七年级上期中联考数学试卷及答案
- 格式:doc
- 大小:140.54 KB
- 文档页数:7
2023年-2024学年度第一学期义务教育学业水平监测七年级数学科时量:120分钟总分:120分一、选择题(共10小题,每小题3分,共30分)1.中国是世界上最早使用负数的国家,战国时期李悝所著的《法经》中已使用负数.如果公元前500年记作500-年,那么公元2023年应记作()A.2023-年.B.1523+年.C.2023+年.D.2523+年.2.下列各数不是有理数的是()A.1.21B.2- C.2πD.123.12023-的相反数是()A.12023B.12023-C.2023- D.20234.在汨罗市委、市政府“捐资助学、众筹兴教”号召下,汨罗市各镇及部门单位持续发力,商会、企业、爱心人士及全市人民共同努力和无私奉献,截至2023年3月,全市教育基金累计已超10001万元,10001万用科学计数法表示为()A.41000110⨯ B.81.000110⨯ C.71.000110⨯ D.90.1000110⨯5.下列各组数中,相等的一组是()A.()1--与1-- B.23-与()23-C.()34-与34- D.223与223⎛⎫⎪⎝⎭6.下列各组式子中,是同类项的是().A 2a b 与2b aB.ab -与3baC.22a bc 与25a bD.ab -与22ab -7.下列计算正确的是()A.347a a a += B.22a a -= C.23a a a+= D.43a a a-=8.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道有趣的数学问题:今有共买物,人出八,盈三;人出七,不足四人.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x 人,则表示物价的代数式()A.83-x B.83x + C.74x - D.()74x +9.下列说法正确的是()A.25xy -的系数是5- B.单项式x 的系数为1,次数为0C.多项式42242a a b b -+是四次三项式D.222xyz π-的次数为610.生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n 来表示,即:122=,224=,328=,4216=,5232=,……,请你推算123452023222222+++++⋅⋅⋅⋅⋅⋅+的个位数字是()A.8B.6C.4D.2二、填空题(共6小题,每小题3分,共18分)11.如果|x |=4,则x 的值是_____.12.在数轴上,位于10-与2之间的整数有______个.13.若221m m -=,则2324m m +-的值是______.14.已知多项式128m x x -++是关于x 的二次三项式,则m m =_____.15.用符号()a b ,表示a b 、两数中较小的一个数,用符号[]a b ,表示a b 、两数中较大的一个数,计算[]()211 2.5----,,=_______.16.化学中直链烷烃的名称用“碳原子数+烷”来表示,当碳原子数为110 时,依次用天干——甲、乙、丙、丁、戊、己、庚、辛、壬、癸——表示,其中甲烷、乙烷、丙烷,丁烷的分子结构式如图所示,则第7个庚烷分子结构式中“H ”的个数是_________.三、解答题(共9小题,17,18,19每小题6分,20,21每小题8分,22,23每小题9分,24,25每小题10分,共72分)17.将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来.2、3-、()2.5--、()1+-、0、()2---18.计算:(1)135134612⎛⎫-+÷⎪⎝⎭(2)()()20232110.54-+-⨯-19.已知a 、b 互为相反数,c 、d 互为倒数,m 到原点距离为3,求3a bcd m cd++-的值.20.先化简,再求值:()()2232261a b a b ---+﹐其中1a =,2023b =.21.已知:232101A x xy y =++-,2B x xy =-.(1)计算:3A B -;(2)若3A B -的值与y 的取值无关,求x 的值.22.已知有理数a ,b ,c在数轴上的位置如图所示,且a b =.(1)a b +=,a b=;(2)b c +0,bc0,()()+-b c a b 0(用“>”或“=”或“<”填空);(3)求b c a c +--的值.23.“十一”期间,汨罗市多个景区人气“爆棚”,屈子文化园“国潮楚韵与你狂欢”、长乐古镇甜酒滑翔、池山巅“达摩秘境”……让游客感受集文化、体验、休闲于一体的旅游行程.景区在7天中每天游客的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数),若9月30日的游客人数为1万人,人均消费100元.日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化单0.7+0.9+0.6+0.4-0.8-0.2+ 1.4-位:万人(1)10月4日的游客人数为万人.(2)七天内游客人数最多的是;游客人数为万人.(3)请帮景区计算“十一”期间所有游客在景区的总消费是多少万元?24.定义新运算:11a b a b *=-,1a b ab⊗=(右边的运算为平常的加、减、乘、除).例如:114373721*=-=,11373721⊗==⨯.若a b a b ⊗=*,则称有理数a ,b 为“隔一数对”.例如:1123236⊗==⨯,11123236*=-=,2323⊗=*,所以2,3就是一对“隔一数对”.(1)下列各组数是“隔一数对”的是;(请填序号)①1a =,2b =;②1a =-,1b =;③43a =-,13b =-(2)计算:()()()()34343141531415-*--⊗+-*-;(3)已知两个连续的非零整数都是“隔一数对”,计算1223344520222023⊗+⊗+⊗+⊗+⋅⋅⋅+⊗.25.已知:b 是最小的正整数,且a 、b 满足()250c a b -++=,请回答问题:(1)请直接写出a 、b 、c 的值:=a ;b =;c =.(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 在数轴上运动,点A 到点B 的距离是,点B 到点C 的距离是,点P 到点A 、B 、C 的距离之和的最小值是.(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动,则经过t 秒钟时,请问:BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求出它的值.2023年-2024学年度第一学期义务教育学业水平监测七年级数学科时量:120分钟总分:120分一、选择题(共10小题,每小题3分,共30分)【1题答案】C【2题答案】C【3题答案】A【4题答案】B【5题答案】C【6题答案】B【7题答案】C【8题答案】A【9题答案】C【10题答案】C二、填空题(共6小题,每小题3分,共18分)【11题答案】4【12题答案】11【13题答案】5【14题答案】27【15题答案】3.5【16题答案】16三、解答题(共9小题,17,18,19每小题6分,20,21每小题8分,22,23每小题9分,24,25每小题10分,共72分)【17题答案】数轴见解析,()()()2.520123-->>>+->--->-【18题答案】(1)5(2)7【19题答案】0或6【20题答案】251a -,4【21题答案】(1)5101xy y +-(2)2x =-【22题答案】(1)0,1-(2)<,>,<(3)b c a c a b+--=--【23题答案】(1)10月4日的游客人数为2.8万人(2)七天内游客人数最多的是10月3日;游客人数为3.2万人(3)该景区计算“十一”期间所有游园人员在此风景区的总消费是918万元【24题答案】(1)①③(2)12-(3)20222023【25题答案】(1)1-;1;5(2)2;4;6(3)BC AB -的值不随着时间t 的变化而改变,BC AB -为定值2。
七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。
七年级上册数学期中考试试题一、单选题1.-12的绝对值是()A .-12B .2C .-2D .122.下列说法正确的是()A .-2不是单项式B .单项式223x y-的系数是2,次数是3C .1x +是整式D .多项式22345x x +-的常数项是53.下列各组中的两项是同类项的是()A .0.5a 和0.5bB .2x -和3xC .2m n -和2mn D .3xy 和yx-4.数轴上点A 表示-2,将点A 在数轴上移动5个单位得到点B ,则点B 表示的数是()A .3B .-7C .7或-3D .-7或35.下列去括号正确的是:()A .(2)2a b c a b c -+-=+-B .2(3)226a b c a b c -+-=--+C .()a b c a b c ---+=-++D .()a b c a b c---=-+-6.计算:()3232-+-的值是()A .0B .-17C .1D .-17.下列运算中,正确的是()A .235a b ab +=B .223a a a +=C .235a a a +=D .2222x y x y x y-=-8.已知8x =,6y =,且x y >,则x y -的值为()A .2B .14C .2或14D .-2或-149.a 、b 两数在数轴上的位置如图所示,则下列各式正确的有()个.①0ab >②0a b +>③0a b ->④220a b ->⑤11b b-=-A .2B .3C .4D .510.根据流程图中的程序,当输入数值为-6时,输出数值y 为()A .2B .8C .-8D .-2二、填空题11.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示67500,其结果应是___________.12.用四舍五入法将数51804精确到千位的近似数为______.13.若a ,b 互为倒数,m ,n 互为相反数,则()232m n ab ++=______.14.已知01x <<,试比较大小:x _____1x.15.若关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,则m =_____,n =____.16.小明家的住房结构如图所示,爸妈在装修房子时欲将地面铺上瓷砖,试计算他家需要铺设___平方米的瓷砖.17.若规定2*1a b a b =-,则()2*3-的值为________________.三、解答题18.将以下各数填在相应的集合内:-15,6,227,-3.25,0,π,0.01,132-.整数集合:(,……)负分数集合:(,……)19.请在数轴上表示下列各数.并用“<”连接起来2-,()3--,1.5,132-20.计算:()()22228623a b aba b ab ---21.计算:(1)()()1512187-+--+-(2)511.5244⎛⎫⨯÷- ⎪⎝⎭.22.计算:()()2320214220.2541013⎡⎤⎛⎫-⨯-÷-+-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦23.已知()2221mx ym xy --+是关于x ,y 的四次三项式,求2325m m -+的值.24.阅读理解,并解决问题:“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,比如整体代入,整体换元,整体约减,整体求和,整体构造,…,有些问题若从局部求解,采取各个击破的方式,很难解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,复杂问题也能迎刃而解.因而“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛尝试应用.例:当代数式235x x ++的值为7时,求代数式2392x x +-的值.解:因为2357x x ++=,所以232x x +=.所以()223923323224x x x x +-=+-=⨯-=.请根据阅读材料,解决下列问题:(1)把()2x y -看成一个整体,计算()()()222364x y x y x y ---+-的结果是;(2)设22xx y -=,则()2362x x y --+=.(用含y 的代数式表示);(3)已知2320x x +-=,求()22515302021x x x x +⋅++的值.25.我们知道,4a ﹣3a+a =(4﹣3+1)a =2a ,类似地,我们把(x+y )看成一个整体,则4(x+y )﹣3(x+y )+(x+y )=(4﹣3+1)(x+y )=2(x+y ).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请尝试:(1)把(m ﹣n )2看成一个整体,合并2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2的结果是;(2)已知x 2﹣4x =2,求3x 2﹣12x ﹣152的值;(3)已知a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,求(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )的值.26.某超市在国庆期间对顾客实行优惠,规定如表所示:一次性购物金额优惠办法少于200元不予优惠低于500元但不低于200元九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)如果王叔叔一次性购物700元.那么他实际付款多少元;(2)若顾客在该超市一次性购物x 元,当x 小于500但不小于200时,他实际付款元,当x 大于或等于500时,他实际付款元(用含x 的代数式表示);(3)如果王叔叔两次购物货款合计840元,第一次购物的货款为a 元()0300a <<,用含a 的式子表示两次购物王叔叔实际付款多少元?参考答案1.D 2.C 3.D 4.D 5.B 6.B 7.D 8.C 9.A 10.B 11.6.75×104【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:67500=6.75×104.故答案为:6.75×104.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.45.210⨯【分析】根据近似数和有效数字计算即可;【详解】∵451804 5.180410=⨯,∴51804精确到千位的近似数为45.210⨯;故答案是:45.210⨯.【点睛】本题主要考查了近似数和有效数字,准确计算是解题的关键.13.2【解析】【分析】利用倒数,相反数的定义确定出m+n 与ab 的值,代入计算即可求出值.【详解】解:∵a ,b 互为倒数,m ,n 互为相反数,∴1+0ab m n ==,,∴()232m n ab ++==3×20212+⨯=,故答案为:2.【点睛】此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.14.<【解析】【分析】根据倒数的性质,求得1x的范围,即可求解.【详解】解:∵01x <<∴11x>∴11x x<<,即1x x <故答案为<【点睛】此题考查了倒数的性质,根据题意求得1x的范围是解题的关键.15.1212-【解析】【分析】根据题意可得:(21)0m --=,0m n +=,求解即可.【详解】解:∵关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,∴(21)0m --=,0m n +=,解得:12m =,12n =-,故答案为:12;12-.【点睛】本题考查了多项式,熟知不含哪一项,则哪一项的系数为0是解题的关键.16.15xy 【解析】【分析】分别求出卫生间面积、卧室面积、厨房面积以及客厅面积,相加即可.【详解】解:卫生间面积=xy ,卧室面积=224y x xy ⋅=,厨房面积=22x y xy ⋅=,客厅面积=248x y xy ⋅=,∴铺地砖的面积=42815xy xy xy xy xy +++=,故答案为:15xy .【点睛】本题考查了列代数式,理解题意,能够根据图形列出正确的代数式是解本题的关键.17.11【解析】【分析】先根据规定的新运算列出运算式子,再计算有理数的乘方、乘法与减法即可得.【详解】解:由规定的新运算得:()2*3-()2231=-⨯-431=⨯-121=-11=故答案为:11.【点睛】本题考查了含乘方的有理数混合运算,理解新运算的定义是解题关键.18.15,6,0-;13.25,32--.【解析】【分析】根据整数(正整数、负整数和0统称为整数)和负分数的定义(小于0的分数即为负分数,或是可以化成分数的负有限小数和负无限循环小数)即可得.【详解】解:整数集合:(15,6,0-,……),负分数集合:(13.25,32--,……),故答案为:15,6,0-;13.25,32--.【点睛】本题考查了整数和负分数的概念,熟记定义是解题关键.19.见解析,()13 1.5232-<<-<--【解析】【分析】先计算,再将各数表示在数轴上,然后根据数轴上右边的数总比左边的数大解答即可.【详解】解:2-=2,()3--=3,数轴如图所示:由图知:()13 1.5232-<<-<--.【点睛】本题考查数轴、绝对值、相反数,会用数轴上的点表示有理数以及利用数轴比较有理数的大小是解答的关键.20.2224a b ab -【解析】【分析】先去括号,然后合并同类项即可.【详解】解:原式()22228662ab ab a b ab =---22228662a b ab a b ab =--+()()228662a b ab =-+-+2224a b ab =-.【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解本题的关键.21.(1)8;(2)56-【解析】【分析】(1)根据有理数加减法法则计算即可得答案;(2)根据有理数乘法及除法法则计算即可得答案.【详解】(1)()()1512187-+--+-1512187=-++-2230=-+8=.(2)511.5244⎛⎫⨯÷- ⎪⎝⎭359244=-⨯÷354249=-⨯⨯56=-.【点睛】本题考查有理数加减法法则及乘除法法则,同号两数相加,取与加数相同的符号,并把绝对值相加;异号相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;减去一个数,等于加上这个数的相反数;两数相乘,同号得正,异号得负,并把绝对值相乘;除以一个不为0的数,等于乘这个数的倒数;熟练掌握运算法则是解题关键.22.986【解析】【分析】根据有理数混合运算法则计算即可.【详解】解:原式()()141641000149⎡⎤=-⨯-÷+-+-⎢⎥⎣⎦944100014⎡⎤=--⨯--⎢⎥⎣⎦[]4910001=----()49911=----49911=-+-986=.【点睛】本题考查了有理数的混合运算,熟练掌握相关运算法则以及运算顺序是解本题的关键.23.21【解析】【分析】首先根据题意列出m 所满足的条件,然后求解m 的值,最后代入代数式求解即可.【详解】解:∵()2221m x y m xy --+是关于x ,y 的四次三项式,∴m 应满足:()2420m m ⎧+=⎪⎨--≠⎪⎩①②,由①解得:2m =±,由②解得:2m ≠,∴2m =-,∴()()22325322253445124521m m -+=⨯--⨯-+=⨯++=++=.【点睛】本题考查多项式的定义,以及代数式求值问题,理解“几次几项式”的定义,准确求出参数的值是解题关键.24.(1)()2x y -;(2)22y -;(3)2041【解析】【分析】(1)把()2x y -看成一个整体,合并同类项即可求解;(2)设22x x y -=,逆用分配律将236x x -化为()232x x -,代入化简即可求解;(3)根据2320x x +-=得到232x x +=,再逆用分配律即可求解.【详解】解:(1)()()()222364x y x y x y ---+-()()2=364x y -+-()2=x y -,故答案为:()2x y -;(2)设22x x y -=,则()()()223623223222x x y x x y y y y --+=--+=--=-,故答案为:22y -;(3)解:∵2320x x +-=,∴232x x +=,∴251510x x +=,原式()2210302021103202110220212020212041x x x x =++=++=⨯+=+=.【点睛】本题考查了整体思想的应用,理解题意,灵活运用整体思想,能正确逆用分配律是解题关键.25.(1)﹣(m ﹣n )2;(2)32-;(3)-4【解析】【分析】(1)把(m ﹣n )2看成一个整体,合并同类项即可;(2)将3x 2﹣12x ﹣152的前两项运用乘法分配律可化为x 2﹣4x 的3倍,再将x 2﹣4x =2整体代入计算即可;(3)对(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )去括号,再合并同类项,将a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10三个式子相加,即可得到a ﹣d 的值,则问题得解.【详解】(1)2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2=﹣(m ﹣n )2,故答案为:﹣(m ﹣n )2;(2)3x 2﹣12x ﹣152=3(x 2﹣4x )﹣152,∵x 2﹣4x =2,(3)(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=2b ﹣d ﹣2b+c+a ﹣c=a ﹣d ,∵a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,∴a ﹣2b+c ﹣d+2b ﹣c =3+3﹣10,∴a ﹣d =﹣4,∴(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=﹣4.【点睛】本题考查了合并同类项,整式的化简求值,关键是运用整体思想来解决.26.(1)610元;(2)0.9x ,0.850x +;(3)当0200a <<时,0.2722a +;当200300a ≤<时,0.1722a +【解析】【分析】(1)让500元部分按9折付款,剩下的200元按8折付款即可;(2)等量关系为:当x 小于500元但不小于200元时,实际付款=购物款×9折;当x 大于或等于500元时,实际付款=500×9折+超过500的购物款×8折;(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款−第一次购物款−第二次购物款500)×8折,把相关数值代入即可求解.【详解】解:(1)()5000.97005000.8450160610⨯+-⨯=+=∴他实际付款610元.(2)解:当x 小于500但不小于200时,打九折优惠,故需付款0.9x ;当x 大于或等于500时,其中500元部分给予九折优惠,超过500元部分给予八折优惠,故需付款()5000.90.854500.84004504000.8500.8x x x x ⨯+-=+-=-+=+故答案为:0.9x ;0.850x +;(3)①当0200a <<时,()5000.98405000.80.2722a a a +⨯+--⨯=+⎡⎤⎣⎦.②当200300a ≤<时()0.95000.98405000.80.1722a a a +⨯+--⨯=+⎡⎤⎣⎦.。
七年级上册数学期中试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. -1B. 0C. 1D. 2答案:C2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 计算:(-2) + (-3) 的结果是:A. -5B. 5C. -1D. 1答案:A4. 下列哪个选项是不等式 2x - 3 > 5 的解?A. x > 4B. x < 4C. x > 2D. x < 2答案:A5. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5 或 -5D. 0答案:C6. 计算:(-3) × (-2) 的结果是:A. 6B. -6C. 3D. -3答案:A7. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5 或 -5D. 0答案:C8. 计算:(-1) ÷ (-1) 的结果是:A. 1B. -1C. 0D. 2答案:A9. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B10. 下列哪个选项是方程 3x + 5 = 14 的解?A. x = 3B. x = 1C. x = 2D. x = 4答案:B二、填空题(每题3分,共30分)1. 一个数的倒数是2,那么这个数是 ______ 。
答案:0.52. 一个数的平方根是3,那么这个数是 ______ 。
答案:93. 一个数的立方根是2,那么这个数是 ______ 。
答案:84. 如果一个数的绝对值是6,那么这个数可能是 ______ 或 ______ 。
答案:6 或 -65. 计算:(-4) × (-5) = ______ 。
答案:206. 计算:(-7) ÷ (-1) = ______ 。
答案:77. 计算:(-2)² = ______ 。
答案:48. 计算:√16 = ______ 。
2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列哪个数是整数?A. 1.5B. 2/3C. 3/4D. 53. 下列哪个数是无理数?A. 2/3B. 3.25C. √3D. 1/24. 下列哪个式子是正确的?A. √9 = 3B. √9 = 3C. √9 = 2D. √9 = 45. 下列哪个式子是错误的?A. 2^3 = 8B. 3^2 = 9C. 4^2 = 16D. 5^2 = 20二、判断题5道(每题1分,共5分)1. 任何两个有理数的和都是有理数。
()2. 任何两个整数的积都是整数。
()3. 任何两个无理数的积都是无理数。
()4. 任何两个实数的和都是实数。
()5. 任何两个实数的积都是实数。
()三、填空题5道(每题1分,共5分)1. 两个有理数的和是______数。
2. 两个整数的积是______数。
3. 两个无理数的积是______数。
4. 两个实数的和是______数。
5. 两个实数的积是______数。
四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。
2. 请简要说明整数的定义。
3. 请简要说明无理数的定义。
4. 请简要说明实数的定义。
5. 请简要说明有理数和无理数的区别。
五、应用题:5道(每题2分,共10分)1. 计算下列式子的值:2^3 + 3^2 4^22. 计算下列式子的值:√9 + √16 √253. 计算下列式子的值:3/4 + 2/3 1/24. 计算下列式子的值:2/3 3/4 4/55. 计算下列式子的值:√2 √3 √6六、分析题:2道(每题5分,共10分)1. 请分析并解释为什么√1是无理数。
2. 请分析并解释为什么π是无理数。
七、实践操作题:2道(每题5分,共10分)1. 请用计算器计算下列式子的值:2^10 + 3^5 4^32. 请用计算器计算下列式子的值:√9.6 + √36.9 √81.25八、专业设计题:5道(每题2分,共10分)1. 设计一个函数,使其输入一个正整数n,输出n的所有正因数。
七年级上学期数学期中考试试卷含答案(word版)七年级数学第一学期期中考试试卷考试时间:100分钟满分:120分一、选择题(共12小题,满分36分)1.若在记账本上把支出6元记为-6,则收入3元应记为()A.+3B.-3C.+6D.-62.多项式-x+2/x+1的各项分别是()A.-x,2B.-x,-2C.x^2,x,1/2D.x,-2/x,-1/23.2019的相反数的绝对值是()A.-2019B.2019C.-2019D.4.下列去括号正确的是()A.-(2x+5)=-2x+5B.-(6x-4)=-3x+42C.(5x-3y)=1/3x+yD.-(2x-2y/3)=-x+2y/35.若m+n>0,则m与n的值()A、一定都是正数B、一定都是负数C、一定是一个正数,一个负数D、至少有一个是正数6.单项式-5πxy^m的系数和次数分别是()A.-π,7B.-5,6C.-5π,6D.-5,77.已知a>0,b<0,且a<b,则下列关系正确的是()A、b<-a<a<-bB、-a<b<a<-bC、-a<b<-b<aD、b<-a<-b<a8.一个多项式与x-2x+1的和是3x-2,则这个多项式为()A.x-5x+3B.-x+x-1C.-x+5x-3D.x-5x-39.若a=3,|b|=6,则a-b的值()A.3B.-3C.3或-9D.-3或910.已知2xy和-2xyn^2是同类项,则式子3m-2n的值是()A.-3B.3C.-6D.611.下列各数(-2),-(-2),(-3),-(-3)中,负数的个数有()A.1B.2C.3D.412.有一组单项式如下:-2x,3x,-4x,5x……,则第100个单项式是()A.100x^100B.-100x^100C.101x^100D.-101x^100二、填空题(共4小题,满分16分)13.将数轴上表示-8的点向右移动5个单位长度到点M,则点M所对应的数为__________.14.已知2m-6与4互为相反数,则m的值为__________.15.用科学记数法表示38万米是__________米.16.在一个正三角形场地中,如果在每边上放2盆花,则共需要6盆花;如果在每边上放3盆花,则共需要9盆花;以此类推,如果在每边上放25盆花,则共需要75盆花。
初一数学上册期中考试试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 5D. -1答案:C2. 以下哪个表达式的结果为负数?A. 2 + 3B. -2 - 3C. 2 × 3D. -2 × 3答案:B3. 哪个分数等于1/2?A. 2/4B. 3/6C. 4/8D. 5/10答案:A4. 如果a = 5,b = 3,那么a + b的值是多少?A. 2B. 8C. 10D. 15答案:B5. 哪个图形不是轴对称图形?A. 圆形B. 正方形C. 等边三角形D. 不规则四边形答案:D6. 下列哪个选项是质数?A. 4B. 6C. 7D. 8答案:C7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 哪个选项表示的是不等式?A. 3 + 4 = 7B. 2 × 5 = 10C. 9 > 3D. 6 = 6答案:C10. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。
答案:4或-412. 如果一个数除以3余1,这个数可能是______。
答案:413. 一个数的立方是-8,这个数是______。
答案:-214. 一个数的倒数是1/3,这个数是______。
答案:315. 一个数的绝对值是它本身,这个数是非负数,包括______。
答案:0和正数16. 如果一个三角形的两边长分别是3和4,那么第三边的长度应该在______范围内。
答案:1和7之间17. 一个数的平方根是2,这个数是______。
答案:418. 如果一个数的相反数是它本身,这个数是______。
七年级上册数学期中考试试题一、单选题1.下面四个数中比﹣5小的数是()A .1B .0C .﹣4D .﹣62.如果a 与2020-互为倒数,那么a 的值是()A .2020B .2020-C .12020D .12020-3.下列各式计算结果为负数的是()A .﹣(﹣1)B .|﹣(+1)|C .﹣|﹣1|D .|1﹣2|4.由中国南车制造的CTT500型高铁,它的实验速度高达605公里/小时,打破了法国高速列车574.8公里/小时的世界纪录.若保持这样的速度,用科学记数法写出行驶10小时的路程为()A .46.0510⨯公里B .36.0510⨯公里C .56.0510⨯公里D .30.60510⨯公里5.下列去括号正确的是()A .﹣(a+b ﹣c )=a+b ﹣cB .﹣2(a+b ﹣3c )=﹣2a ﹣2b+6cC .﹣(﹣a ﹣b ﹣c )=﹣a+b+cD .﹣(a ﹣b ﹣c )=﹣a+b ﹣c 6.下列判断中正确的是()A .23a bc 与2b ca 是同类项B .25m n 不是整式C .单项式32x y -的系数是1-D .2235x y xy -+是二次三项式7.有理数a ,b ,c 在数轴上的位置如图所示,则a b b c +--的值为()A .2a b c --B .a c +C .2a b c--+D .a c--8.已知21a b -+的值是1-,则()3224a b a b --+的值是()A .4-B .10-C .0D .2-9.如图,A 、B 、C 、D 是数轴上的四个整数所对应的点,且1B A C B D C -=-=-=,而数m 在A 与B 之间,数n 在C 与D 之间,若3m n +-=,且A 、B 、C 、D 中有一个是原点,则此原点可能是()A .A 点或D 点B .B 点或D 点C .A 点D .D 点10.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,求422a bx cdx ++-的值是()A .10B .-10C .20D .-20二、填空题11.用四舍五入法按照要求对0.43295取近似值,精确到千分位是________.12.若25-m x y 与n x y 是同类项,则m n +=__________.13.某超市销售的一种水果原价为m 元,因为销量不好,降价10%进行销售,一段时间后销量良好,决定提价20%,提价20%后这种水果的价格为________.14.若式子()333394mx x x nx -+--的值与x 无关,则mn 的值是________.15.对于有理数a ,b 定义一种新运算:*24a b a b =-+-.则()3*4*2-⎡⎤⎣⎦的值是________.16.如图是用大小相等的小正方形拼成的一组图案:…(1)(2)(3)(4)…观察并探索:第(100)个图案中有小正方形的个数是________.17.如果水库水位上升2m 记作+2m ,那么水库水位下降6m 记作_____.三、解答题18.计算:(1)()()1536---+.(2)()948149-÷⨯.(3)()157362612⎛⎫--⨯- ⎪⎝⎭.(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭.19.化简:(1)()()223222a a a a ++-+.(2)()2243324y y y y ⎡⎤---+⎣⎦.20.先化简,再求值:()()225214382a a a a+---+,其中3a =-.21.已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位.(1)根据题意,m =________.(2)求()202022a b mxy +++-的值.22.某公园中一块草坪的形状如图中的阴影部分.()1用整式表示草坪的面积;()2若2a =米,5b =米,求草坪的面积.23.已知一个三角形的第一条边长为3a b +,第二条边比第一条边短2a b -,第三条边比第二条边长2a b +.(1)则第二边的边长为________,第三条的边长为________.(2)用含a ,b 的式子表示这个三角形的周长,并化简.(3)若a ,b 满足()2870a b -+-=,求这个三角形的周长.24.小丽暑假期间参加社会实践活动,从某批发市场以每个a 元的价格购进50个手机充电宝,然后每个加价b 元到市场出售.(以下结果用含a ,b 的式子表示)(1)全部售出50个手机充电宝的总销售额为多少元?(2)由于开学临近,小丽在成功售出30充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②如果不采取降价销售,并且全部售出这50个充电宝,小丽将比实际销售多盈利多少元?25.“幸福是奋斗出来的”,在数轴上,若C 到A 的距离刚好是3,则C 点叫做A 的“幸福点”;若C 到A 、B 的距离之和为6,则C 叫做A 和B 的“幸福中心”.(1)如图1,点A 表示的数为1-,则A 的幸福点C 所表示的数应该是________.(2)如图2,M 、N 为数轴上两点,点M 所表示的数为4,点N 所表示的数为2-,若点C 就是M 和N 的幸福中心,则C 所表示的所有数中,整数之和为________.(3)如图3,A 、B 、C 为数轴上三点,点A 所表示的数为1-,点B 所表示的数为4,点C 所表示的数为8,点P 从点C 出发,以每秒2个单位的速度向左运动,同时,点M ,N 分别从点A ,B 以每秒1个单位的速度向右运动,经过多少秒时,点P 是M 和N 的幸福中心?26.已知A 点的初始位置位于数轴上表示1的点,现对点A 做如下移动:第1次向左移动3个单位长度至1A 点,第2次从1A 点向右移动6个单位长度至2A 点,第3次从2A 点向左移动9个单位长度至3A 点,第4次从3A 点向右移动12个单位长度至4A 点,…,依此类推.设点i A (1,2,3,i =⋅⋅⋅)对应的数为i a (1,2,3,i =⋅⋅⋅).(1)点5A 对应的数5a =________,点6A 对应的数6a =________.(2)第n 次移动到点n A ,求n a 的表达式(用含n 的式子表示).(3)是否存在第m 次移动到的点m A 到原点的距离为2020?如果存在,请求出m 的值,若不存在,请说明理由.参考答案1.D【解析】【详解】解:根据有理数比较大小的方法,可得﹣5<1,﹣5<0,﹣5<﹣4,﹣5>﹣6,∴四个数中比﹣5小的数是﹣6.故选:D.2.D【解析】【分析】根据倒数的概念求解可得.【详解】解:∵1()(2020)1 2020-⨯-=,∴-2020的倒数是1 2020 -,故选:D.【点睛】本题主要考查了倒数,解题的关键是掌握乘积是1的两数互为倒数.3.C【解析】【分析】将各式的结果计算出来,再根据小于零的数是负数,可得答案.【详解】A.﹣(﹣1)=1,1是正数,故A错误;B.|﹣(+1)|=1,1是正数,故B错误;C.﹣|﹣1|=﹣1,﹣1是负数,故C正确;D.|1﹣2|=|-1|=1,1是正数,故D错误.故选:C.【点睛】本题考查了正数和负数.掌握正数和负数的分辨,明确小于零的数是负数,能够正确化简各数是解题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:605×10=6.05×103(公里),故选:B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.【点睛】本题考查去括号的知识,若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变.6.C【解析】【分析】分别根据同类项的定义,整式的定义,单项式的定义以及多项式的定义逐一判断即可.【详解】解:A 、23a bc 与2b ca ,所含字母相同,但是相同字母的指数不相同,故本选项不合题意;B 、25m n 属于整式,故本选项不合题意;C 、单项式32x y -的系数是1-,故本选项符合题意;D 、2235x y xy -+是三次三项式,故本选项不合题意;故选:C .【点睛】本题主要考查了同类项,整式,单项式与多项式的定义,熟记相关定义是解答本题的关键.7.D 【解析】【分析】先根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小,然后判断出a+b ,b-c 的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】解:根据图形可知,b <c <0<a ,且|b|>|a|>|c|,∴a+b <0,b-c <0,∴|a+b|−|b−c|=-(a+b )+(b-c )=-a-b+b-c =-a-c .故选:D .【点睛】本题考查了整式的加减,数轴与绝对值的性质,根据数轴判断出a 、b 、c 的大小关系以及a+b ,b-c 的正负情况是解题的关键,也是难点.8.D 【解析】【分析】先化简多项式,再变形已知条件,最后整体代入求值.【详解】解:3(2)24a b a b --+3624a b a b=--+2a b =-,21a b -+ 的值是1-,211a b ∴-+=-.即22a b -=-.∴原式2=-.故选:D .【点睛】本题考查了整式的加减,掌握整式加减的运算法则是解决本题的关键.9.A 【解析】【分析】先根据图形和已知条件找出各线段长度,然后由3m n +-=推测原点位置.【详解】解:由“B-A=C-B=D-C=1且数m 在A 与B 之间,数n 在C 与D 之间”可以得出:1AB BC CD ===3AD ∴=①当原点是B 点或C 点时,3m n +-<与已知3m n +-=相矛盾,故原点不可能是B 点或C 点;②当原点在A 点或D 点且A m D n -=-时,3m n m n +-=+=,综上可知:数轴原点可能是A 点或D 点.故选A .【点睛】本题主要考查了数轴和绝对值,解决本题的关键在于理解绝对值的几何意义.10.C 【解析】【分析】根据相反数的定义,倒数的定义,绝对值的定义求出a+b=0,cd=1,2x =±,分两种情况代入数值计算即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,∴a+b=0,cd=1,2x =±,当x=2时,422a bx cdx ++-=16+4-0=20,当x=-2时,422a b x cdx ++-=16+4-0=20,故选:C .【点睛】此题考查已知式子的值求代数式的值,正确掌握相反数的定义,倒数的定义,绝对值的定义是解题的关键.11.0.433【解析】【分析】把万分位上的数字9进行四舍五入即可.【详解】解:0.43295≈0.433(精确到千分位).故答案是:0.433.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有精确到哪一位,保留几个有效数字等说法.12.3.【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n ,m 的值,再相加即可.【详解】∵-5x 2y m 和x n y 是同类项,∴n=2,m=1,∴m+n=2+1=3.13.1.08m 【解析】【分析】直接利用降价与提价的变化得出变化后实际价格.【详解】解:由题意可得:m (1-10%)(1+20%)=1.08m (元).故答案为:1.08m .【点睛】本题主要考查了列代数式,正确表示出变化后价格是解题关键.14.4【解析】【分析】先将原式化简为()()33439m x n x -+-+,,再根据多项式的值与x 无关,可得340m -=,30n -=,由此即可求得mn 的值.【详解】解:33339(4)mx x x nx -+--333394mx x x nx =-+-+()()33439m x n x =-+-+,式子33339(4)mx x x nx -+--的值与x 无关,340m ∴-=,30n -=,43m ∴=,3n =.4343mn ∴=⨯=.故答案为:4.【点睛】本题考查了整式的加减运算,重点是根据题中条件得到340m -=,30n -=,同学们应灵活掌握.15.-7【解析】【分析】先计算(-3)*4得出其结果,再代入[(-3)*4]*2列式计算即可.【详解】解:∵(-3)*4=-(-3)+2×4-4=3+8-4=7,∴[(-3)*4]*2=7*2=-7+2×2-4=-7+4-4=-7,故答案为:-7.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.16.397【解析】【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(1)1n -+个小正方形.【详解】解:由图片可知:第(1)个图案中有4011⨯+=个小正方形,第(2)个图案中有4115⨯+=个小正方形,第(3)个图案中有4219⨯+=个小正方形,⋯∴规律为小正方形的个数4(1)143n n =-+=-.当100n =时,小正方形的个数41003397=⨯-=.故答案为:397.【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n 个图形中共有4(1)1n -+个小正方形.17.﹣6m .【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:∵“正”和“负”相对,水位上升2m ,记作+2m ,∴水位下降6m ,记作﹣6m .故答案为﹣6m .【点睛】本题主要考查了理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.18.(1)6-;(2)16-;(3)33;(4)13【解析】【分析】(1)根据有理数的加减运算法则计算即可;(2)根据有理数的乘除运算法则计算即可;(3)根据乘法的分配律计算即可;(4)根据有理数的乘方以及混合运算,计算即可;【详解】解:(1)()()()153615366---+=-++=-(2)()94448181164999-÷⨯=-⨯⨯=-(3)()15715736(36)(36)(36)1830213326122612⎛⎫--⨯-=⨯--⨯--⨯-=-++= ⎪⎝⎭(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭121(39)(63=--⨯+⨯-12112(63=--⨯⨯-413=-+13=【点睛】此题考查了有理数的运算,涉及了加减、乘除以及乘方,熟练掌握有理数的运算法则是解题的关键.19.(1)254a +;(2)35y -.【解析】【分析】(1)先去括号,然后合并同类项即可求出答案;(2)先去小括号,再去中括号,然后合并同类项即可求出答案.【详解】解:(1)原式2232224a a a a =++-+254a =+;(2)原式224(3324)y y y y =--++2243324y y y y =-+--35y =-.【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.20.233413a a -+-,142-【解析】【分析】先将原式去括号合并同类项得到最简结果,再将a 的值代入计算即可求出值.【详解】解:原式2252112328a a a a =+--+-,233413a a =-+-,当3a =-时,原式23(3)34(3)13=-⨯-+⨯--2710213=---142=-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.21.(1)2或-2;(2)5.【解析】【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可.【详解】解:(1)∵m 到原点距离2个单位,∴m=2或-2,故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2,当m=2时,()202022a b m xy +++-=22+0+(-1)2020=4+1=5;当m=-2时,()202022a b m xy +++-=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++-的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.(1)草坪的面积为18ab 平方米;()2草坪的面积是180平方米.【解析】【分析】(1)草坪的面积=大长方形的面积-两个空白长方形的面积,应该根据图中数据逐一进行计算,然后求差;(2)将a 2=米,b 5=米代入求值即可.【详解】(1)(1.5b+2.5b )(a+2a+a+2a+a )-2.5b×2a×2=18ab ,即草坪的面积为18ab 平方米;(2)当a 2=米,b 5=米时,18ab 1825180=⨯⨯=(平方米),答:草坪的面积是180平方米.【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.23.(1)23a b +,44a b +;(2)98a b +;(3)128【解析】【分析】(1)根据题意列出算式即可求出答案;(2)列出算式后,根据整式的运算法则即可求出答案;(3)先求出a 与b 的值,然后代入原式即可求出答案.【详解】解:(1)第二条边为(3)(2)3223a b a b a b a b a b +--=+-+=+,第三条边为:(23)(2)23244a b a b a b a b a b +++=+++=+,故答案为:23a b +,44a b +;(2)该三角形的周长为:(3)(23)(44)a b a b a b +++++32344a b a b a b=+++++98a b =+;(3)∵()2870a b -+-=,且80a -≥,()270b -≥,∴80a -=,70b -=,∴8a =,7b =,∴该三角形的周长为:9887128⨯+⨯=.【点睛】本题考查整式加减的应用,解题的关键是熟练运用整式加减的运算法则,本题属于基础题型,也考查了绝对值和平方的非负性.24.(1)全部售出50个手机充电宝的总销售额为50(a+b )元(2)①她的总销售额是(46a+46b )元;②小丽将比实际销售多盈利(4a+4b )元.【解析】【分析】(1)根据总销售额=销售单价×数量列出式子即可.(2)①总销售额等于未打折的30个充电宝的销售额+(50-30)个打8折的充电宝的销售额,列出算式并化简即可;②用(1)中的销售额减去(2)①中的销售额,计算即可.【详解】解:(1)由题意可知,每个手机充电宝的售价为(a+b )元,∴全部售出50个手机充电宝的总销售额为:50(a+b )元.(2)①由题意得:30(a+b )+(50-30)(a+b )×0.8=30a+30b+16a+16b=(46a+46b )元,∴她的总销售额是(46a+46b )元;②由题意得:50(a+b )-46(a+b )=(4a+4b )元,∴小丽将比实际销售多盈利(4a+4b )元.【点睛】本题考查了列代数式在成本利润问题中的应用,明确成本利润问题的基本数量关系是解题的关键.25.(1)2或4-;(2)7;(3)76秒或196秒【解析】【分析】(1)根据幸福点的定义即可求解,注意分类讨论;(2)先根据题意可求得6MN =,由此再结合幸福中心的定义即可求解;(3)分两种情况讨论:①P 在N 的右边;②P 在M 的左边,由此可以得出结论.【详解】解:(1)132-+= ,134--=-,A ∴的幸福点C 所表示的数应该是2或4-,故答案为:2或4-;(2)4(2)6MN =--= ,M ∴,N 之间的所有数都是M ,N 的幸福中心,故C 所表示的整数可以是2-或1-或0或1或2或3或4,21012347∴--+++++=,故答案为:7;(3)设经过x 秒时,点P 是M 和N 的幸福中心,由题意可得:点P 表示的数为82x -,点M 表示的数为1x -+,点N 表示的数为4x +,∴4(1)56MN x x =+--+=<,又∵点P 是M 和N 的幸福中心,∴点P 在点M 的左边或者在点N 的右边,①当点P 在N 的右边时,有82(4)82(1)6x x x x --++---+=,解得:76x =;②当点P 在M 的左边时,有4(82)(1)(82)6x x x x +--+-+--=,解得:196x =.答:当经过76秒或196秒时,点P 是M 和N 的幸福中心.【点睛】本题考查了一元一次方程的应用、数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间⨯速度,认真理解新定义,学会运用分类讨论思想是解决本题的关键.该类题型主要考查学生对新知识的接受和应用能力.26.(1)8-;10;(2)()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)1346【解析】【分析】(1)按照题目,找出已知规律,推算即可;(2)根据数轴上点所对应的数的变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对第奇数个以及第偶数个分别探究,找出其中的规律(相邻两数都相差3),进而写出表达式就可解决问题;(3)利用(2)中的结论,代入求值.【详解】解:(1)第1次点A 向左移动3个单位长度至点1A ,则1A 表示的数,132-=-;第2次从点1A 向右移动6个单位长度至点2A ,则2A 表示的数为264-+=;第3次从点2A 向左移动9个单位长度至点3A ,则3A 表示的数为495-=-;第4次从点3A 向右移动12个单位长度至点4A ,则4A 表示的数为5127-+=;第5次从点4A 向左移动15个单位长度至点5A ,则5A 表示的数为7158-=-;第6次从点5A 向右移动18个单位长度至点6A ,则6A 表示的数为81810-+=;故答案是:8-;10;(2)由(1)可知,当移动次数n 为奇数时,点n A 在原点的左侧,1369123n a n-+-+--=…1(36)(912)[3(2)3(1)]3n n n=+-++-+++--+--…11332n n-=+⨯-312n +=-,当移动次数n 为偶数时,点n A 在原点的右侧,1369123(1)3n a n n-+-+---+=...1(36)(912)[3(1)3]n n =+-++-+++--+ (13)2n=+⨯322n +=,综上所述,()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)根据题意,得当移动次数n 为奇数时,3120202m +-=-,解得:40393m =(不符合题意,舍去),当移动次数n 为偶数时,3220202m +=,解得:1346m =,∴存在第m 次移动到的点m A 到原点的距离为2020,此时m 的值为1346.。
七年级上册数学期中考试试题一、单选题1.在0.15-、 1.3+、0、32-这四个数中,最小的数是()A .0.15-B . 1.3+C .0D .32-2.计算()32-,正确结果是()A .-6B .-8C .6D .83.1x =-是下列哪个方程的解()A .56x -=B .1262x +=C .314x +=D .440x +=4.2||3-的相反数是()A .32B .23-C .32-D .235.下列去括号正确的是()A .-2(a +b)=-2a +bB .-2(a +b)=-2a -bC .-2(a +b)=-2a -2bD .-2(a +b)=-2a +2b6.下列说法中正确的是()A .单项式235xy 的系数是3,次数是2B .单项式15ab -的系数是15,次数是2C .12xy -是二次多项式D .多项式243x -的常数项是37.已知a 是三位数,b 是两位数,将a 放在b 的左边,所得的五位数是()A .abB .a b+C .10a b+D .100a b+8.代数式227y y ++的值是6,则2485y y +-的值是()A .9B .9-C .18D .18-9.如果a >0,b <0,且|a|<|b|,则下列正确的是()A .a+b <0B .a+b >0C .a+b=0D .ab=010.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b (a b >),则()-a b 等于()A .7B .6C .5D .4二、填空题11.如果80m 表示向东走80m ,那么60m -表示________.12.中国领水面积约为370000km 2,用科学记数法表示370000为_______.13.若单项式3m ab 和4-n a b 是同类项,则m n +=_________.14.已知|a|=5,|b|=7,且|a+b|=a+b ,则a−b 的值为___________.15.近似数63.2010⨯精确到____________位.16.若()223310a b ++-=,则ab =__________.17.观察下列式子:22222210101;21213;32325;-=+=-=+=-=+=222243437;54549-=+=-=+=……若字母n 表示自然数,请把你观察到的规律用字母n 表示出来:______________.18.如图所示,用火柴棍拼成一排由三角形组成的图形,如果图形中包含2个三角形就需要5根火柴棍,如果图形中包含8个三角形就需要______根火柴棍,如果图形中包含n 个三角形就需要____根火柴棍.(用含n 的代数式表示)三、解答题19.计算()()16252435+-++-20.解方程:23(1)12(10.5)-+=-+x x 21.计算:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦22.先化简,再求值.224[62(42)]1x y xy xy x y ----+,其中12x =-,1y =.23.若多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,求222m mn n -+的值.24.有理数a 、b 在数轴上的对应点位置如图所示(1)用“<”连接0、a -、b -、1-;(2)化简:||2||||-+--a a b b a .25.某出租车驾驶员从公司出发,在东西向的路上连续接送5批客人,行驶路程记录分别为:+5,+2,﹣4,﹣3,+10(规定向东为正,向西为负,单位:千米)(1)接送完第5批客人后,该驾驶员在公司的什么方向?距离公司多少千米?(2)若该出租车每千米耗油0.2升,则在这个过程中共耗油多少升?(3)若该出租车的计价标准为行驶路程不超过3千米收费10元,超过3千米的部分按每千米1.8元收费,在这过程该驾驶员共收到车费多少?26.观察下列各算式:221342,13593,1357164+==++==+++==.(1)试猜想:135720052007++++++ 的值?(2)推广:13579(21)(21)++++++-++ n n 的和是多少?27.一个跑道由两个半圆和一个长方形组成.已知长方形的长为a 米,宽为b 米.(1)用代数式表示该跑道的周长C .(2)用代数式表示该跑道的面积S .(3)当100a =,40b =时,求跑道的周长()π3C ≈.参考答案1.D【解析】【分析】根据有理数比较大小的方法求解即可.正数大于负数,两个负数比较大小,绝对值大的反而小.【详解】解:∵正数大于负数,又∵3 0.15<2--,∴3 0.15>2 --,∴这四个数中,最小的数是3 2-.故选:D.【点睛】此题考查了有理数比较大小,解题的关键是熟练掌握有理数比较大小的方法.正数大于负数,两个负数比较大小,绝对值大的反而小.2.B【解析】【分析】根据乘方的性质计算,即可得到答案.【详解】()328-=-故选:B.【点睛】本题考查了乘方的知识;解题的关键是熟练掌握乘方的性质,从而完成求解.3.D【解析】【分析】把1x=-分别代入四个选项的方程中,能够使得方程左右两边相等的选项即为所求.解:A 、把1x =-代入方程56x -=得156--=,即66=-不成立,故不符合题意;B 、把1x =-代入方程1262x +=得1262-+=,即362=不成立,故不符合题意;C 、把1x =-代入方程314x +=得314-+=,即24-=不成立,故不符合题意;D 、把1x =-代入方程440x +=得440-+=,即00=成立,故符合题意;故选D .【点睛】本题主要考查了一元一次方程的解,解题的关键在于能够熟练掌握一元一次方程解的定义.4.B 【解析】【分析】利用相反数的定义,先列式,再化简绝对值即可.【详解】−2-3的相反=-2-3=-23.故选择:B .【点睛】本题考查相反数与绝对值问题,掌握相反数与绝对值概念是关键.5.C 【解析】【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A.原式=−2a−2b ,故本选项错误;B.原式=−2a−2b ,故本选项错误;C.原式=−2a−2b ,故本选项正确;D.原式=−2a−2b ,故本选项错误;故选C.【点睛】考查去括号法则,当括号前面是“-”号时,把括号去掉,括号里的各项都改变正负号.6.C【分析】根据单项式与多项式的概念进行判断,即可得出正确结论.【详解】解:A .单项式235xy 的系数是35,次数是3,故本选项错误,不符合题意;B .单项式15ab -的系数是15-,次数是2,故本选项错误,不符合题意;C .12xy -是二次二项式,故本选项正确,符合题意;D .多项式243x -的常数项是3-,故本选项错误,不符合题意,故选:C .【点睛】本题主要考查了单项式与多项式的概念,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,熟练掌握单项式与多项式的概念是解决本题的关键.7.D 【解析】【分析】组成五位数后,a 是原来的100倍,b 不变,相加即可.【详解】解:a 原来的最高位是百位,组成五位数后,a 的最高位是万位,是原来的100倍,b 的大小不变,那么这个五位数应表示成100a+b .故选:D .【点睛】本题主要考查列代数式,关键是看哪个数变大了,只把那个数变化即可.8.B 【解析】【详解】∵227y y ++=6,∴22y y +=-1,=4×(-1)-5=-9,故选B.9.A【解析】【分析】根据a>0,b<0,且|a|<|b|,可得a<-b,即a+b<0.【详解】∵a>0,b<0,且|a|<|b|,∴a<-b,即a+b<0.故选A.【点睛】本题考查了有理数的大小比较,解答本题的关键是根据题意得出a<-b.10.A【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个正方形面积的差.【详解】设重叠部分面积为c,a-b=(a+c)-(b+c)=16-9=7,故选A.【点睛】本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.11.向西走60米【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负来表示;【详解】80m表示向东走80m,规定向东为正,则-60m表示向西走60米.故答案为向西走60米.【点睛】本题主要考查了正数和负数的概念,掌握正数和负数的概念是解题的关键.12.3.7×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n 为整数)中n的值,由于370000有6位,所以可以确定n=6-1=5.【详解】370000=3.7×105,故答案为3.7×105.【点睛】此题考查科学记数法—表示较大的数,解题关键在于掌握其一般表示形式.13.2【解析】【分析】根据同类项的概念求解.【详解】ab和4-n a b是同类项,解:∵单项式3m∴n=1,m=1,+=2,∴m n故答案为:2.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.−2或−12.【解析】【分析】根据绝对值的性质求出a 、b 的值,然后代入进行计算即可求解.【详解】∵|a|=5,|b|=7,∴a=5或−5,b=7或−7,又∵|a+b|=a+b ,∴a+b ⩾0,∴a=5或−5,b=7,∴a−b=5−7=−2,或a−b=−5−7=−12.故答案为−2或−12.【点睛】此题考查绝对值,解题关键在于掌握其性质.15.万【解析】【分析】3.20×106精确到0.01×106位即万位.【详解】近似数3.20×106=3200000精确到万位,故答案为:万.【点睛】本题主要考查近似数,对于用科学记表示的数,精确到哪一位是需要识记的内容,经常会出错.16.12-【解析】【分析】由绝对值和平方的非负性结合已知条件求得a 、b 的值,再代入ab 中计算即可.【详解】解:∵223(31)0a b ++-=,∴3123a b =-=,∴311232ab =-⨯=-.故答案为12-.17.22(1)(1)21n n n n n --=+-=-【解析】【分析】观察式子即可得出结论.【详解】解:观察式子可发现22(1)(1)21n n n n n --=+-=-,故答案为:22(1)(1)21n n n n n --=+-=-.【点睛】本题考查规律型,观察式子得到规律是解题的关键.18.1721n +##12n+【解析】【分析】一个三角形时,将左边一根固定,后面每增加一个三角形就加2根火柴棍,据此可分别计算出有8个及n 个三角形时,火柴棍数量.【详解】有1个三角形时,需要123+=根火柴棍,有2个三角形时,需要1225+⨯=根火柴棍,有3个三角形时,需要1327+⨯=根火柴棍,有4个三角形时,需要1429+⨯=根火柴棍,……有8个三角形时,需要18217+⨯=根火柴棍,有n 个三角形,需要1221n n +⨯=+根火柴棍.故答案为:17,21n +.【点睛】本题考查了图形的变化规律,找出图形之间的联系是关键,并将得出的运算规律解决问题,属中档题.19.-20【解析】【分析】先根据有理数加法的交换律和结合律,得到()()16242535++-+-⎡⎤⎣⎦,再利用有理数加法法则,计算即可求解.【详解】解:()()16252435+-++-()()16242535=++-+-⎡⎤⎣⎦()406020=+-=-.【点睛】本题主要考查了有理数的加法运算,能利用有理数加法的交换律和结合律简化运算是解题的关键.20.x =0【解析】【分析】根据解一元一次方程的基本步骤依次去括号、移项、合并同类项、系数化为1即可.【详解】解:去括号,得:2﹣3x ﹣3=1﹣2﹣x ,移项,得:﹣3x+x =1﹣2﹣2+3,合并同类项,得:﹣2x =0,系数化为1,得:x =0.【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握等式的基本性质和解一元一次方程的基本步骤.21.4165-.【解析】【分析】先计算乘方,小数化分数,把除化乘,计算小括号的乘方,再计算小括号减法,计算中括号乘法,去括号,进行有数加法即可.【详解】解:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎢⎥⎝⎭⎣⎦,=4312581()542⎡⎤⎛⎫---+-⨯⨯- ⎪⎢⎥⎝⎭⎣⎦,=312581()52⎡⎤⎛⎫---+-⨯- ⎪⎢⎥⎝⎭⎣⎦,=21258()52⎡⎤---+⨯-⎢⎥⎣⎦,=12585⎛⎫---- ⎪⎝⎭,=12585-++,=4165-.【点睛】本题考查含乘方的有理数混合运算,掌握有理数混合运算顺序为先乘法,再乘除,最后加减,有括号先计算小括号,再算中括号,最后大括号是解题关金.22.2523x y xy +-,114-.【解析】【详解】解:原式=224[684]1x y xy xy x y --+-+=224[24]1x y xy x y --+-+,=224241x y xy x y +-++=2523x y xy +-,把12x =-,1y =代入上式得:原式=211115()12()13224⨯-⨯+⨯-⨯-=-.23.1,25.【解析】【分析】先根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩,解方程组,然后分类代入代数式计算即可.【详解】解:∵多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,∴2430m n ⎧+=⎨-=⎩,解得23m n =±⎧⎨=⎩,当2,3m n ==时,222222223341291m mn n -+=-⨯⨯+=-+=;当2,3m n =-=时,()()2222222233412925m mn n -+=--⨯-⨯+=++=.【点睛】本题考查多项式的项数与次数,方程组,代数式求值,根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩是解题关键.24.(1)﹣1<﹣b <0<﹣a ;(2)2a+b 【解析】【分析】(1)先根据相反数的意义在数轴上分别表示出﹣a ,﹣b ,所对应的点,再根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,由此即可比较出0,﹣a ,﹣b ,﹣1的大小关系;(2)首先根据数轴可得a <0,a+b <0,b ﹣a >0,由此可得|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,然后根据整式加减的运算法则化简即可.【详解】解:(1)由题意可得:由此可得:﹣1<﹣b <0<﹣a .(2)由数轴可得:a <0,a+b <0,b ﹣a >0,∴|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,∴|a|﹣2|a+b|﹣|b﹣a|=﹣a+2(a+b)﹣(b﹣a)=﹣a+2a+2b﹣b+a=2a+b.【点睛】(1)此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.(2)此题还考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(3)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(4)此题还考查了整式的加减运算,要熟练掌握,解答此类问题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.25.(1)接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)4.8升.(3)68元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.(3)根据题意列出算式即可求出答案.【详解】解:(1)5+2+(−4)+(−3)+10=10(km)答:接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)(5+2+|−4|+|−3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5−3)×1.8]+10+[10+(4−3)×1.8]+10+[10+(10−3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查正负数的意义,解题的关键是熟练运用正负数的意义,本题属于基础题型.n+.26.(1)1008016;(2)()21【分析】(1)根据2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,由此可求135720052007++++++ =221200710042+⎛⎫= ⎪⎝⎭(2)根据规律可得一般形式,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,从而可以求解推广.【详解】解:(1)2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,∴135720052007++++++ =221200710042+⎛⎫= ⎪⎝⎭=1008016;(2)一般形式2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,由此可以发现()()221211357921(21)12n n n n ++⎛⎫+++++⋅⋅⋅-++==+ ⎪⎝⎭,【点睛】本题主要考查了数字类规律,解题的关键在于能够根据题意发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭.27.(1)()2πa b +米(2)2π44b ab +平方米(3)320米【分析】(1)跑道的周长是两条“直道”和两条“弯道”的长度和;(2)长方形的面积与圆的面积和即可;(3)将a=100,b=40代入(1)中的代数式计算即可.(1)两条“直道”的长为2a 米,两条“弯道”的长为πb 米,因此该跑道的周长()2πC a b =+(米),答:该跑道的周长C 为()2πa b +米.(2)两个半圆的面积为22ππ24b b ⎛⎫⨯= ⎪⎝⎭(平方米),长方形的面积为ab (平方米),因此跑道的面积为22ππ444ab b b ab=+=+(平方米).(3)当100a =,40b =时,2π20040π200120320a b +=+≈+=(米),答:当100a =,40b =时跑道的周长C 约为320米.【点睛】本题考查列代数式和代数式求值,正确的列代数式是求值的前提.。
宁波市鄞州区八校2018-2019学年上学期期中联考七年级数学试卷
温馨提示:仔细审题,认真解答,相信自己能做的最好。
一、精心选一选(每小题3分,共30分) 1.3
1
-
的相反数是( )
A .3-
B .3
C .31
-
D .3
1 2.在实数﹣
,,,,0.80108,中,无理数的个数为( )
A .1个
B .2个
C .3个
D .4个
3.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为( )
A .41011⨯
B .51011
⨯. C .41011⨯. D .5
10110⨯. 4.下列各式中,正确的是( ) A .
()332
-=- B .332±= C .3)3(2±=± D .332-=-
5.下列各组运算中,结果为负数的是( )
A .-(-3)
B .(-3)×(-2)
C .-|-3|
D .3)2(--
6.下列各式计算正确的是( )
A . 22
422m n mn mn -= B . 253a b ab -+=
C . xy xy xy =-34
D . 4
22a a a =+
7.已知方程312-=+x 与方程232=-a x 的解相同,那么a 的值是( ) A .2=a B .2-=a C .32=a D .3
2
-=a 8.把方程
中分母化整数,其结果应为( )
A .
17124110=--+x x
B . 10
7124110=--+x x
C .
1710241010=--+x x D . 10
710241010=--+x x
9.七年级某班学生参加绿化劳动,在甲处有32人,乙处有22人,现根据需要,要从乙处抽调部分同学往甲处,使甲处人数是乙处人数的2倍,问应从乙处抽调多少人往甲处? 设从乙处抽调x 人往甲处,可得正确方程是( ) A .)22(232x x -=- B .)22(232x x +=+ C .)22(232x x +=- D.)22(232x x -=+
10.数轴上A 、B 、C 三点所代表的数分别是a 、1、c ,且|c-1|-|a-1|=|a-c|.若下列选项中,有一个表示A 、B 、C 三点在数轴上的位置关系,则此选项为何?( )
A .
B .
C .
D .
二、细心填一填(每小题3分,共24分)
11.数轴上2和-3.5所对应的点之间的距离是 12.单项式
的次数是 _________ 次.
13.已知(a ﹣1)2
+|b+1|=0,则20132014
b a
- = _________ .
14.若,a b 互为相反数,d c ,互为倒数,则)(3)2(3
1b a cd +-+= .
15.已知12m n a b -与m b a 223-(m 、n 是整数)是同类项,则2m n -= . 16.如果代数式32=-y x ,则代数式y x 426+-的值为 .
17.规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[3]=1,按此规定,
[113-]= .
18.在一次数字竞猜游戏中,大屏幕上出现的一列有规律的数是,21,52,53,
174,26
5,376,50
7......则第n 个数为 .
三、耐心做一做(共46分) 19.计算(每小题3分,共9分)
(1)5﹣(﹣8)﹣19
(2)36×(﹣﹣)+(﹣2)
(3)
20.先化简,再求值:﹣(x 2
+2y )﹣2(3xy ﹣y ),其中x=2,y=.(本小题4分)
21.解下列方程(每小题4分,共8分)
(1)x x -=+472 (2)3
2
231+-=--x x x
22.(6分)有一道题,是一个多项式减去1532
+-x x ,小明由于看题不仔细,将减号抄
成了加号,计算出结果是7352
-+x x ,请你帮小明求出这道题的正确答案。
23.(9分)把2012个正整数1,2,3,4,…,2012按如图7个数一行方式排列成一个表. (1)用如图方式框住表中任意4个数,记左上角的一个数为x ,则另三个数用含x 的式子表示出来,从小到大依次是 , , .
(2)由(1)中能否框住这样的4个数,它们的和会等于244吗?若能,则求出x的值;若不能,则说明理由.
24.(10分)如图是某市民健身广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米,
(1)若设图中最大正方形B的边长是x米,请用含x的代数式分别表示出正方形F、E和C的边长;
(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MN和PQ相等).请根据等量关系求出x的值;
(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.如果两队从同一点开始,沿相反的方向同时施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?
答题卷
温馨提示:仔细审题,认真解答,相信自己能做的最好。
一、精心选一选(每小题3分,共30分)
二、细心填一填(每小题3分,共24分)
11. 12. 13. 14. 15. 16. 17. 18.
三、耐心做一做(共46分)
19.计算(每小题3分,共9分)
(1)5﹣(﹣8)﹣19 (2)36×(﹣﹣)+(﹣2)
(3)
20.先化简,再求值:﹣(x 2
+2y )﹣2(3xy ﹣y ),其中x=2,y=.(本小题4分)
21.解下列方程(每小题4分,共8分)
(1)x x -=+472 (2)3
2
231+-=--x x x
22.(6分)
23.(9分)(1) , ,
(2)
24.(10分)(1)正方形F的边长 ,正方形E的边长
正方形C 的边长 (2)
(3)
参考答案
一、精心选一选(每小题3分,共30分)
二、细心填一填(每小题3分,共24分)
11. 5.5 12. 三 13. 2 14. 1 15. -1 16. 0 17. 2 18.
1
2
+n n
三、耐心做一做(共46分)
19.(每小题3分,共9分)(1)-6 (2)0 (3)8 20.(4分) xy x 62
-- 2
21.(每小题4分,共8分)(1)1-=x (2) 1=x
22.(6分) )153()735(22+---+x x x x =8822
-+x x
∴153)735(882222-+-=-+--+x x x x x x )(
23.(9分)(1)8+x , 16+x , 24+x …………………………………3分
(2)根据题意得24424168=++++++x x x x ………………………5分 解得49=x ………………………………7分 因为49为第7行的最后一个数,所以不成框住这样的4个数。
……9分 24.(10分)(1)F 的边长:1-x E 的边长:2-x
C 的边长:3-x (或
2
1
+x )…………………………………3分 (2)根据题意得1283-=-x x 解得7=x ………………………………6分 (3)设还要y 天完成,有题意得
115
1
2)151101(=+⨯+y 解得y =10
答:还需要10天完成。
…………………………………………………10分。