222266266.=606=6,11632263331663354326,33,543.OA,OB.O OG AB G AOB OA OBAOB OA OB R OA OB OG ABAG AB Rt AOG r OG OA AG S R cm r cm S cm ⊥∠︒=∴∆∴===⊥∴==⨯=∴∆==-=-==⨯⨯⨯=∴===Q Q 解:连接过点作于,是等边三角形即在中, 21.解:连结OB∵在Rt △AOC 中,AC=2221OA OC -=-=1∴AC=OC ∴∠AOC=∠OAC=45°∵OA=OB OC ⊥AB∴AB=2AC=2 ∠AOB=2∠OAC=2×45°=90°∴这个内接正多边形是正方形.∴面积为22=4∴中心角为90°,边长为2,面积为4.22. (1)作法:①作直径AC;②作直径BD⊥AC;③依次连结A 、B 、C 、D 四点,四边形ABCD 即为⊙O 的内接正方形; ④分别以A 、C 为圆心,以OA 长为半径作弧,交⊙O 于E 、H 、F 、G; ⑤顺次连结A 、E 、F 、C 、G 、H 各点.六边形AEFCGH 即为⊙O 的内接正六边形.(2)证明:连结OE 、DE.∵∠AOD=4360︒=90°,∠AOE=6360︒=60°,∴∠DOE=∠AOD-∠AOE=90°-60°=30°.第22题∴DE为⊙O的内接正十二边形的一边.23.(1)方法一:连结OB、OC.∵正△ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△OBM≌△OCN(SAS).∴∠BOM=∠CON.∴∠MON=∠BOC=120°.方法二:连结OA、OB.∵正△ABC内接于⊙O,∴AB=AC,∠OAM=∠OBN=30°,∠AOB=120°.又∵BM=CN,∴AM=BN.又∵OA=OB,∴△AOM≌△BON(SAS).∴∠AOM=∠BON.∴∠MON=∠AOB=120°.(2)90° 72°(3)∠MON=n360.。
人教版数学九年级上册第24章24.3正多边形和圆同步练习一、单1.(2017?滨州)若正方形的外接圆半径为2,则其内切圆半径为(???)A、B、2 C、D、1+2.如图,正五边形ABCDE内接于⊙O,若⊙O的半径为5,则的长度为(?? )A、πB、2πC、5πD、10π+3.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为(??)A、6πB、18C、18πD、20+4.如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,…,重复上述过程,经过2018次后,所得到的正六边形边长是原正六边形边长的(??)A、()2016倍B、()2017倍C、()2018倍D、()2019倍+5.尺规作图特有的魅力曾使无数人沉湎其中,连当年叱咤风云的拿破仑也不例外,我们可以只用圆规将圆等分.例如可将圆6等分,如图只需在⊙O上任取点A,从点A开始,以⊙O的半径为半径,在⊙O上依次截取点B,C,D,E,F.从而点A,B,C,D,E,F把⊙O六等分.下列可以只用圆规等分的是(??)①两等分???②三等分????③四等分??????④五等分.A、②B、①②C、①②③D、①②③④+6.(2017?兰州)如图,正方形ABCD内接于半径为2的⊙O,则图中阴影部分的面积为(??)A、π+1B、π+2C、π﹣1D、π﹣2+7.(2017?日照)下列说法正确的是(??)A、圆内接正六边形的边长与该圆的半径相等B、在平面直角坐标系中,不同的坐标可以表示同一点C、一元二次方程ax2+bx+c=0(a≠0)一定有实数根D、将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等+8.(2017?株洲)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是(??)A、正三角形B、正方形C、正五边形D、正六边形+9.正多边形的中心角与该正多边形一个内角的关系是(??)A、互余B、互补C、互余或互补D、不能确定+10.如图,由7个形状、大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是(?? ?)A、B、2 C、3 D、3+11.如图,已知五边形ABCDE是⊙O的内接正五边形,且⊙O的半径为1.则图中阴影部分的面积是(??)A 、 +B 、C 、D 、12.(2017?河北)已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放 在正六边形中,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次 旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;…在这样 连续6次旋转的过程中,点B ,M 间的距离可能是(??)A 、1.4B 、1.1C 、0.8D 、0.5+二、填空题13.(2017·台州)如图,有一个不定的正方形ABCD ,它的两个相对的顶点A ,C 分 别在边长为1的正六边形一组对边上,另外两个顶点B ,D 在正六边形内部(包 括边界),则正方形边长a 的取值范围是 +14.(2017?济宁)如图,正六边形A 1B 1C 1D 1E 1F 1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.+15.(2017?毕节市)正六边形的边长为8cm,则它的面积为cm2.+16.(2017?宜宾)如图,⊙O的内接正五边形ABCDE的对角线AD与BE相交于点G ,AE=2,则EG的长是.+17.正八边形的中心角等于度.+18.如图,AB为⊙O的内接正多边形的一边,已知∠OAB=70°,则这个正多边形的内角和为.+19.(2017?上海)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6= .+20.(2017?绥化)半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为.+21.(2017?玉林)如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD,则四边形ABCD的周长是.+22.如图,正六边形ABCDEF内接于半径为3的圆O,则劣弧AB的长度为.+三、解答题23.如图,正三角形ABC内接于⊙O,若AB= cm,求⊙O的半径.+24.如图,已知正n 边形边长为a ,边心距为r ,求正n 边形的半径R 、周长P 和面积S . +25.如图,正方形ABCD 的外接圆为⊙O ,点P 在劣弧 (1)求∠BPC 的度数;上(不与C 点重合).(2)若⊙O 的半径为8,求正方形ABCD 的边长. +26.如图,已知等边△ABC 内接于⊙O ,BD 为内接正十二边形的一边,CD=5 cm ,求⊙O 的半径R .+27.如图,AG是正八边形ABCDEFGH的一条对角线.(1)在剩余的顶点B、C、D、E、F、H中,连接两个顶点,使连接的线段与AG平行,并说明理由;(2)两边延长AB、CD、EF、GH,使延长线分别交于点P、Q、M、N,若AB=2,求四边形PQMN的面积.+。
第24章 24.3《正多边形和圆》同步练习及答案 (2)1.下列边长为a 的正多边形与边长为a 的正方形组合起来,不能镶嵌成平面的是( )(1)正三角形 (2)正五边形 (3)正六边形 (4)正八边形A .(1)(2)B .(2)(3)C .(1)(3)D .(1)(4)2.以下说法正确的是A .每个内角都是120°的六边形一定是正六边形.B .正n 边形的对称轴不一定有n 条.C .正n 边形的每一个外角度数等于它的中心角度数.D .正多边形一定既是轴对称图形,又是中心对称图形.(3)(2006年天津市)若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r 3,r 4,r 6,则r 3:r 4:r 6等于( )A .BC .1:2:3D . 3:2:14. 已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O 的半径为______________________.5.如图,正方形ABCD 内接于⊙O ,点E 在»AD 上,则∠BEC= . 6.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每一个顶点处剪去一个四边形,例如图中的四边形AGA /H ,那么∠GA /H 的大小是 度.7.(2006年威海市)如图,若正方形A 1B 1C 1D 1内接于正方形ABCD 的内接圆,则ABB A 11的值为( ) A .21 B .22 C .41 D .42 8.从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,则此正方形的边长为 .9.如图五边形ABCDE 内接于⊙O,∠A=∠B=∠C=∠D=∠E .求证:五边形ABCDE 是正五边形10.如图,10-1、10-2、10-3、…、10-n 分别是⊙O 的内接正三角形ABC ,正四边形ABCD 、正五边形ABCDE 、…、正n 边形ABCD …,点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动。
24.3正多边形和圆知识点1正多边形与圆的关系1.如果一个四边形的外接圆与内切圆是同心圆,那么这个四边形一定是()A.矩形B.菱形C.正方形D.不能确定2.如图24-3-1所示,已知△ABC是⊙O的内接等腰三角形,顶角∠BAC=36°,弦BD,CE分别平分∠ABC,∠ACB.求证:五边形AEBCD是正五边形.图24-3-1知识点2与正多边形有关的计算3.如果一个正多边形的中心角为72°,那么这个正多边形的边数是()A.4 B.5 C.6 D.74.若正方形的边长为6,则其内切圆半径的大小为()A.3 2 B.3 C.6 D.6 25.2021·南平若正六边形的半径为4,则它的边长等于()A.4 B.2 C.2 3 D.4 36.如图24-3-2所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是()图24-3-2A.60°B.45°C.30°D.22.5°7.正八边形的中心角等于________度.8.将一个边长为1的正八边形补成如图24-3-3所示的正方形,这个正方形的边长等于________.(结果保留根号)图24-3-39.2021·资阳边长相等的正五边形和正六边形如图24-3-4所示拼接在一起,则∠ABC =________°.图24-3-410.如图24-3-5,已知正五边形ABCDE,M是CD的中点,连接AC,BE,AM.求证:(1)AC=BE;(2)AM⊥CD.图24-3-5知识点3与正多边形有关的作图11.已知⊙O和⊙O上的一点A,作⊙O的内接正方形和内接正六边形(点A为正方形和正六边形的顶点).12.如图24-3-6所示,⊙O的内接多边形的周长为3,⊙O的外切多边形的周长为3.4,则下列各数中与此圆的周长最接近的是()图24-3-6A. 6B.8C.10D.1713.若AB是⊙O内接正五边形的一边,AC是⊙O内接正六边形的一边,则∠BAC等于()A.120°B.6°C.114°D.114°或6°14.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A. 2 B.2 2-2C.2- 2 D.2-115.2021·达州以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.22 B.32 C. 2 D. 316.2021·云南如图24-3-7,边长为4的正方形ABCD外切于⊙O,切点分别为E,F,G,H.则图中阴影部分的面积为________.图24-3-717.如图24-3-8,正六边形ABCDEF 内接于⊙O ,若⊙O 的内接正三角形ACE 的面积为48 3,试求正六边形的周长.图24-3-818.如图24-3-9①②③④,M ,N 分别是⊙O 的内接正三角形ABC ,正方形ABCD ,正五边形ABCDE ,…,正n 边形ABCDEFG …的边AB ,BC 上的点,且BM =CN ,连接OM ,ON .图24-3-9(1)求图①中∠MON 的度数;(2)图②中,∠MON 的度数是________,图③中∠MON 的度数是________;(3)试探究∠MON 的度数与正n 边形的边数n 的关系(直接写出答案).教师详解详析1.C [解析] 只有正多边形的外接圆与内切圆才是同心圆,故这个四边形是正方形.故选C .2.证明:∵△ABC 是等腰三角形,且∠BAC =36°,∴∠ABC =∠ACB =72°.又∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠ABD =∠CBD =∠BCE =∠ACE =36°,即∠BAC =∠ABD =∠CBD =∠BCE =∠ACE ,∴BC ︵=AD ︵=CD ︵=BE ︵=AE ︵,∴A ,E ,B ,C ,D 是⊙O 的五等分点,∴五边形AEBCD 是正五边形.3.B [解析] 设这个正多边形为正n 边形,由题意可知72n =360,解得n =5.故选B .4.B5.A [解析] 正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边组成一个等边三角形.因为正六边形的外接圆半径等于4,所以正六边形的边长等于4.6.C [解析] 连接OB ,则∠AOB =60°,∴∠ADB =12∠AOB =30°. 7.458.1+ 2[解析] 如图,∵△BDE 是等腰直角三角形,BE =1,∴BD =22, ∴正方形的边长等于AB +2BD =1+ 2.9.24 [解析] 正六边形的一个内角=16×(6-2)×180°=120°,正五边形的一个内角=15×(5-2)×180°=108°,∴∠BAC =360°-(120°+108°)=132°.∵两个正多边形的边长相等,即AB =AC ,∴∠ABC =12×(180°-132°)=24°. 10.证明:(1)由五边形ABCDE 是正五边形,得AB =AE ,∠ABC =∠BAE ,AB =BC , ∴△ABC ≌△EAB ,∴AC =BE.(2)连接AD ,由五边形ABCDE 是正五边形,得AB =AE ,∠ABC =∠AED ,BC =ED , ∴△ABC ≌△AED ,∴AC =AD.又∵M 是CD 的中点,∴AM ⊥CD.11.解:如图所示.作法:①作直径AC ;②作直径BD ⊥AC ,依次连接AB ,BC ,CD ,DA ,则四边形ABCD 是⊙O 的内接正方形;③分别以点A ,C 为圆心,OA 的长为半径画弧,交⊙O 于点E ,H 和F ,G ,顺次连接AE ,EF ,FC ,CG ,GH ,HA ,则六边形AEFCGH 为⊙O 的内接正六边形.12.C [解析] 根据两点之间,线段最短可得圆的周长大于3而小于3.4,选项中只有C 满足要求.13.D [解析] 分两种情况考虑:(1)如图①所示,∵AB 是⊙O 内接正五边形的一边,∴∠AOB =360°5=72°.∵AC 是⊙O 内接正六边形的一边,∴∠AOC =360°6=60°,∴∠BOC =72°-60°=12°,∴∠BAC =12∠BOC =6°. (2)如图②所示,∠AOB =72°,∠AOC =60°,∴∠OAB =54°,∠OAC =60°,∴∠BAC =60°+54°=114°.综上所述,可知选D .14.B [解析] ∵等腰直角三角形的外接圆半径为2,∴此直角三角形的斜边长为4,两条直角边的长均为2 2.如图,根据三角形内切圆的性质可得CD =CE =r ,AD =BE =AO =BO =2 2-r ,∴AB =AO +BO =4 2-2r =4,解得r =2 2-2.故选B .15.A [解析] 如图①,∵OC =2,∴OD =1;如图②,∵OB =2,∴OE =2;如图③,∵OA =2,∴OD =3,则该三角形的三边长分别为1,2, 3.∵12+(2)2=(3)2,∴该三角形是直角三角形,∴该三角形的面积是12×1×2=22. 故选A .16.2π+4 [解析] 如图,连接HO ,并延长交BC 于点P ,连接EO ,并延长交CD 于点M.∵正方形ABCD 外切于⊙O ,∴∠A =∠B =∠AHP =90°,∴四边形AHPB 为矩形,∴∠OPB =90°.又∵∠OFB =90°,∴点P 与点F 重合,∴HF 为⊙O 的直径,同理:EG 为⊙O 的直径.由∠D =∠OGD =∠OHD =90°且OH =OG 知,四边形DGOH 为正方形.同理:四边形OGCF 、四边形OFBE 、四边形OEAH 均为正方形,∴DH =DG =GC =CF =2,∠HGO =∠FGO =45°,∴∠HGF =90°,GH =GF =GC 2+CF 2=2 2,则阴影部分面积=12S ⊙O +S △HGF =12·π·22+12×2 2×2 2 =2π+4.故答案为2π+4.17.解:如图,连接OA ,作OH ⊥AC 于点H ,则∠OAH =30°.在Rt △OAH 中,设OA =R ,则OH =12R ,由勾股定理可得AH =OA 2-OH 2=R 2-(12R )2=123R. 而△ACE 的面积是△OAH 面积的6倍,即6×12×12 3R ×12R =48 3,解得R =8, 即正六边形的边长为8,所以正六边形的周长为48.18.解:(1)方法一:如图①,连接OB ,OC.图①∵正三角形ABC 内接于⊙O ,∴∠OBM =∠OCN =30°,∠BOC =120°.又∵BM =CN ,OB =OC ,∴△OBM ≌△OCN ,∴∠BOM =∠CON ,∴∠MON=∠BOC=120°.方法二:如图②,连接OA,OB.图②∵正三角形ABC内接于⊙O,∴AB=BC,∠OAM=∠OBN=30°,∠AOB=120°. ∵BM=CN,∴AM=BN.又∵OA=OB,∴△AOM≌△BON,∴∠AOM=∠BON,∴∠MON=∠AOB=120°.(2)90°72°(3)∠MON=360°n.。
人教版九年级数学上册《24.3正多边形和圆》同步测试题及答案1.若正多边形的一个外角为72︒,则这个正多边形的中心角的度数是( )A.18︒B.36︒C.72︒D.108︒2.如图,正六边形ABCDEF内接于圆O,点M在AF上( )A.60︒B.45︒ C.30︒ D.15︒3.若⊙O的内接正n边形的边长与⊙O的半径相等,则n的值为( )A.4B.5C.6D.74.如图,正五边形ABCDE内接于O,点P为DE上一点(点P与点D,点E不重合),连接PC,PD,⊥DG PC垂足为G,则∠PDG等于( )A.72°B.54°C.36°D.64°5.如图,正六边形ABCDEF内接于,正六边形的周长是12,则的半径是( )A.3B.2C.22D.236.如图是半径为4的O的内接正六边形ABCDEF,则圆心O到边AB的距离是( )O OA.23B.3C.2D.37.如图,正六边形ABCDEF 内接于O ,O 的半径为6,则这个正六边形的边心距OM 和弧BC 的长分别为( )A.32 πB.332 πC.332 2π3D.33 π8.如图,正三角形ABC 和正六边形ADBECF 都内接于,O 连接,OC 则∠+∠=ACO ABE ( )A.90︒B.100︒C.110︒D.120︒9.如图,正五边形ABCDE 内接于O ,P 为DE 上的一点(点P 不与点D 重合),则∠=CPD ________°.10.如图,正六边形ABCDEF内接于O,若O的周长等于6π,则正六边形的边长为______.11.早在1800多年前,魏晋时期的数学家刘徽首创“割圆术”,用圆内接正多边形的面积去无限逼近圆面积,如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为_________________.12.如图,圆内接正六边形ABCDEF的半径为2,则该正六边形的面积是_________________.13.有一个亭子,它的地基是半径为8m的正六边形,求地基的面积.(结果保留根号)14.如图,O的周长等于8πcm,正六边形ABCDEF内接于O.(1)求圆心O 到AF 的距离.(2)求正六边形ABCDEF 的面积.参考答案及解析1.答案:C 解析:正多边形的一个外角为72︒∴正多边形的边数为360725︒÷︒=∴这个正多边形的中心角的度数是360572︒÷=︒故选:C.2.答案:C解析:连接OC ,OD多边形ABCDEF 是正六边形60∴∠=︒COD1302∴∠=∠=︒CMD COD故选:C.3.答案:C解析:内接正n 边形的边长与⊙O 的半径相等∴正n 边形的中心角为60︒360606︒÷︒=∴n 的值为6故选:C.4.答案:B解析:正五边形ABCDE 内接于O∠CPD 与所对的弧相同1362∴∠=∠=︒CPD COD故选:B.5.答案:B解析:如图,连结OA ,OBABCDEF 为正六边形1360606∴∠=︒⨯︒=AOB∴AOB △是等边三角形正六边形的周长是1211226∴=⨯=AB2∴===AO BO AB故选B.6.答案:A解析:如图,做⊥OM AB 于点M360725COD ︒∴∠==︒COD ∠180903654PDG ∠=︒-︒-︒=∴︒正六边形ABCDEF 外接半径为4的O4∴==OA OB 360606︒∠==︒AOB 1302∴∠=∠=∠=︒AOM BOM AOB122∴===AM BM OA2223∴=-=OM OA AM ∴圆心O 到边AB 的距离为23故选:A.7.答案:D解析:连接OB 、OC六边形ABCDEF 为正六边形360606︒∴∠==︒BOC 。
正多边形和圆1.正六边形的边心距与边长之比为( B ) A.3∶3 B.3∶2 C .1∶2 D.2∶2【解析】 如图:设正六边形的边长是a ,则半径长也是a ;经过正六边形的中心O 作边AB 的垂线OC ,则AC =12AB =12a , ∴OC =OA 2-AC 2=32a , ∴正六边形的边心距与边长之比为:32a ∶a =3∶2. 3-1,在⊙O 中,OA =AB ,OC ⊥AB ,则下列结论错误的是( D ) 图24-3-1A .弦AB 的长等于圆内接正六边形的边长B .弦AC 的长等于圆内接正十二边形的边长C.AC ︵=BC ︵D .∠BAC =30°【解析】 因为OA =AB =OB ,所以△OAB 是等边三角形,又OC ⊥AB ,所以∠AOC =∠BOC =30°,所以∠BAC =15°,D 不正确.3.如图24-3-2,点O 是正六边形的对称中心,如果用一副三角板的角,借助点O (使该角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能取值的个数是( B )图24-3-2A .4B .5C .6D .7【解析】 360÷30=12;360÷60=6;360÷90=4;360÷120=3;360÷180=2.因此n 的所有可能的值共五种情况.4.如图24-3-3,要拧开一个边长为a =6 mm 的正六边形螺帽,扳手张开的开口b 至少为( C )图24-3-3 A .6 2 mm B .12 mmC .6 3 mmD .4 3 mm5.已知正六边形的边心距为3,则它的周长是( B )A .6B .12C .6 3D .12 3【解析】 正六边形的边长等于半径,设半径为R ,则⎝⎛⎭⎫12R 2+(3)2=R 2,∴R =2,它的周长是6R=6×2=12,故选B.6.若正六边形的边长为4 cm ,那么正六边形的中心角是__60__度,半径是__4__cm ,边心距是__23__cm ,它的每一个内角是__120°__.7.[2012·巴中]已知一个圆的半径为5 cm ,则它的内接正六边形的边长为__5__cm.8.已知一个正n 边形的中心角是它的一个内角的三分之一,则n =__8__.【解析】 由360n =180(n -2)n ×13,得n =8. 9.已知⊙O 和⊙O 上的一点A ,如图24-3-4所示.图24-3-4(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题所作的图中,如果点E 在AB ︵上,试证明EB 是⊙O 的内接正十二边形的一边.【解析】 (1)根据正四边形和正六边形的作图方法分别作出⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)计算EB 所对的圆心角的度数.解:(1)如图所示,在⊙O 中,用直尺和圆规作两条互相垂直的直径AC 和BD ,连接AB ,BC ,CD ,DA ,得⊙O 的内接正方形ABCD ;按正六边形的作法用直尺和圆规在⊙O 中作出正六边形AEFCGH . (2)如图,连接OE .∵AE 是正六边形的一边,∴∠AOE =360°6=60°.∵AB 是正方形的一边,∴∠AOB =360°4=90°,∴∠BOE =∠AOB -∠AOE =90°-60°=30°.设EB 是⊙O 的内接正n 边形的一边,则360°n=30°,∴n =12, ∴EB 是⊙O 的内接正十二边形的一边.10.小敏在作⊙O 的内接正五边形时,先做了如下几个步骤:(1)作⊙O 的两条互相垂直的直径,再作OA 的垂直平分线交OA 于点M ,如图1;(2)以M 为圆心,BM 长为半径作圆弧,交CA 于点D ,连接BD ,如图2.若⊙O 的半径为1,则由以上作图得到的关于正五边形边长BD 的等式是( C )图24-3-5 A .BD 2=5-12OD B .BD 2=5+12OD C .BD 2=5ODD .BD 2=52OD 11.[2013·徐州]如图24-3-6,在正八边形ABCDEFGH 中,四边形BCFG 的面积为20 cm 2,则正八边形的面积为____________cm 2.图24-3-6【解析】连接HE ,AD ,在正八边形ABCDEFGH 中,可得:HE ⊥BG 于点M ,AD ⊥BG 于点N ,∵正八边形每个内角为:(8-2)×180°8=135°, ∴∠HGM =45°,∴MN =MG ,设MH =MG =x ,则HG =AH =AB =GF =2x ,∴BG ×GF =2(2+1)x 2=20,四边形ABGH 面积=12(AH +BG )×HM =(2+1)x 2=10, ∴正八边形的面积为:10×2+20=40(cm 2).12.将固定宽度的纸条打个简单的结,然后系紧,使它成为平面的结(如图24-3-7),求证:五边形ABCDE 是正五边形.图24-3-7第13题答图证明:如图所示,连接BE ,AD ,设纸条的宽度为h ,则S △ABE =12AB ·h =12AE ·h , ∴AB =AE ,同理得AB =BC ,BC =CD ,∴AE =AB =BC =CD .∵纸条的宽度固定,∴AE ∥BD ,CD ∥BE ,∴∠1=∠2=∠3=∠4=∠5.由折叠性质得∠ABD +∠ABC =180°,从而得∠1=∠2=∠3=∠4=∠5=36°,由此易得∠ABC =∠BCD =∠CDE =∠DEA =∠EAB ,AE =AB =BC =CD =DE ,∴五边形ABCDE 是正五边形.13.如图24-3-8所示,已知△ABC 是⊙O 的内接等腰三角形,顶角∠BAC =36°,弦BD ,CE 分别平分∠ABC ,∠ACB ,求证:五边形AEBCD 是正五边形.图24-3-8 【解析】 要证明五边形AEBCD 是正五边形,只需证AE ︵=EB ︵=BC ︵=CD ︵=DA ︵即可.证明:∵△ABC 是等腰三角形,且∠BAC =36°,∴∠ABC =∠ACB =72°.又∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠ABD =∠CBD =∠BCE =∠ACE =36°,即∠BAC =∠ABD =∠CBD =∠BCE =∠ACE ,∴BC ︵=AD ︵=CD ︵=BE ︵=AE ︵,∴A ,E ,B ,C ,D 是⊙O 的五等分点,∴五边形AEBCD 是正五边形.14.如图24-3-9,正五边形ABCDE ,连接对角线AC ,BD ,设AC 与BD 相交于O .(1)写出图中所有的等腰三角形;(2)判断四边形AODE 的形状,并说明理由.:学科图24-3-9解:(1)△ABO ,△ABC ,△BOC ,△DOC ,△BCD .(2)四边形AODE 是菱形,理由如下:∵AB =BC ,∠ABC =(5-2)×180°5=108°, ∴∠BAC =∠BCA =12×(180°-108°)=36°,同理得∠CBD =∠CDB =36°,∴∠ABO =∠ABC -∠CBD =72°,∠AOB =180°-∠ABO -∠BAC =72°,∴AB =AO ,同理得DO =DC ,∴OA =AE =ED =DO ,∴四边形AODE 是菱形.15.小刚现有一边长为a m 的正方形花布,准备做一个形状为正八边形的风筝,参加全校组织的风筝比赛,问:在这样的花布上怎样裁剪,才能得到一个面积最大的风筝?解:如图所示,在正方形ABCD 中,△DEF ,△CGH ,△BOP ,△AMN 为全等的等腰直角三角形,八边形EMNOPHGF 为正八边形.设直角边DE =DF =CG =CH =x .在Rt △DEF 中,EF =2x . ∵EF =FG ,且DC =DF +FG +CG ,∴x +x +2x =a ,解得x =2-22a ≈0.3a , 因此,从四个角上各剪去一个直角边长约为0.3a m 的等腰直角三角形,即可得到一个面积最大的正八边形风筝.16.小赵对芜湖科技馆富有创意的科学方舟形象设计很有兴趣,他回家后将一正五边形纸片沿其对称轴对折,旋转放置,做成科学方舟模型,如图24-3-10所示,该正五边形的边心距OB 长为2,AC 为科学方舟船头A 到船底的距离,请你计算AC +12AB =__522__. 图24-3-10【解析】 设正五边形的边长为a ,根据正五边形的面积等于科学方舟面积的2倍列方程求解,依题意,有12×2×a ×5=⎝⎛⎭⎫12×AB ×a 2+12×a ×AC ×2, 即522a =⎝⎛⎭⎫12AB +AC ×a ,∴12AB +AC =522.。
24.3 正多边形和圆附参考答案一、正多边形的有关概念1.把圆分成n 等份,依次连接各分点所得的多边形是______________.2.正多边形__________________叫做正多边形的中心,______________________叫做正多边形的半径,中心到正多边形一边的距离叫做正多边形的_____________,正多边形的每一边所对的圆心角叫做正多边形的______________.问题1.圆内接正六边形一边所对的圆周角是( ) (A )30︒.(B )60︒.(C )150︒.(D )30︒或150︒. 二、正多边形的对称性3.正多边形都是______对称图形,正n 边形有_______条对称轴,每条对称轴都经过正n 边形的__________.4.若n 为偶数,正n 边形为_________对称图形,它的中心就是__________. 问题2.正n 边形的对称轴的总数是( ) (A )n 条.(B )2n条.(C )2n 条.(D )()2n -条. 三、正多边形的有关计算5.正n 边形的内角和为_______________,每个内角的度数为________________. 6.正n 边形有n 个相等的中心角,每个中心角的度数为____________,正n 边形有n 个相等的外角,每个外角的度数为____________,正n 边形的中心角和它的外角__________.问题3.要用圆形要板截出一个边长为3cm 的正方形桌面,则选用的圆形木板的直径至少应为_____________cm .要点探究探究1.正多边形的有关计算例1.如图,已知正六边形的外接圆半径为4,求这个正六边形的中心角、边长、周长、面积.解析:连接正六边形半径,把一个正六边形划分为六个全等的等边三角形,再利用每个三角形的面积求正六边形的面积.答案:正六边形的中心角为360︒÷6=60︒.∵OA =OF ,∠AOF =60︒,∴△AOF 是等边三角形,∴AF =OA =4.∴正六边形的周长为24.过O 作OG ⊥AF 于G ,∴∠AOG =30︒,∴AG =2,则OG 23=.∴△AOF 的面积为43,∴正六边形的面积为243.智慧背囊:正多边形边长的一半、半径、边心距构成了一个直角三角形,正多边形的有关计算都可以归结到这个直角三角形中.活学活用:已知正三角形、正方形、正六边形的半径都是R ,请你将各正多边形的边长、边心距、周长和面积值填在下表中.(用R 来表示)边长 边心距 周长 面积 正三角形 正方形 正六边形随堂尝试A 基础达标1.选择题(1)如图,将若干全等的正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需要五边形( )(A )7个.(B )8个.(C )9个.(D )10个.ORQDCBA(第1(1)题) (第1(2)题)(2)如图,正方形ABCD 与等边△PRQ 内接于⊙O ,RQ ∥BC ,则∠AOP 等于( ) (A )45o .(B )60o .(C )30o .(D )55o .(3)下列图形中既是中心对称图形,又是轴对称图形的是( ) (A )正三角形.(B )正五边形.(C )正六边形.(D )正七边形.(4)若一个正多边形的每个内角的度数是中心角的3倍,则正多边形的边数是( ) (A )4.(B )6.(C )8.(D )12. 2.填空题(1)要用圆形铁片截出边长为4cm 的正方形铁片,则选用的圆形铁片的直径最小要____________cm.(2)如图,这是一个滚珠轴承的平面示意图,若该滚珠轴承的内外圆的半径分别为2和6,则在该轴承内最多能放___________颗半径为2的滚珠.F EDCBA A'HGA(第2(2)题)(第2(3)题)(第2(4)题)(3)如图,有一个边长为1.5cm的正六边形,如果要剪一张圆形纸片完全盖住这个图形,那么这张圆形纸片的最小半径为___________cm.(4)如图,将一块正六边形硬纸片,做成一个底面仍为正六边形且高相等的无盖的纸盒(侧面均垂直于底面),需在每一个顶点处剪去一个四边形,则∠GA/H为________度.3.已知两个正多边形的边数之比为2:1,而它们的内角和之比为8:3,求这两个正多边形的边数.4.如图,已知⊙O的两直径AB、CD互相垂直,弦MN垂直平分OB,交OB于点E;求证:MB与MC分别为该圆的内接正六边形和正十二边形的边长.B能力升级5.图①是“口子窖”酒的一个由铁片制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图②),侧面是矩形或正方形.经测量,底面六边形有三条边的长是9cm,有三条边长是3cm,每个内角都是120 ,六棱柱的高为3cm.现沿它的侧棱剪开展平,得到如图③的平面展开图.①②③④⑤(1)制作这种底盒时,可以按图④中虚线裁剪出如图③的模片.现有一块长为17.5cm、宽为16.5cm的长方形铁片,请问能否按图④的裁剪方法制作这样的无盖底盒?并请说明理由;(2)如果用一块正三角形铁皮按图⑤中虚线剪出如图③的模片,那么这个正三角形的边长至少应为________________cm.(说明:以上裁剪不计接缝处损耗)C感受中考6.已知圆内接正六边形的边长是1,则这个圆的内接正方形的边长是____________.7.如图①、②、③、④分别是⊙O的内接正三角形、正四边形、正五边形、…、正n边形,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图①中∠APN的度数;(2)图②中,∠APN的度数是___________,图③中,∠APN的度数是___________;(3)试探索∠APN的度数与正多边形边数n的关系(直接写答案).图①图②图③图④课后实践从正五角星形的内角谈起我们常见到的五星红旗上的五角星形,不但给庄严的感觉,而且还给人一种和谐、对称、协调的美感,很容易得到它的一个内角为36︒.我们将圆周五等分,得五个分点1、2、3、4、5,如果按1→2→3→4→5相连,则得一个正五边形(如图①).如果按1→3→5→2→4→1相连,则得一个正五角星形(如图②).前者看成是5/1边形,后者则可以看成是5/2边形.所以每一个内角为55 18023622⎛⎫︒⨯-÷=︒⎪⎝⎭.图①图②图③图④以此类推,如图③、④将两个七角星形分别看成7/2边形和7/3边形,其内角分别为77540 1802227︒⎛⎫︒⨯-÷= ⎪⎝⎭,77180 1802337︒⎛⎫︒⨯-÷=⎪⎝⎭.有兴趣的同学不妨继续沿着这个思路研究下去,你一定会有很大的收获.参考答案基础准备问题1.D.问题2.A.问题3.要点探究活学活用:略.随堂尝试A基础达标1.(1)A (2)A (3)C (4)C2.(1)(2)6 (3)1.5 (4)60 3.两个正多边形的边数分别为10和5.4.连结MO.∵弦MN垂直平分OB,OE=BE=12OB=12OM,∠EMO=30︒,∴∠MOE=60︒.MB为圆内接六边形边长,CD⊥AB,∠MOC=30︒,∴MC为圆内接十二边形的边长.B能力升级5.(1)经计算所需的长方形铁片至少为(12+cm,宽至少为(6+cm,1217.5+<,616.5+<,能按图④裁剪方法制作无盖底盒;(2)约25.4cm.C感受中考6.7.(1)∠APN=60︒;(2)90︒,108︒;(3)∠APN=()2180 nn-.以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。
人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点 正多边形与圆1.定义:正多边形的 圆的圆心叫做这个正多边形的中心 圆的半径叫做正多边形的半径 正多边形每一边所对的 角叫做正多边形的中心角 到正多边形的一边的距离 叫做正多边形的边心距。
2.公式:正多边形的有关概念:边长(a ) 中心(O ) 中心角(∠AOB ) 半径(R )) 边心距(r ) 如图所示①.边心距222a r R ⎛⎫=- ⎪⎝⎭中心角360n ︒=关键点:三角形的内切圆与外接圆 关系定义圆心 实质半径图示外接圆经过三角形各顶点的圆外心三角形各边垂直平分线的交点交点到三角形三个顶点的距离相等内切圆与三角形各边都相切的圆内心三角形各内角平分线的交点交点到三角形各边的距离相等名校提高练习:一选择题:本题共10小题每小题3分共30分。
在每小题给出的选项中只有一项是符合题目要求的。
1.(2024·四川省泸州市·月考试卷)已知圆内接正三角形的面积为√ 3则该圆的内接正六边形的边心距是( )A. 2B. 1C. √ 3D. √ 322.同一个圆的内接正三角形正方形正六边形的边心距分别为r3r4r6则r3:r4:r6等于( )A. 1:√2:√3B. √3:√2:1C. 1:2:3D. 3:2:13.如图若干个全等的正五边形排成环状图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 10B. 9C. 8D. 74.(2024·贵州省黔东南苗族侗族自治州·月考试卷)正六边形ABCDEF内接于⊙O正六边形的周长是12则⊙O的半径是( )A. √ 3B. 2C. 2√ 2D. 2√ 35.(2024·山东省·单元测试)《几何原本》中记载了用尺规作某种六边形的方法其步骤是:①在⊙O上任取一点A连接AO并延长交⊙O于点B②以点B为圆心BO为半径作圆弧分别交⊙O于C D两点③连接CO DO并延长分别交⊙O于点E F④顺次连接BC CF FA AE ED DB得到六边形AFCBDE.再连接AD EF AD EF交于点G.则下列结论不正确的是( )A. GF=GDB. ∠FGA=60°C. EFAE=√ 2 D. AF⊥AD6.(2024·江苏省·同步练习)以半径为2的圆的内接正三角形正方形正六边形的边心距为三边作三角形则该三角形的面积是( )A. √ 22B. √ 32C. √ 2D. √ 37.(2024·江苏省·同步练习)如图正十二边形A1A2…A12连接A3A7A7A10则∠A3A7A10的度数为( )A. 60°B. 65°C. 70°D. 75°8.(2024·江苏省·同步练习)如图若干个全等的正五边形排成环状.图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 6B. 7C. 8D. 99.(2024·北京市市辖区·期末考试)如图正方形ABCD的边长为6且顶点A B C D都在⊙O上则⊙O 的半径为().A. 3B. 6C. 3√ 2D. 6√ 210.(2024·广东省广州市·月考试卷)如图已知⊙O的周长等于4πcm则圆内接正六边形的边长为()cm.A. √ 3B. 2C. 2√ 3D. 4二填空题:本题共6小题每小题3分共18分。
24.3 正多边形和圆
基础题 知识点1 认识正多边形
1.下面图形中,是正多边形的是( )
A .矩形
B .菱形
C .正方形
D .等腰梯形 2.(柳州中考)如图,正六边形的每一个内角都相等,则其中一个内角α的度数是( )
A .240°
B .120°
C .60°
D .30°
3.如图为2012年伦敦奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为________度.(不取近似值)
4.(连云港中考)一个正多边形的一个外角等于30°,则这个正多边形的边数为________.
5.(连云港中考)如图,一束平行太阳光线照射到正五边形上,则∠1=________. 知识点2 与正多边形有关的计算
6.(西宁中考)一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过( ) A .12 mm B .12 3 mm C .6 mm D .6 3 mm
7.(上海中考)如果一个正多边形的中心角为72°,那么这个正多边形的边数是( )
A .4
B .5
C .6
D .7
8.(滨州中考)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )
A .6,3 2
B .32,3
C .6,3
D .62,3 2
9.(河北中考)如图,边长为a 的正六边形内有两个三角形(数据如图),则S 阴影
S 空白
=( )
A .3
B .4
C .5
D .6
10.将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于________(结果保留根号).
11.若一个正六边形的周长为24,求该正六边形的面积.(结果保留根号)
知识点3 画正n边形
12.(镇江中考改编)图1是我们常见的地砖上的图案,其中包含了一种特殊的平面图形——正八边形.如图2,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);
中档题
13.正三角形内切圆半径r与外接圆半径R之间的关系为( )
A.4R=5r B.3R=4r
C.2R=3r D.R=2r
14.(天津中考)正六边形的边心距为3,则该正六边形的边长是( )
A. 3 B.2 C.3 D.2 3
15.(青岛中考)如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=( ) A.30° B.35°
C.45° D.60°
16.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为( )
A.2a2 B.3a2 C.4a2 D.5a2
17.(滨州中考)若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为( )
A. 2 B.22-2
C.2- 2 D.2-1
18.(曲靖中考)如图,正六边形ABCDEF的边长为2,则对角线AE的长是________.
19.(福州中考)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点成为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是________.
20.(内江中考)如图,点M,N分别是正五边形ABCDE的边BC,CD上的点,且BM=CN,AM交BN于点P.
(1)求证:△ABM≌△BCN; (2)求∠APN 的度数.
综合题 21.如图1,2,3,…,n ,M ,N 分别是⊙O 的内接正三角形ABC ,正方形ABCD ,正五边形ABCDE ,…正n 边形ABCDEF…的边AB ,BC 上的点,且BM =CN ,连接OM ,ON.
(1)求图1中∠MON 的度数;
(2)图2中∠MON 的度数是________,图3中∠MON 的度数是________; (3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).
参考答案
基础题
1.C 2.B 3.900
7
4.12
5.30°
6.A
7.B
8.B
9.C 10.1+ 2
11.如图,过点O 作OD⊥AB,垂足为D. ∵∠AOB=360°÷6=60°,OA =OB ,
∴△AOB 为等边三角形,且三条对角线把正六边形分成了六个全等的等边三角形. ∵正六边形的周长为24, ∴AB =4. ∵OD⊥AB,
∴∠AOD =30°,AD =2.在Rt △AOD 中,根据勾股定理得OD =2 3.
∴S △AOB =1
2×4×23=4 3.
∴S 正六边形=6×43=24 3. 12.图略. 中档题
13.D 14.B 15.A 16.A 17.B 18.2 3 19.2 3 20.(1)证明:∵五边形ABCDE 是正五边形,
∴AB =BC ,∠ABM =∠BCN.在△ABM 和△BCN 中,AB =BC ,∠ABM =∠BCN,BM =CN , ∴△ABM ≌△BCN(SAS). (2)∵△ABM≌△BCN, ∴∠MBP =∠BAP.
∵∠MBP+∠BMP+∠BPM=180°,∠BAP +∠BMA+∠MBA=180°, ∴∠BPM =∠MBA. ∵∠BPM=∠APN,
∴∠APN =∠MBA=(5-2)×180°
5
=108°.
综合题
21.(1)连接OA,OB.
∵正三角形ABC内接于⊙O,
∴OA=OB,∠OAM=∠OBN=30°,∠AOB=120°. ∵BM=CN,AB=BC,
∴AM=BN.
∴△AOM≌△BON(SAS).
∴∠AOM=∠BON.
∴∠AOM+∠BOM=∠BON+∠BOM.
∴∠AOB=∠MON=120°.(2)90°72°(3)∠MON=360°n
.。