初高中数学衔接教材 §3.3 圆(含答案)
- 格式:doc
- 大小:451.00 KB
- 文档页数:9
第23讲 三角函数的概念模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.借助单位圆理解三角函数(正弦、余弦、正切)的定义;2.掌握任意角的三角函数值在各象限的符号;3.会利用任意角的三角函数的定义求值;4.掌握公式一并会应用.知识点 1 任意角的三角函数的定义1、利用单位圆定义任意角的三角函数设α是一个任意角,它的终边OP 与单位圆交于点()y x P ,.三角函数定义记作符号表示正弦函数点P 的纵坐标sin αsin y α=余弦函数点P的横坐标cosαcos x α=正切函数点P 的纵坐标与横坐标的比值tan αtan (0)yx xα=≠我们将正弦函数、余弦函数、和正切函数统称为三角函数,通常将它们记为:正弦函数sin ,y x x R=∈余弦函数cos ,y x x R=∈正切函数()tan ,2y x x k k Z ππ=≠+∈2、用角的终边上点的坐标表示三角函数如图,设若α是一个任意角,它的终边上任意一点P (不与原点重合)的坐标为(),x y ,点P 到原点的距离为(r r =,则sin y rα=,cos x r α=,tan y x α=.【注意】三角函数值的大小只与角的大小有关,与终边上点P 的位置无关.知识点 2 三角函数的定义域和函数值的符号1、三角函数的定义域三角函数定义域sin α{}R αα∈cos α{}R αα∈tan α,2k k Z πααπ⎧⎫≠+∈⎨⎬⎩⎭【说明】单位圆上,x y 的取值范围是[1,1]-,根据正弦函数、余弦函数的定义,我们可以得到正弦函数、余弦函数的值域.2、三角函数值在各象限的符号根据三角函数的定义以及单位圆上点的位置(在哪个象限),可以得到正弦函数、余弦函数、正切函数的值在各个象限的符号,如下图.由于原点到角的终边上任意一点的距离r 是正值,根据三角函数的定义,值(1)正弦函数值的符号取决于纵坐标y 的符号;(2)余弦函数值的符号取决于横坐标x 的符号;(3)正切函数值的符号取决于由,x y 的符号共同决定,即,x y 同号为正,异号为负.【三角函数值的符号记忆】“一全正,二正弦,三正切,四余弦”.其含义是:第一象限中各三角函数值全是正数,第二象限中只有正弦值为正数,第三象限中只有正切值为正,第四象限中只有余弦值为正.知识点 3 终边相同的角的三角函数值1、公式一:由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一:απαsin )2sin(=+k απαcos )2cos(=+k απαtan )2(tan =+k 其中Zk ∈注意:(1)利用诱导公式一,可以把求任意角的三角函数值,转化为求0~2π(或0°~360°)范围内角的三角函数值.(2公式一统一概括为f (k ·2π+α)=f (α)(k ∈Z),或f (k ·360°+α)=f (α)(k ∈Z).其特征是:等号两边是同名函数,且符号相同,即同名同号.2、特殊角的三角函数值0°30°45°60°90°120°135°150°180°270°6π4π3π2π32π43π65ππ23πsin α21222312322210-1cos α12322210-21-22-23-10tan α33133--133-知识点 4 三角函数定义的应用1、已知角α的终边上一点P 的坐标,求角α的三角函数值方法:先求出点P 到原点的距离,再利用三角函数的定义求解;2、已知角α的一个三角函数值和终边上的点P 的横坐标或纵坐标,求与角α有关的三角函数值方法:先求出点P 到原点的距离(带参数),根据已知三角函数值及三角函数的定义建立方程,求出未知数,从而求解问题;3、已知角α的终边所在的直线方程(y kx =,0k ≠),求角α的三角函数值方法:先设出终边上的一点()(),0P a ka a ≠,求出点P 到原点的距离,再利用三角函数的定义求解(注意α的符号,对α分类讨论)考点一:由终边上的点求三角函数值例1.(23-24高一下·河南洛阳·期末)已知角α的顶点在坐标原点,始边在x 轴非负半轴上,点()6,8P --为角α终边上一点,则cos α=( )A .45B .45-C .35D .35-【变式1-1】(23-24高一下·辽宁·月考)若角α的终边经过点()1,2-,则3232sin 3cos sin 6cos 2sin cos αααααα++=-( )A .BC .12D .110【变式1-2】(23-24高一下·上海奉贤·期中)已知钝角α的终边上的一点()4,3k k -,则sin α=.【变式1-3】(23-24高一下·河北张家口·月考)已知角α的终边落在直线12y x =-上,求sin α,cos α,tan α的值.考点二:由三角函数值求终边上点的参数例2.(23-24高一上·广东揭阳·月考)在平面直角坐标系中,点M (3,)m 在角α的终边上,若sin α=m =( )A .6-或1B .1-或6C .6D .1【变式2-1】(23-24高一下·河南南阳·期中)已知角θ的终边经过点(,1)P m -,且3cos 5θ=-,则m =( )A .43-B .34-C .43±D .34±【变式2-2】(23-24高一下·江西抚州·期中)已知角α的终边经过点()3,m -,若2tan 3α=,则sin α=( )A .BC .D 【变式2-3】(23-24高一上·广东肇庆·期末)已知角α的终边经过点(5,)P t ,且12sin 13α=-,则tan α=.考点三:判断三角函数值的符号例3.(23-24高一下·云南保山·期中)(多选)下列选项中,符号为负的是( )A .3πsin2B .3πcos2C .tan 2D .cos2【变式3-1】(23-24高一下·辽宁大连·月考)已知()cos2,tan1P ,则点P 所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【变式3-2】(23-24高一下·江西南昌·月考)已知角,A B 是三角形ABC 的两个内角,则点()cos ,cos P A B ( )A .不可能在第一象限B .不可能在第二象限C .不可能在第三象限D .不可能在第四象限【变式3-3】(23-24高一下·贵州遵义·月考)(多选)若角α的终边在第三象限,则sin 2cos 3tan 222sincostan222αααααα+-的值可能为( )A .0B .2C .4D .4-考点四:由符号确定角所在的象限例4.(23-24高一上·宁夏吴忠·期末)若cos tan 0θθ<,则θ是第象限角.【变式4-1】(23-24高一下·北京·期中)若θ满足sin 0,tan 0θθ<>,则θ的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限【变式4-2】(22-23高一下·山西大同·月考)已知 sin cos 0αα<,且cos 0α>,则角α的终边位于( )A .第一象限B .第二象限C .第三象限D .第四象限【变式4-3】(23-24高一下·上海·月考)若θ终边不在坐标轴上,且cos cos sin sin 1θθθθ+=-,则θ在( )A .第一象限B .第二象限C .第三象限D .第四象限考点五:圆上的动点与旋转点例5.(23-24高一上·安徽六安·期末)如图所示,在平面直角坐标系xOy 中,动点P 、Q 从点()1,0A 出发在单位圆上运动,点P 按逆时针方向每秒钟转π12弧度,点Q 按顺时针方向每秒钟转11π12弧度,则P 、Q 两点在第4次相遇时,点P 的坐标是()A .1,2⎛ ⎝B .12⎛ ⎝C .12⎛- ⎝D .12⎛- ⎝【变式5-1】(23-24高一上·湖北荆州·期末)单位圆上一点P 从()0,1出发,逆时针方向运动π6弧长到达Q 点,则Q 点的坐标为( )A .12⎛- ⎝B .12⎫⎪⎪⎭C .21⎫-⎪⎪⎭D .21⎛⎫⎪ ⎪⎝⎭【变式5-2】(23-24高一上·福建莆田·期末)如图所示,在平面直角坐标系xOy 中,动点P 、Q 从点()1,0A 出发在单位圆上运动,点P 按逆时针方向每秒钟转π12弧度,点Q 按顺时针方向每秒钟转11π12弧度,则P 、Q 两点在第1804次相遇时,点P 的坐标是 .【变式5-3】(22-23高一下·山西忻州·开学考试)在直角坐标系xOy 中,若点P 从点()3,0出发,沿圆心在原点,半径为3的圆按逆时针方向运动11π6到达点Q ,则点Q 的坐标为( )A .32⎛⎫⎪⎝⎭B .32⎛- ⎝C .32⎫-⎪⎪⎭D .3,2⎛ ⎝考点六:诱导公式一的应用例6.(23-24高一下·江西吉安·月考)sin300cos0︒︒的值为( )A .0B .12C .12-D .【变式6-1】(23-24高一下·黑龙江绥化·月考)()sin 1050-︒=( )A .12B C .12-D .【变式6-2】(22-23高一下·辽宁葫芦岛·期末)17sin4π的值为( )A .BC .D 【变式6-3】(23-24高一下·河南南阳·月考)29πsin 3⎛⎫-= ⎪⎝⎭( )A .B .12-C D .12一、单选题1.(23-24高一下·河南·月考)若角α的终边经过点(P -,则sin α=( )A B .C D .2.(23-24高一下·贵州仁怀·月考)()cos 300-︒的值( )A .12-B .CD .123.(23-24高一下·河南南阳·期末)已知角α的终边经过点()()4,0m m ≠,且sin 5mα=,则m =( )A .3B .3±C .5D .5±4.(23-24高一下·广西桂林·月考)若角α的终边经过点()1,2sin A α-,且()0,πα∈,则α=( )A .π6B .π3C .5π6D .2π35.(23-24高一下·北京·月考)已知角α终边上有一点(2sin 3,2cos3)P -,则α为( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角6.(23-24高一上·浙江杭州·月考)点P 从()0,1-出发,沿着单位圆的边界顺时针运动8π3弧长到达点Q ,则点Q 的坐标为( )A .12⎫⎪⎪⎭B .12⎛ ⎝C .12⎛- ⎝D .21⎛⎫⎪ ⎪⎝⎭二、多选题7.(23-24高一下·江西吉安·月考)下列函数值中,符号为负的为( )A .7sin π3B .πcos 4⎛⎫- ⎪⎝⎭C .2π2πsincos 33D .tan28.(23-24高一上·福建泉州·月考)若角α的终边经过点()3,4(0)P t t t ->,则下列结论正确的是( )A .α是第二象限角B .α是钝角C .4tan 3α=-D .点()cos ,sin αα在第二象限三、填空题9.(23-24高一上·陕西咸阳·月考)已知角α的顶点在坐标原点,始边在x 轴的正半轴上,终边与单位圆交于第四象限的点P ,且点P 的横坐标为12,则sin α= .10.(23-24高一下·河南·月考)已知角θ的终边经过点(4,)P m ,若sin θ=,则实数m =.11.(23-24高一上·内蒙古兴安盟·期末)已知tan 0x <且cos 0x <,则x 的终边在第 象限.四、解答题12.(23-24高一下·江西宜春·月考)已知角α的终边在直线y x =上,求sin cos αα+的值.13.(23-24高一上·云南昆明·月考)在平面直角坐标系xOy 中,单位圆221x y +=与x 轴的正半轴及负半轴分别交于点A ,B ,角α的始边为x 轴的非负半轴,终边与单位圆交于x 轴下方一点P .(1)如图,若120POB ∠=︒,求点P 的坐标;(2)若点P 的横坐标为sin α的值.第23讲 三角函数的概念模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.借助单位圆理解三角函数(正弦、余弦、正切)的定义;2.掌握任意角的三角函数值在各象限的符号;3.会利用任意角的三角函数的定义求值;4.掌握公式一并会应用.知识点 1 任意角的三角函数的定义1、利用单位圆定义任意角的三角函数设α是一个任意角,它的终边OP 与单位圆交于点()y x P ,.三角函数定义记作符号表示正弦函数点P 的纵坐标sin αsin y α=余弦函数点P 的横坐标cos αcos x α=正切函数点P 的纵坐标与横坐标的比值tan αtan (0)yx xα=≠我们将正弦函数、余弦函数、和正切函数统称为三角函数,通常将它们记为:正弦函数sin ,y x x R=∈余弦函数cos ,y x x R=∈正切函数()tan ,2y x x k k Z ππ=≠+∈2、用角的终边上点的坐标表示三角函数如图,设若α是一个任意角,它的终边上任意一点P (不与原点重合)的坐标为(),x y ,点P 到原点的距离为(r r =,则sin y rα=,cos x r α=,tan y x α=.【注意】三角函数值的大小只与角的大小有关,与终边上点P 的位置无关.知识点 2 三角函数的定义域和函数值的符号1、三角函数的定义域三角函数定义域sin α{}R αα∈cos α{}R αα∈tan α,2k k Z πααπ⎧⎫≠+∈⎨⎬⎩⎭【说明】单位圆上,x y 的取值范围是[1,1]-,根据正弦函数、余弦函数的定义,我们可以得到正弦函数、余弦函数的值域.2、三角函数值在各象限的符号根据三角函数的定义以及单位圆上点的位置(在哪个象限),可以得到正弦函数、余弦函数、正切函数的值在各个象限的符号,如下图.由于原点到角的终边上任意一点的距离r 是正值,根据三角函数的定义,值(1)正弦函数值的符号取决于纵坐标y 的符号;(2)余弦函数值的符号取决于横坐标x 的符号;(3)正切函数值的符号取决于由,x y 的符号共同决定,即,x y 同号为正,异号为负.【三角函数值的符号记忆】“一全正,二正弦,三正切,四余弦”.其含义是:第一象限中各三角函数值全是正数,第二象限中只有正弦值为正数,第三象限中只有正切值为正,第四象限中只有余弦值为正.知识点 3 终边相同的角的三角函数值1、公式一:由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一:απαsin )2sin(=+k απαcos )2cos(=+k απαtan )2(tan =+k 其中Zk ∈注意:(1)利用诱导公式一,可以把求任意角的三角函数值,转化为求0~2π(或0°~360°)范围内角的三角函数值.(2公式一统一概括为f (k ·2π+α)=f (α)(k ∈Z),或f (k ·360°+α)=f (α)(k ∈Z).其特征是:等号两边是同名函数,且符号相同,即同名同号.2、特殊角的三角函数值0°30°45°60°90°120°135°150°180°270°6π4π3π2π32π43π65ππ23πsin α021222312322210-1cos α12322210-21-22-23-10tan α33133--133-知识点 4 三角函数定义的应用1、已知角α的终边上一点P 的坐标,求角α的三角函数值方法:先求出点P 到原点的距离,再利用三角函数的定义求解;2、已知角α的一个三角函数值和终边上的点P 的横坐标或纵坐标,求与角α有关的三角函数值方法:先求出点P 到原点的距离(带参数),根据已知三角函数值及三角函数的定义建立方程,求出未知数,从而求解问题;3、已知角α的终边所在的直线方程(y kx =,0k ≠),求角α的三角函数值方法:先设出终边上的一点()(),0P a ka a ≠,求出点P 到原点的距离,再利用三角函数的定义求解(注意α的符号,对α分类讨论)考点一:由终边上的点求三角函数值例1.(23-24高一下·河南洛阳·期末)已知角α的顶点在坐标原点,始边在x 轴非负半轴上,点()6,8P --为角α终边上一点,则cos α=( )A .45B .45-C .35D .35-【答案】D【解析】因为点()6,8P --为角α终边上,故3cos 5α==-,故选:D.【变式1-1】(23-24高一下·辽宁·月考)若角α的终边经过点()1,2-,则3232sin 3cos sin 6cos 2sin cos αααααα++=-( )A.BC .12D .110【答案】D【解析】因为角α的终边经过点()1,2-,所以sin α==cos α==所以3232sin 3cos sin 6cos 2sin cos αααααα++-3232311065525⎛⎝⎭=+ ⎛⎫⎝⎭-⨯ ⎪⎝⎭⎝⎝⎭=-⎭.故选:D【变式1-2】(23-24高一下·上海奉贤·期中)已知钝角α的终边上的一点()4,3k k -,则sin α= .【答案】35/0.6【解析】因为钝角α的终边上的一点()4,3P k k -,所以0k <,则5OP k =-,故33sin 55k k α-==-,故答案为:35【变式1-3】(23-24高一下·河北张家口·月考)已知角α的终边落在直线12y x =-上,求sin α,cos α,tan α的值.【答案】答案见解析【解析】因为角α的终边落在直线12y x =-上,而直线即过第二象限也过第四象限,当角α的终边在第二象限时,在直线上取一点()2,1-,则11sin tan 22ααα======--,当角α的终边在第四象限时,在直线上取一点()2,1-,则11sin tan22ααα-======-.考点二:由三角函数值求终边上点的参数例2.(23-24高一上·广东揭阳·月考)在平面直角坐标系中,点M (3,)m 在角α的终边上,若sin α=m =( )A .6-或1B .1-或6C .6D .1【答案】C【解析】因点M (3,)m 在角α的终边上,则sin α==0m >,解得,6m =.故选:C.【变式2-1】(23-24高一下·河南南阳·期中)已知角θ的终边经过点(,1)P m -,且3cos 5θ=-,则m =( )A .43-B .34-C .43±D .34±【答案】B【解析】由题知3cos 5θ==-,解得34m =-.故选:B.【变式2-2】(23-24高一下·江西抚州·期中)已知角α的终边经过点()3,m -,若2tan 3α=,则sin α=( )A .BC .D 【答案】A【解析】因为角α的终边经过点()3,m -,且2tan 3α=,所以2tan 33m α=-=,解得2m =-,所以sin α=故选:A.【变式2-3】(23-24高一上·广东肇庆·期末)已知角α的终边经过点(5,)P t ,且12sin 13α=-,则tan α= .【答案】125-【解析】由角α的终边经过点(5,)P t ,可得r OP ==因为12sin 13α=-1213=-,所以12t =-,所以12tan 5α=-.故答案为:125-.考点三:判断三角函数值的符号例3.(23-24高一下·云南保山·期中)(多选)下列选项中,符号为负的是( )A .3πsin2B .3πcos2C .tan 2D .cos2【答案】ACD 【解析】3πsin12=-,3πcos 02=,故A 正确,B 错误;因为π2π2<<,是第二象限角,所以tan 20<,cos 20<,故C 、D 正确.故选:ACD .【变式3-1】(23-24高一下·辽宁大连·月考)已知()cos2,tan1P ,则点P 所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】180157.3π=≈,故tan10>;18022114.6π=⨯≈,故cos2<0.故点P 在第二象限.故选:B【变式3-2】(23-24高一下·江西南昌·月考)已知角,A B 是三角形ABC 的两个内角,则点()cos ,cos P A B ( )A .不可能在第一象限B .不可能在第二象限C .不可能在第三象限D .不可能在第四象限【答案】C【解析】对于A ,当角,A B 是锐角时,cos 0,cos 0A B >>,点P 在第一象限,错误;对于B ,当角A 是钝角,角B 是锐角时,cos 0,cos 0A B <>,点P 在第二象限,错误;对于C ,因三角形最多有一个钝角,故cos A 与cos B 不可能同时小于0,即点P 不可能在第三象限,正确;对于D ,当角A 是锐角,角B 是钝角时,cos 0,cos 0A B ><,点P 在第四象限,错误.故选:C【变式3-3】(23-24高一下·贵州遵义·月考)(多选)若角α的终边在第三象限,则sin 2cos 3tan 222sincostan222αααααα+-的值可能为( )A .0B .2C .4D .4-【答案】BC【解析】由角α的终边在第三象限,得ππ2π2π,Z 2k k k α-+<<-+∈,则ππππ,Z 224k k k α-+<<-+∈,因此2α是第二象限角或第四象限角,当2α是第二象限角时,sin2cos 3tan 22212(3)2sincostan222αααααα+-=---=,当2α是第四象限角时,sin2cos 3tan 22212(3)4sincostan222αααααα+-=-+--=.故选:BC考点四:由符号确定角所在的象限例4.(23-24高一上·宁夏吴忠·期末)若cos tan 0θθ<,则θ是第象限角.【答案】三或四【解析】由于cos tan 0θθ<,所以cos tan θθ,一正一负,当θ是第一象限角时,cos tan θθ,均为正数,不符合,当θ是第二象限角时,cos tan θθ,均为负数,不符合,当θ是第三,或者第四象限角时,cos tan θθ,一正一负,符合,故答案为:三或四【变式4-1】(23-24高一下·北京·期中)若θ满足sin 0,tan 0θθ<>,则θ的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】由sin 0θ<可知θ的终边在第三象限或第四象限或y 轴负半轴上,由tan 0θ>,可知θ的终边在第一象限或在第三象限,则θ的终边在第三象限,故选:C.【变式4-2】(22-23高一下·山西大同·月考)已知 sin cos 0αα<,且cos 0α>,则角α的终边位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】因为sin cos 0αα<,且cos 0α>,所以sin 0α<,即角α的终边位于第四象限.故选:D.【变式4-3】(23-24高一下·上海·月考)若θ终边不在坐标轴上,且cos cos sin sin 1θθθθ+=-,则θ在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】因为()22cos cos sin sin 1sin cos θθθθθθ+=-=-+,所以sin sin cos cos ,θθθθ=--=,所以cos 0,sin 0θθθ≤≤,终边不在坐标轴上所以θ在第三象限.故选:C.考点五:圆上的动点与旋转点例5.(23-24高一上·安徽六安·期末)如图所示,在平面直角坐标系xOy 中,动点P 、Q 从点()1,0A 出发在单位圆上运动,点P 按逆时针方向每秒钟转π12弧度,点Q 按顺时针方向每秒钟转11π12弧度,则P 、Q 两点在第4次相遇时,点P 的坐标是( )A .1,2⎛ ⎝B .12⎛ ⎝C .12⎛- ⎝D .12⎛- ⎝【答案】C【解析】相遇时间为π11π42π81212t ⎛⎫=⨯÷+= ⎪⎝⎭秒,故P 转过的角度为π2π8123⨯=,其对应的坐标为2π2πcos ,sin 33⎛⎫ ⎪⎝⎭,即12⎛- ⎝.故选:C【变式5-1】(23-24高一上·湖北荆州·期末)单位圆上一点P 从()0,1出发,逆时针方向运动π6弧长到达Q 点,则Q 点的坐标为( )A .12⎛- ⎝B .12⎫⎪⎪⎭C .21⎫-⎪⎪⎭D .21⎛⎫⎪ ⎪⎝⎭【答案】A【解析】点P 从()0,1出发,沿单位圆逆时针方向运动π6弧长到达Q 点,所以π23π2π6QOx ∠=+=, 所以cos ,sin 32π32πQ ⎛⎫ ⎪⎝⎭,其中1cos,sin 3232π2π=-=Q 点的坐标为12⎛- ⎝.故选:A.【变式5-2】(23-24高一上·福建莆田·期末)如图所示,在平面直角坐标系xOy 中,动点P 、Q 从点()1,0A 出发在单位圆上运动,点P 按逆时针方向每秒钟转π12弧度,点Q 按顺时针方向每秒钟转11π12弧度,则P 、Q 两点在第1804次相遇时,点P 的坐标是 .【答案】12⎛- ⎝【解析】相遇时间为π11π18042π36081212t ⎛⎫=⨯÷+= ⎪⎝⎭秒,故P 转过的角度为π2π3608300π123⨯=+,故对应坐标为2π2πcos ,sin 33⎛⎫ ⎪⎝⎭,即12⎛- ⎝.故答案为:12⎛- ⎝【变式5-3】(22-23高一下·山西忻州·开学考试)在直角坐标系xOy 中,若点P 从点()3,0出发,沿圆心在原点,半径为3的圆按逆时针方向运动11π6到达点Q ,则点Q 的坐标为( )A .32⎛⎫⎪⎝⎭B .32⎛- ⎝C .32⎫-⎪⎪⎭D .3,2⎛ ⎝【答案】C【解析】根据题意可知,作出图示如下:根据题意可得3OP =,π6POQ ∠=,作1Q Q x ⊥轴且垂足为1Q ;利用三角函数定义可得13cos OQ POQ =⨯∠=133sin 2QQ POQ =⨯∠=;又Q 点在第四象限,所以点Q 的坐标为32⎫-⎪⎪⎭.故选:C考点六:诱导公式一的应用例6.(23-24高一下·江西吉安·月考)sin300cos0︒︒的值为( )A .0B .12C .12-D .【答案】D【解析】()()sin300cos0sin 300360sin 60sin60︒︒=︒-︒=-︒=-︒=.故选:D .【变式6-1】(23-24高一下·黑龙江绥化·月考)()sin 1050-︒=( )A .12B C .12-D .【答案】A【解析】()()1sin 1050sin1050sin 336030sin 302-︒=-︒=-⨯︒-︒=︒=.故选:A 【变式6-2】(22-23高一下·辽宁葫芦岛·期末)17sin4π的值为( )A .BC .D 【答案】D【解析】17ππsinsin 4πsin 444π⎛⎫=+= ⎪⎝⎭故选:D.【变式6-3】(23-24高一下·河南南阳·月考)29πsin 3⎛⎫-= ⎪⎝⎭( )A .B .12-C D .12【答案】C【解析】29πππsin sin 10πsin 333⎛⎫⎛⎫-=-+==⎪ ⎪⎝⎭⎝⎭故选:C一、单选题1.(23-24高一下·河南·月考)若角α的终边经过点(P -,则sin α=( )A B .C D .【答案】C【解析】因为角α的终边经过点(P -,所以sin y r α===.故选:C .2.(23-24高一下·贵州仁怀·月考)()cos 300-︒的值( )A .12-B .CD .12【答案】D【解析】()()1cos 300cos 36060cos 602-︒=-︒+︒=︒=,故选:D 3.(23-24高一下·河南南阳·期末)已知角α的终边经过点()()4,0m m ≠,且sin 5m α=,则m =( )A .3B .3±C .5D .5±【答案】B【解析】因为已知角α的终边经过点()()4,0m m ≠,且sin 5m α=,所以sin 5mα==,解得3m =±,故选:B.4.(23-24高一下·广西桂林·月考)若角α的终边经过点()1,2sin A α-,且()0,πα∈,则α=( )A .π6B .π3C .5π6D .2π3【答案】D【解析】由三角函数定义可得sin α=因为()0,π,sin 0αα∈>,所以1=sin α=,易知,点A 在第二象限,所以2π3α=.故选:D 5.(23-24高一下·北京·月考)已知角α终边上有一点(2sin 3,2cos3)P -,则α为( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】A 【解析】依题意,π3π2<<,则sin 30,cos30><,即2sin 30,2cos30>->,所以点P 在第一象限,即α为第一象限角.故选:A6.(23-24高一上·浙江杭州·月考)点P 从()0,1-出发,沿着单位圆的边界顺时针运动8π3弧长到达点Q ,则点Q 的坐标为( )A .12⎫⎪⎪⎭B .12⎛ ⎝C .12⎛- ⎝D .21⎛⎫⎪ ⎪⎝⎭【答案】D【解析】由题意,以x 轴的非负半轴为始边,以Q 所在的射线OQ 为终边的最小正角为5π6,由任意角的三角函数的定义可得,Q 的坐标为5π5π(cos,sin )66,即1()2,故选:D.二、多选题7.(23-24高一下·江西吉安·月考)下列函数值中,符号为负的为( )A .7sin π3B .πcos 4⎛⎫- ⎪⎝⎭C .2π2πsincos 33D .tan2【答案】CD【解析】7ππ2π33=+ ,7π3∴是第一象限角,7sin π03>∴,∵π4-是第四象限角,∴πcos 04⎛⎫-> ⎪⎝⎭;∵2π3是第二象限角,∴2π2πsin0,cos 033><,∴2π2πsin cos 033<;∵π2π2<<,∴2是第二象限角,∴tan20<.故选:CD.8.(23-24高一上·福建泉州·月考)若角α的终边经过点()3,4(0)P t t t ->,则下列结论正确的是( )A .α是第二象限角B .α是钝角C .4tan 3α=-D .点()cos ,sin αα在第二象限【答案】ACD【解析】由点()3,4(0)P t t t ->在第二象限,可得α是第二象限角,但不一定是钝角,A 正确,B 错误;44tan 33t t α==--,C 正确;由sin 0α>,cos 0α<,则点()cos ,sin αα在第二象限,D 正确.故选:ACD.三、填空题9.(23-24高一上·陕西咸阳·月考)已知角α的顶点在坐标原点,始边在x 轴的正半轴上,终边与单位圆交于第四象限的点P ,且点P 的横坐标为12,则sin α= .【答案】【解析】依题意,设点1(,),02P y y <,由221(12y +=,得y =sin α=故答案为:10.(23-24高一下·河南·月考)已知角θ的终边经过点(4,)P m ,若sin θ=,则实数m =.【答案】2-【解析】由于角θ的终边经过点(4,)P m ,由角θ正弦的定义得:sin θ=sin θ=,=,解方程得:2254m m =+,即24m =,得2m =±,0=<,则0m <,所以2m =-.故答案是:2-.11.(23-24高一上·内蒙古兴安盟·期末)已知tan 0x <且cos 0x <,则x 的终边在第 象限.【答案】二【解析】由tan 0x <,得角x 的终边所在的象限是第二、四象限,因为cos 0x <,所以角x 的终边在第二、三象限或x 轴非正半轴上,由于上述条件要同时成立,所以x 的终边在第二象限;故答案为:二四、解答题12.(23-24高一下·江西宜春·月考)已知角α的终边在直线y x =上,求sin cos αα+的值.【解析】由题意可设角α的终边上任意一点(),A x x ,则由三角函数的定义有sin cos αα===,当0x >时,sin cosαα+==当0x <时,sin cosαα⎛+=+= ⎝.故sin cos αα+=13.(23-24高一上·云南昆明·月考)在平面直角坐标系xOy 中,单位圆221x y +=与x 轴的正半轴及负半轴分别交于点A ,B ,角α的始边为x 轴的非负半轴,终边与单位圆交于x 轴下方一点P .(1)如图,若120POB ∠=︒,求点P 的坐标;(2)若点P 的横坐标为sin α的值.【答案】(1)1,2⎛ ⎝;(2)【解析】(1)过P 点作PC OA ⊥于C 点,若120POB ∠=︒,则60POC ∠=︒,又1OP =,则1,2OC CP ==由题意点P 在第四象限,所以P 的坐标为1,2⎛ ⎝.(2)由题意设P y ⎛⎫⎪ ⎪⎝⎭,∵点P 在单位圆221x y +=上,且在x 轴下方,∴221y ⎛+= ⎝,且0y <,解得y =∴sin y α==。
第三讲 三角形与圆3.1 相似形3.1.1.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例. 如图3.1-2,123////l l l ,有AB D E BC EF =.当然,也可以得出AB DEAC DF=.在运用该定理解决问题的过程中,我们一定要注意线段之间的对应关系,是“对应”线段成比例.例1 如图3.1-2, 123////l l l , 且2,3,4,AB BC DF ===求,DE EF .例2 在ABC 中,,D E 为边,AB AC 上的点,//DE BC ,求证:AD AE DEAB AC BC==. 平行于三角形的一边的直线截其它两边(或两边的延长线),所得的对应线段成比例. 平行于三角形的一边,并且和其它两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.例3 在ABC V 中,AD 为BAC Ð的平分线,求证:AB BDAC DC=. 例3的结论也称为角平分线性质定理,可叙述为角平分线分对边成比例(等于该角的两边之比).练习11.如图 3.1-6,123////l l l ,下列比例式正确的是( )A .ADCE DF BC = B .ADBCBE AF = C .CEAD DFBC = D.AFBEDF CE=2.如图3.1-7,//,//,DE BC EF AB 5,AD cm =3,2,DB cm FC cm ==求BF .3.如图,在ABC V 中,AD 是角BAC 的平分线,AB =5cm,AC =4cm,BC =7cm,求BD 的长.图3.1-6图3.1-7图3.1-83.1.2.相似形我们学过三角形相似的判定方法,想一想,有哪些方法可以判定两个三角形相似?有哪些方法可以判定两个直角三角形相似?例6 如图3.1-12,在直角三角形ABC 中,BAC Ð为直角,AD BC D ^于.求证:(1)2AB BD BC =?,2AC CD CB =?; (2)2AD BD CD =? 练习21.如图3.1-15,D 是ABC V 的边AB 上的一点,过D 点作DE //BC 交AC 于E .已知AD :DB =2:3,则:ADE BCDE S S V 四边形等于( ) A .2:3 B .4:9 C .4:5 D .4:212.若一个梯形的中位线长为15,一条对角线把中位线分成两条线段.这两条线段的比是3:2,则梯形的上、下底长分别是__________.3.已知:ABC V 的三边长分别是3,4,5,与其相似的'''A B C V 的最大边长是15,求'''A B C 的面积'''A B C S V .4.已知:如图3.1-16,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.(1) 请判断四边形EFGH 是什么四边形,试说明理由; (2) 若四边形ABCD 是平行四边形,对角线AC 、BD 满足什么条件时,EFGH 是菱形?是正方形?图3.1-15图3.1-16习题3.11. 如图3.1-18,ABC V 中,AD =DF =FB ,AE =EG =GC ,FG =4,则( )A .DE =1,BC =7B .DE =2,BC =6 C .DE =3,BC =5D .DE =2,BC =82. 如图3.1-19,BD 、CE 是ABC V 的中线,P 、Q 分别是BD 、CE 的中点,则:PQ BC 等于( ) A .1:3 B .1:4 C .1:5 D .1:63. 如图3.1-20,ABCD Y 中,E 是A B 延长线上一点,DE 交BC 于点F ,已知BE :AB =2:3,4BEF S =V ,求CDF S V .4. 如图3.1-21,在矩形ABCD 中,E 是CD 的中点,BE AC^交AC 于F ,过F 作FG //AB 交AE 于G ,求证:2AG AF FC =?.图3.1-18图3.1-19图3.1-20图3.1-213.2 三角形 3.2.1 三角形的“四心”三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重心在三角形的内部,恰好是每条中线的三等分点.例1 求证三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1. 已知 D 、E 、F 分别为ABC V 三边BC 、CA 、AB 的中点, 求证 AD 、BE 、CF 交于一点,且都被该点分成2:1.三角形的三条角平分线相交于一点,是三角形的内心. 三角形的内心在三角形的内部,它到三角形的三边的距离相等.(如图3.2-5)例2 已知ABC V 的三边长分别为,,BC a AC b AB c ===,I 为ABC V 的内心,且I 在ABC V 的边BC AC AB 、、上的射影分别为D E F 、、,求证:2b c aAE AF +-==.三角形的三条高所在直线相交于一点,该点称为三角形的垂心.锐角三角形的垂心一定在三角形的内部,直角三角形的垂心为他的直角顶点,钝角三角形的垂心在三角形的外部.(如图3.2-8)图3.2-3图3.2-8图3.2-5例4 求证:三角形的三条高交于一点.已知 ABC V 中,,AD BC D BE AC E ^^于于,AD 与BE 交于H 点.求证 C H A B ^.过不共线的三点A 、B 、C 有且只有一个圆,该圆是三角形ABC 的外接圆,圆心O 为三角形的外心.三角形的外心到三个顶点的距离相等,是各边的垂直平分线的交点.练习11.求证:若三角形的垂心和重心重合,求证:该三角形为正三角形.2. (1) 若三角形ABC 的面积为S ,且三边长分别为a b c 、、,则三角形的内切圆的半径是___________;(2)若直角三角形的三边长分别为a b c 、、(其中c 为斜边长),则三角形的内切圆的半径是___________. 并请说明理由.练习21. 直角三角形的三边长为3,4,x ,则x =________.2. 等腰三角形有两个内角的和是100°,则它的顶角的大小是_________.3. 已知直角三角形的周长为3 1,求这个三角形的面积.习题3.2A 组1. 已知:在ABC 中,AB =AC ,120,o BAC AD ∠=为BC 边上的高,则下列结论中,正确的是()A .AD AB =B .12AD AB =C .AD BD = D .AD BD =2. 三角形三边长分别是6、8、10,那么它最短边上的高为( ) A .6 B .4.5 C .2.4 D .83. 如果等腰三角形底边上的高等于腰长的一半,那么这个等腰三角形的顶角等于_________.4. 已知:,,a b c 是ABC 的三条边,7,10a b ==,那么c 的取值范围是_________。
初高中数学衔接教材参考答案第一讲 数与式的运算例1. 解:原式=22]31)2([+-+x x例2. 解:原式=333322)(])()()][([b a b a b b a a b a -=-+=-+---+例3. 解:(1)原式=333644m m +=+例7. 解:(1) 原式6==-(2) 原式ab(3) 原式=-+=-例8. 解:(1) 原式=22(1()21a b a +--+=--+(2) 原式=+=+例9.解:77 14,123x y x y xy ===+=-⇒+==-原式=2222()()()[()3]14(143)2702x y x xy y x y x y xy +-+=++-=-=例10. 解法一:1.3.4.-5.例1. 解:(1) 333282(2)(42)x x x x x +=+=+-+(2) 333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b -=-=-+⨯+例2. 解:(1) 3433223813(27)3(3)(39)a b b b a b b a b a ab b -=-=-++.(2) 76663333()()()a ab a a b a a b a b -=-=+-例3. 解:21052(5)(5)(5)(2)ax ay by bx a x y b x y x y a b -+-=---=--例4. 解:22222222()()ab c d a b cd abc abd a cd b cd ---=--+ 例5. 解:22()()()()()x y ax ay x y x y a x y x y x y a -++=+-++=+-+例6. 解:22222224282(24)x xy y z x xy y z ++-=++-例7. 解:(1)6(1)(6),(1)(6)7=-⨯--+-=-2 例8. (1) 24- 15(5)-=-例 例10. 例11. 练习1.(a +1(2645525216p -.2222()(),()(),n x x y y xy x x x y x xy y +-+-++3.(2)(1),(36)(1),(13)(2),(9)(3)x x x x x x x x --+++--+ 4.322(2)(8),(3)(2),(3)(1)(23),(3)(3)(2)n ax x x a a b a b x x x x x x x --+--+-+-++2(23)(31),(2)(415),(772)(1),(21)(35)(675)x x x y x y a b a b x x x x -+-++++-+--+5.2()(3),(21)(21),(3)(52),(256)(256)x y a y x x x x y a b a b -++--+---+第三讲 一元二次方程根与系数的关系例1. 解:(1)2 (3)42110∆=--⨯⨯=>,∴ 原方程有两个不相等的实数根.(2) 原方程可化为:241290y y -+=2 (12)4490∆=--⨯⨯=,∴ 原方程有两个相等的实数根. (3) 原方程可化为:256150x x -+=例2. 2(2)4=--例3. 例4. (4) 12||x x -====例5. 解:(1) ∵方程两实根的积为5∴ 222121[(1)]4(1)034,412154k k k k x x k ⎧∆=-+-+≥⎪⎪⇒≥=±⎨⎪=+=⎪⎩ 所以,当4k =时,方程两实根的积为5.(2) 由12||x x =得知: ①当10x ≥时,12x x =,所以方程有两相等实数根,故302k ∆=⇒=; ②当10x <时,12120101x x x x k k -=⇒+=⇒+=⇒=-,由于302k ∆>⇒>,故1k =-不合题意,舍去. 综上可得,3例6. ∴ 要使12212x x x x +-的值为整数的实数k 的整数值为2,3,5---.练习1. B 2. A 3.A 4. 3 5. 9或3-6.1或47.21(1)1650 (2)2m m ∆=+>=-8.3(1) (2)22k k ≥=第四讲 不 等 式例1. 解:原不等式可以化为:(3)(2)0x x +->,于是:3020x x +<⎧⎨-<⎩或3020x x +>⎧⎨->⎩333222x x x x x x <->-⎧⎧⇒⇒<->⎨⎨<>⎩⎩或或所以,原不等式的解是32x x <->或.例2.例3. 例4. 例5. 3(1)3k ⎪⎪-⋅=-⎪⎩例6. 解:(1) 解法(一) 原不等式可化为:解法(二) 原不等式可化为:3(23)(1)012x x x -+<⇒-<<. (2) ∵ 22131(024x x x -+=-+>原不等式可化为:303x x +≥⇒≥- 例7. 解:原不等式可化为:(35)(2)013535530002202223x x x x x x x x x x ++≥⎧--+-≤⇒≤⇒≥⇒⇒<-≥-⎨+≠+++⎩或例8. 解:原不等式可化为:(2)2m m x m ->-(1) 当202m m ->>即时,1mx >,不等式的解为1x m>; (2) 当202m m -<<即时,1mx <.无解.例9.1.(1)2.(1)x 3.5.(1)当2m >时,12m x m ->-;(2)当2m <时,12m x m -<-; (3) 当2m =时,x 取全体实数. 6.1k =- 7.1x ≠第五讲 二次函数的最值问题例1. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 例2. 解:作出函数的图象.当1x =时, 1max-=y,当2x =时, 5min-=y.由上述两例可以看到,二次函数在自变量x的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x的范围的图象形状各异.下面给出一些常见情况:例3. 解:作出函数2(2)2y x x x x=--=-在0x≥内的图象.可以看出:当1x=时,min 1y=-,无最大值.例例5.∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.练习1.4 , 14或2,322.2216lm3.(1) 有最小值3,无最大值;(2) 有最大值94,无最小值.4.当34x=时,min318y=;当2x=-时,max19y=. 5.5y≥-6.当56x =时,min 36y =-;当23x =或1时,max 3y =.7.当54t =-时,min 0y =. 第六讲 简单的二元二次方程组例1. 解:由(1)得:2y x = (3)22 例2.例3. 例4. ∴ 原方程组可化为两个二元一次方程组:22300,44x y x y xy y xy y -=+=⎧⎧⎨⎨+=+=⎩⎩. 用代入法解这两个方程组,得原方程组的解是:121233,11x x y y ==-⎧⎧⎨⎨==-⎩⎩. 例5. 解:(1) +(2)2⨯得:222236()3666x y xy x y x y x y ++=⇒+=⇒+=+=-或, (1)-(2)2⨯得:222216()1644x y xy x y x y x y +-=⇒-=⇒-=-=-或.解此四个方程组,得原方程组的解是: 例6. 解:(1) 3(2)⨯-得:313 1 (3)x y y x -=⇒=-代入(1)得:212(31)33311x x x x x x -+=⇒=⇒==-或. 分别代入(3)得:1224y y ==-或.∴ 原方程组的解是:1211x x ==-⎧⎧⎨⎨或. 练习1.(1)x y ⎧⎨⎩2. (1)⎧⎨⎩3.(1)⎧⎨⎩44x y ⎧⎨⎩4.(1) ⎧⎪⎪⎨⎪⎪⎩第七讲 分式方程和无理方程的解法例1. 解:原方程可化为:方程两边各项都乘以24x -:即2364x x -=-, 整理得:2320x x -+= 解得:1x =或2x =.检验:把1x =代入24x -,不等于0,所以1x =是原方程的解;把2x =代入24x -,等于0,所以2x =是增根.所以,原方程的解是1x =.例2. 解:设21x y x =-,则原方程可化为:2340y y --= 解得4y =或1y =-. (1)当4y =时,241x x =-,去分母,得224(1)4402x x x x x =-⇒-+=⇒=;例3. (1)(2) 例4. 移项,合并同类项得:260x x +-=解得:3x =-或2x =检验:把3x =-代入原方程,左边≠右边,所以3x =-是增根.把2x =代入原方程,左边 = 右边,所以2x =是原方程的根. 所以,原方程的解是2x =.例5. 解:3=-两边平方得:3293x x -=-+整理得:1427x x =-⇒=-两边平方得:29(3)4914x x x +=-+整理得:223220x x -+=,解得:1x =或22x =.检验:把1x =代入原方程,左边=右边,所以1x =是原方程的根. 把22x =代入原方程,左边≠右边,所以22x =是增根.所以,原方程的解是1x =.例6. 1.(1)x 2.x =3.(1)x 4.(1)5.(1)x 第八讲 直线、平面与常见立体图形例1. 解:正方体有6个面,12条棱,8个顶点,18对平行棱。
数 学代数部分第一讲 乘法公式一、知识要点1.平方差公式: 22()()a b a b a b +-=-﹒ 2.完全平方公式:222()2a b a ab b ±=±+;2222()222a b c a b c ab bc ac ++=+++++﹒3.立方和公式: 2233()()a b a ab b a b +-+=+﹒ 4.立方差公式: 2233()()a b a ab b a b -++=-﹒ 5.完全立方公式:33223()33a b a a b ab b +=+++;33223()33a b a a b ab b -=-+-﹒二、例题选讲例1、填空(1)=++-)9)(3)(3(2x x x _______________﹒ 解:原式=81)9)(9(422-=+-x x x ﹒ (2)=+--22)2()12(x x ______________﹒解:原式=383)44(144222--=++-+-x x x x x x ﹒ 例2、已知31=+xx ,求下列各式的值: (1)221x x +;(2)331xx +﹒ 解:(1)21112)1(22222++=+⋅⋅+=+xx x x x x x x Θ,7292)1(1222=-=-+=+∴x x xx ﹒ (2) 18)17(3)11)(1(12233=-⨯=+-+=+x x x x x x ﹒例3、已知2x y +=,求代数式336x y xy ++的值. 解:33226()()6x y xy x y x xy y xy ++=+-++2222(3)2()8x xy y xy x y =-++=+=﹒例4、 已知8,9,x y y z -=-=试求代数式222x y z xy yz xz ++---的值. 解:8,9,17x y y z x z -=-=∴-=Q ,2222221(222222)2x y z xy yz xz x y z xy yz xz ∴++---=++---22222211[()()()](8917)21722x y y z x z =-+-+-=++= 三、自我小结:__________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ 四、巩固练习1.计算=+-++-++-))(())(())((a c a c c b c b b a b a _________. 2.计算22()2()()()x y x y x y x y +-+-+-= . 3.2200620082004-⨯= . 4.已知2510x x -+=,则221x x += . 5.计算16842321)13)(13)(13)(13(⋅-++++= .6.计算222222221234562009201012345620092010----++++++++L +201220112012201122+-﹒7.已知2a c b +=+,则222222a b c ab bc ac ++--+= .8.已知2x y -=,求代数式336x y xy --的值.9.已知1,3x y xy -==,试求下列各式的值: (1)22;x y +(2)33.x y -第二讲 因式分解一、知识要点1.因式分解:把一个整式化为几个整式的乘积形式. 2.因式分解的基本方法:(1)提公因式法 )(c b a m mc mb ma ++=++ (2)运用公式法 常见公式有:①22()()a b a b a b -=+-, ②2222()a ab b a b ±+=±, ③3322()()a b a b a ab b ±=±+m , ④3223333()a a b ab b a b ±+±=±,⑤2222222()a b c ab ac bc a b c +++++=++, (3)十字相乘法:2()()()x a b x ab x a x b +++=++ (4)配方法、添项拆项法,分组分解法 二、例题选讲例1、 因式分解:(1)244x x -+ ;(2)38x -;(3)33)2()2(a y a x ---﹒ 解:(1)244x x -+2(2)x =-(2)38x -3322(2)(24)x x x x =-=-++(3)33)2()2(a y a x ---=)()2()2()2(333y x a a y a x +-=-+-例2 、因式分解(1)256x x -+;(2)2215x x --;(3)26136x x -+﹒ 解:(1)256x x -+(2)(3)x x =--;(2)2215x x --(25)(3)x x =+-; (3)26136x x -+(23)(32)x x =--﹒例3、 因式分解225636x xy y x y -+-+ 解:225636x xy y x y -+-+(2)(3)3(2)x y x y x y =----(2)(33)x y x y =---例4、因式分解523325a ab a b b --+ 解:523325a ab a b b --+233233()()a a b b a b =---3322()()a b a b =-- 222()()()a b a b a ab b =-+++三、自我小结:__________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ 四、巩固练习1.将下列各式分解因式: (1)32x x y -__________________________________________________________________ (2)44-x__________________________________________________________________ (3)33125x y -__________________________________________________________________ (4)1322+-x x__________________________________________________________________ (5)2(1)x a x a -++__________________________________________________________________(6)32331a a a +++__________________________________________________________________ (7)222221a b ab a b ++--+__________________________________________________________________ (8)22122512x xy y ++__________________________________________________________________ (9)2226x xy y x y ++---__________________________________________________________________ 2.已知25a b -=,346a b +=,求多项式22328a ab b --的值.第三讲 因式定理一、知识要点定理1(因式定理):若a 是一元多项式)(0111是非负整数n a x a x a x a n n n n ++⋅⋅⋅++--的根,即00111=++⋅⋅⋅++--a a a a a a a n n n n ,则多项式0111a x a x a x a n n n n ++⋅⋅⋅++--有一个因式a x -.根据因式定理,找出一元多项式的一次因式的关键是求出该多项式的一个根,对于任意的多项式,求出它的根是没有一般方法的,然而对于整系数多项式常用下面的定理来判定它是否有有理根。
黄冈中学初高中数学衔接教材{新课标人教A版}100页超权威超容量完整版典型试题举一反三理解记忆成功衔接{黄冈中学教材系列}第一部分如何做好初高中衔接 1-3页第二部分现有初高中数学知识存在的“脱节” 4页第三部分初中数学与高中数学衔接紧密的知识点 5-9页第四部分分章节讲解 10-66页第五部分衔接知识点的专题强化训练 67-100页第一部分,如何做好高、初中数学的衔接● 第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。
但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。
在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。
相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。
渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。
造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。
下面就对造成这种现象的一些原因加以分析、总结。
希望同学们认真吸取前人的经验教训,搞好自己的数学学习。
一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。
不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。
1确实,初、高中的数学语言有着显著的区别。
初中的数学主要是以形象、通俗的语言方式进行表达。
而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。
2 思维方法向理性层次跃迁。
高中数学思维方法与初中阶段大不相同。
初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。
即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。
因此,初中学习中习惯于这种机械的、便于操作的定势方式。
目录第一章数与式1.1数与式的运算1.1.1 1.1.2 1.1.3 1.1.4绝对值乘法公式二次根式分式1.2分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1根的判别式2.1.2根与系数的关系2.2 二次函数2.2.1二次函数y二ax2+bx+c的图像和性质2.2.2二次函数的三种表达方式2.2.3二次函数的应用2.3方程与不等式2.3.1二元二次方程组的解法第三章相似形、三角形、圆3.1相似形3.1.1平行线分线段成比例定理3.1.2相似三角形形的性质与判定3.2三角形3.2.1三角形的五心3.2.2解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3圆3.3.1直线与圆、圆与圆的位置关系:圆幕定理3.3.2点的轨迹3.3.3四点共圆的性质与判定3.3.4直线和圆的方程(选学)1.1数与式的运算1.1.1 .绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a| 0, a 0,a, a 0.绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:|a b表示在数轴上,数a和数b之间的距离.例1解不等式:|x 1 x 3 >4.解法一:由x 1 0 ,得x 1 ;由x 3 0,得x 3 ;①若x 1,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得X V0,又x v 1 ,二x v 0;②若1 x 2,不等式可变为(x 1) (x 3) 4 ,即1> 4,二不存在满足条件的x;③若x 3,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得x>4.又x>3二x>4.综上所述,原不等式的解为x V0, 或x>4.解法二:如图1. 1- 1, x 1表示x轴上坐标为x的点P到坐标为1的点A之间的距离|RA|,即|RA| = |x- 1|; |x-3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|= |x- 3|.所以,不等式x 1 x 3 >4的几何意义即为|RA| + |PB|> 4.由|AB|= 2,可知点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.x V0,或x>4.P 丄CL A 丄BLDL---- x0134x V|x-3||x- 1|图1. 1-12.2练 1. 2.3. 习 填空: (1) 若 x (2) 如果|a b 选择题: 下 )(A )(C )化简: 5,贝y x= 5,且a _若x 则b =4,贝y x= _____ ;若 1 c 2,则 C =若a 若a|x — 5|—|2X — 13| (x >5). 1.1.2.乘法公式 我们在初中已经学习过了下列一些乘法公式: (1) 平方差公式 (a b)(a b) a 2 b 2 ; (2) 完全平方公式 (a b)2 a 2 2ab b 2.我们还可以通过证明得到下列一些乘法公式:b , b ,则 a b (B) (D) 若a b ,贝S a 若a b ,则a解法 :原式= (x 2 1) (x 21)2 x 2 = (x 2 1)(x4 2x1)= 6x 1 .解法 *■.原式=(x 1)(x 2 x 2 1)(x 1)(x x 1)=(x 3 1)(x 3 1)= 6 x 1 .例2 已知a b c 4 , ab bc ac 4,求 a 2 b 2 c 2 的值解: 2 a .2 2b c (a b c)2 2(ab bc ac) 8 . 练 习1. 填空: (1) 1 2 a 1.2 b ( 4 b ;a)( );9 4 2 3(2) (4 m)2 16m 24m ( );(3 ) (a 2b c)2 a 2 4b 2 c 2 ( ). 1). 选择题:有兴趣的同学可以自己去证明. 例 1 计算:(x 1)(x 1)( x 2x 1)(x 2 x (1 )x 2 Imx k平方式,(1) 立方和公式 (a b)(a 2 ab b 2) 3 a .3 b ; (2) 立方差公式 (a b)(a 2 ab b 2) 3 a 3b ;(3) 三数和平方公式 (a b c)2 a 2 b 2 2 c 2(ab bc(4) 两数和立方公式 (a b)3 a 3 3a 2b 3ab 2 b 3;(5) 两数差立方公式 (a b)3 a 3 3a 2b3ab 2 b 3 .ac);对上面列出的五个公式,(A) m2(B) - m2(C) - m2(D)丄m24 3 16((2 ) 不论a , b为何实数,a2 b2 2a 4b 8 的值((A )总是正数(B )总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如,a(a 0)的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如3a「a?—b 2b , . a^b2等是无理式,而.2x2彳x 1 , x2、2x y , ■■ a2等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为—有理化因式,例如J2与.2 , 3'、a 与,-. 3 .6 与方.6 , 2-. 3 3',2 与 2.3 3-2,等等. 一般地,ax与x , a、、x b. y与a、、x b y , a、、x b与a、、x b互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式. ab(a 0,b 0);而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2 .二次根式-a2的意义a, a 0, aa, a 0.例1将下歹J式子化为最简一次根式:(1) 両; (2) VOb(a0);(3) J4x6y(x 0).解:(1) ^A2b2顶;(2) Ja2b a 7b aVb(a 0);(3) 』4x6y 2 x^/y 2X3TT(X0).例2计算:暑(3 73).解法- -.73 (33 V3初中升高中数学教材变化分析解法二:解:=-3 (3 . 3)(3 . 3)(3、、3)=3^3 39 3=3(、、3 1)6=.3 12.3 (3、、3)=—3 V3试比较下列各组数的大小: (1) ..12 '.诃禾口、、仃110 ;(1) V J2.1112 11111 1011 -101= 丽3^3 1)_ 1 = _______________ = .3 1(.3 1)C 3 1)J 2)_ 6^ _ 、石)(.12 ;11)和 2.2— 6 . .12 ,11(、石 *10)(、11 ”10) 、石;10又. .12、一 11 5^ ,10 ,••• .,12 ,11 v .11.(2).. 2运—庇 2屁苗212-46)(242+46)又 4>2 2, _• ° •号 6 + 4 > . 6 + 2 习 2,• 一2 v 2、、2—•、6..6 4化简:C.3 , 2)2004 ( -.. 3 . 2) 2005解:(、、3 , 2)2004 ( .3、、2严=,2)2004 ( -.3 ,2)2004 (-. 3= C3、、2 C3 =12004(4 2、2+ 6 ,3 11 .12 11 ' __ 1 ___ 11 '一 10 '2,2+「6’.2 ) 2004 (「3.2)5化简:2) = .3、、2 .(1) .9 4*5 ;(2)x 2解: (1)原式(2)原式={(x *).(5)2 2 2 -5 221 x••• 06 已知xx 1 ,-丄3 2 、3 2 ,y1 22(0 x 1).x7(2 V5)2 2 71 x ,所以,原式=-x密茫,求3x 2 5xy 3y 2的值.、3 <2解:「X y :3 : ;〕2 (―2)2do , 32 3 2Xy.3, 2 , 3 . 2 1,2 2 2 2…3X 5xy 3y 3(X y) 11xy 3 1011 289 .练 习1.1.4 .分式1.分式的意义 形如A 的式子,若B 中含有字母,且B 0,则称A 为分式.当MHO 时,分BB式A 具有下列性质:BA A MA A MB B M 'B B M *上述性质被称为分式的基本性质. 2.繁分式a像_^ , m n p 这样,分子或分母中又含有分式的分式叫做 繁分式. c d _2m_n P例1若空匕 A —,求常数A,B 的值.X (X 2) X X 21. 填空:1 (1)(2) (3) (4) 13若.、(5 x)(x 3)2 (X 3)、、亍,则X 的取值范围是4.24 6,54 3 .96 2. 150 若X 巨,则、厂 ''厂22. 选择题:.立3. 4.(B )1U ,求 a a 1比较大小:2— 3 _______ ; 5— 4 (填b 的值. (C )N”.(D )0X 2解:~A B• ____ _x x 2.A B 5,2A 4,(1)试证: A(x 2) Bx (A B)x 2A 5x 4 x(x 2) 解得 x(x 2) x(x 2) 2,B 1.2. 3.4.(1) (2) (2)(3) 证明:1 n 12 3证明:对任意大于 计算: 1 n(n 1) 1 1 2(其中n 是正整数);1 9 10 '的正整数n ,有二 —2 3 3 41n(n 1)解:由 1 2(3)证明:..1 1• -------n n 1. 1n(n 1)(1)可知丄L2 31 12 3 3 41 n(n 1), (其中n 是正整数)成立.n n(n 1) 1 n 1 (n 1)19 10 1 1 1 -)( )1 2 2 31 1 1 1— _ (― 一)(— n(n 1) 2 3 31又n 》2且n 是正整数,二.11, 1 1 • • LV2 3 3 4 n(n 1)2且 e >1, 2c 2 — 5ac + 2a 2_0, 解:在2c 2— 5ac + 2a 2_0两边同除以a 2,得2呂—5e + 2_ 0,• (2e — 1)(e — 2)_ 0,1• e _ 2 V 1,舍去; •- e _ 2.或 e = 2. 一定为正数,求e 的值.丄 10910_丄_ 2习填空题: 选择题: 若) (A)对任意的正整数 2x yx正数x,y 满足 x 2 n ,1n(n 2)(丄n(B)2xy ,求 54x yx的值.y(C ) 4(D)计算丄- 99 100习题1. 1 A 组1.解不等式:(1) (3) 2 .已知x y 1 , x 1 3;(2) x 3x 27 ;x 1 x 1 6 .3xy 的值. 求 x 3 y 3 3. 填空:(1) (2) (3)(2 .3)18(2若,(T 1 .2a)21,(1 a)22 , 1__ ?则a 的取值范围是1 4「51.填空:(1) a2.1.(2)若 x 2xy 2y 2已知:x 1 2,y3a 2 2 3a 5ab 2b2小0,则—xy yx y _x . y ab 2 _________________22 _ __ ---------y」y _的值.x yC 组选择题: ((A ) a b(B ) a b(C ) a b 0 (D ) b a 0( 2)计算a :等于( )(A) < ~(B ) ■- a (C )-(D ) 、、a2.解方程2(x 2丄)13(x -)1 0 .x x3.计算:-——-1 L 1.132 43 59 114.试证:对任意的正整数 n ,有1L -1 1 —<-.b 2 一 ab 、、b a若 则)a () n(n 1)(n2) 2 3 41 2 3 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解 法,另外还应了解求根法及待定系数法. 1.十字相乘法例1分解因式: (1) x 2-3x + 2;(2) x 2 + 4x —(3) x 2 (a b )xy aby 2 ; (4) xy 1 x y .解:(1)如图1. 1- 1,将二次项x 2分解成图中的两个x 的积,再将常数项 2分解成一1与一2的乘积,而图中的对角线上的两个数乘积的和为一 3x ,就是 x 2-3x + 2中的一次项,所以,有x 2- 3x + 2 = (x - 1)(x - 2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1. 1- 1中的两个x 用1来表示(如图1. 1-2所示).(2) 由图1. 1-3,得x 2 + 4x - 12 = (x - 2)(x + 6).(3) 由图1. 1-4,得2 2x (a b)xy aby = (x ay)(x by) x―1(4) xy 1 x y = xy + (x - y) — 1y ”1=(x - 1) (y+1)(如图 1. 1-5 所示).图 1. 1-5课堂练习一、填空题:1、把下列各式分解因式: (1) 2 x 5x 6 。
创作编号:BG7531400019813488897SX创作者:别如克*初高中数学衔接教材目录引入乘法公式第一讲因式分解1.1 提取公因式1.2. 公式法(平方差,完全平方,立方和,立方差)1.3分组分解法1.4十字相乘法(重、难点)1.5关于x的二次三项式ax2+bx+c(a≠0)的因式分解.第二讲函数与方程2.1 一元二次方程2.1.1根的判别式2.1.2 根与系数的关系(韦达定理)2.2 二次函数2.2.1 二次函数y=ax2+bx+c的图象和性质2.2.2 二次函数的三种表示方式2.2.3 二次函数的简单应用第三讲三角形的“四心”乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++ =61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.创作编号:BG7531400019813488897SX 创作者: 别如克*练 习1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题: (1)若212x mx k ++是一个完全平方式,则k 等于 ( )(A )2m (B )214m (C )213m (D )2116m (2)不论a ,b 为何实数,22248a b a b +--+的值( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数第一讲 因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得-1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 1 1 图1.1-3 -ay -by x x 图1.1-4x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:创作编号:BG7531400019813488897SX 创作者: 别如克*(1)=-+652x x __________________________________________________。
人教版九年级上册新初三暑期连接课程圆第一、二课时含习题和答案新初三暑期数学连接导教案圆的相关观点问题1察看以下图形,你能从中找出它们的共同特点吗?问题2察看以下画圆的过程,你能由此说出圆的形成过程吗?研究新知圆的定义:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆。
圆心:固定的端点叫作圆心。
半径:线段OA的长度叫作这个圆的半径。
圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”。
同时从圆的定义中概括:1)圆上各点到定点(圆心)的距离都等于定长(半径);2)到定点的距离等于定长的点都在同一个圆上。
圆的第二定义:全部到定点的距离等于定长的点构成的图形叫作圆。
1/29人教版九年级上册新初三暑期连接课程圆第一、二课时含习题和答案问题3察看以下图形,你能说出弦、直径、弧、半圆的定义吗?弦:连结圆上随意两点的线段叫作弦;C 直径:经过圆心的弦叫作直径;B弧:圆上随意两点间的部分叫作圆弧,简称弧;OA弧的表示方法:以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”;半圆:圆的随意一条直径的两个端点把圆分红两条弧,每一条弧都叫作半圆。
优弧:大于半圆的弧叫作优弧,用三个字母表示,如上图中的弧ABC;劣弧:小于半圆的弧叫作劣弧,如上图中的弧AB。
应用新知例1:议论,车轮为何做成圆形?假如做成正方形会有什么结果?剖析:如图,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上转动时,车轮中心与平面的距离保持不变,所以当车辆在平展的路上行驶时,坐车的人会感觉到特别安稳;假如做成其余图形,比方正方形,正方形的中心(对角线的交点)距离地面的距离跟着正方形的滚动而改变,因其中心到地面的距离就不是保持不变,所以不稳固。
2/29例2:矩形的四个极点可否在同一个圆上?假如不在,说明原因;假如存在,指出这个圆的圆心和半径。
解:如图,连结AC、BD交与点O,在矩形ABCD中,∵OA=OC=1AC,OB=OD=122BD,AC=BD,OA=OB=OC=OD,A、B、C、D者这四个点在以点O为圆心,OA为半径的同一个圆上。
10圆高中必备知识点1:直线与圆的位置关系设有直线l 和圆心为O 且半径为r 的圆,怎样判断直线l 和圆O 的位置关系?观察图3.3-1,不难发现直线与圆的位置关系为:当圆心到直线的距离d r >时,直线和圆相离,如圆O 与直线1l ;当圆心到直线的距离d r =时,直线和圆相切,如圆O 与直线2l ;当圆心到直线的距离d r <时,直线和圆相交,如圆O 与直线3l .在直线与圆相交时,设两个交点分别为A 、B.若直线经过圆心,则AB 为直径;若直线不经过圆心,如图3.3-2,连结圆心O 和弦AB 的中点M 的线段OM 垂直于这条弦AB .且在Rt OMA V 中,OA 为圆的半径r ,OM 为圆心到直线的距离d ,MA 为弦长AB 的一半,根据勾股定理,有222()2AB r d -=.当直线与圆相切时,如图3.3-3,,PA PB 为圆O 的切线,可得PA PB =,.OA PA ⊥,且在Rt POA V 中,222PO PA OA =+.如图3.3-4,PT 为圆O 的切线,PAB 为圆O 的割线,我们可以证得PAT PTB V :V ,因而2PT PA PB =⋅.典型考题【典型例题】在同一平面直角坐标系中有5个点:A (1,1),B (﹣3,﹣1),C (﹣3,1),D (﹣2.﹣2).(1)画出△ABC 的外接圆⊙P ,并指出点D 与⊙P 相的位置关系;(2)E点是y轴上的一点,若直线DE与⊙P相切,求点E的坐标.【变式训练】在平面直角坐标系xOy中,对于P、Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P、Q两点为“等距点”,如图中的P、Q 两点即为“等距点”.(1)已知点A的坐标为(﹣3,1)①在点E(0,3)、F(3,﹣3)、G(2,﹣5)中,点A的“等距点”是;②若点B在直线y=x+6上,且A、B两点为“等距点”,则点B的坐标为;(2)直线l:y=kx﹣3(k>0)与x轴交于点C,与y轴交于点D.①若T1(﹣1,t1)、T2(4,t2)是直线l上的两点,且T1、T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M、N两点为“等距点”,直接写出r的取值范围.【能力提升】如图,在平面直角坐标系中,已知点.请在图中作出经过点A、B、C三点的,并写出圆心M的坐标;,试判断直线BD与的位置关系,并说明理由.高中必备知识点2:点的轨迹在几何中,点的轨迹就是点按照某个条件运动形成的图形,它是符合某个条件的所有点组成的.例如,把长度为r的线段的一个端点固定,另一个端点绕这个定点旋转一周就得到一个圆,这个圆上的每一个点到定点的距离都等于r;同时,到定点的距离等于r的所有点都在这个圆上.这个圆就叫做到定点的距离等于定长r的点的轨迹.我们把符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹.这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都满足条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上.下面,我们讨论一些常见的平面内的点的轨迹.从上面对圆的讨论,可以得出:到定点的距离等于定长的点的轨迹是以定点为圆心,定长为半径的圆.我们学过,线段垂直平分线上的每一点,和线段两个端点的距离相等;反过来,和线段两个端点的距离相等的点,都在这条线段的垂直平分线上.所以有下面的轨迹:和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线.由角平分线性质定理和它的逆定理,同样可以得到另一个轨迹:到已知角的两边距离相等的点的轨迹,是这个角的平分线.典型考题【典型例题】如图,点,将绕点旋转得到.(1)请在图中画出,并写出点的坐标;(2)求旋转过程中点的轨迹长.【变式训练】阅读理解:在平面直角坐标系中,若两点P、Q的坐标分别是P(x1,y1)、Q(x2,y2),则P、Q这两点间的距离为|PQ|=.如P(1,2),Q(3,4),则|PQ|==2.对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.解决问题:如图,已知在平面直角坐标系xOy中,直线y=kx+交y轴于点A,点A关于x 轴的对称点为点B,过点B作直线l平行于x轴.(1)到点A的距离等于线段AB长度的点的轨迹是;(2)若动点C(x,y)满足到直线l的距离等于线段CA的长度,求动点C轨迹的函数表达式;问题拓展:(3)若(2)中的动点C的轨迹与直线y=kx+交于E、F两点,分别过E、F作直线l的垂线,垂足分别是M、N,求证:①EF是△AMN外接圆的切线;②为定值.【能力提升】在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P的坐标满足(m,m﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy中就是一次函数y=x﹣1的图象.即点P的轨迹就是直线y=x﹣1.(1)若m、n满足等式mn﹣m=6,则(m,n﹣1)在平面直角坐标系xOy中的轨迹是;(2)若点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,求点P的轨迹;(3)若抛物线y=上有两动点M、N满足MN=a(a为常数,且a≥4),设线段MN的中点为Q,求点Q到x轴的最短距离.专题验收测试题1.四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A.1:3:2:4 B.7:5:10:8 C.13:1:5:17 D.1:2:3:42.如图,在平面直角坐标系中,⊙P的圆心是(2,a),半径为2,直线y=﹣x与⊙P相交于A、B两点,若弦AB的长为23,则a的值是()A.﹣22B.﹣2+2C.﹣2﹣3D.﹣2﹣23.如图,在边长为2的正方形ABCD中,以点D为圆心,AD为半径画,再以BC为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S2﹣S1的值为()A.﹣4 B.+4 C.﹣2 D.+24.如图,在平面直角坐标系xOy中,直线AB过点A(﹣2,0),B(0,2),⊙O 的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.7B.22C.3 D.105.以O为中心点的量角器与直角三角板ABC如图所示摆放,直角顶点B在零刻度线所在直线DE上,且量角器与三角板只有一个公共点P,若点P的读数为35°,则∠CBD的度数是()A.55°B.45°C.35°D.256.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=23,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=( )A.1 B.2 C.3 D.47.在平面直角坐标系xOy中,点O(0,0),A(2,0),B(0,3,C(﹣2,0).将△OAB绕点O顺时针旋转α(0°<α<360°)得到△OA′B′((其中点A旋转到点A′的位置),设直线AA′与直线BB′相交于点P,则线段CP长的最小值是()A.22B.32C.2 D.528.如图,在平面直角坐标系中,点P是以C271为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接P A,PB,则P A2+PB2的最小值是()A .6B .8C .10D .129.如图,OA 在x 轴上,OB 在y 轴上,OA =4,OB =3,点C 在边OA 上,AC =1,⊙P 的圆心P 在线段BC 上,且⊙P 与边AB ,AO 都相切.若反比例函数y =k x (k ≠0)的图象经过圆心P ,则k 的值是( )A .22->-b aB .35-C .52-D .﹣210.如图,在平面直角坐标系中,点B 的坐标(0,23),∠AOC =45°,∠ACO =30°,则OC 的长为( )A .6+2B .6﹣2C .23+2D .22+3 11.和平中学自行车停车棚顶部的剖面如图所示,已知AB =16m ,半径OA =10m ,高度CD 为____m .12.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为150°,AB 的长为18cm ,BD的长为9cm ,则»DE的长为_____cm .13.阅读以下作图过程:第一步:在数轴上,点O 表示数0,点A 表示数1,点B 表示数5,以AB 为直径作半圆(如图);第二步:以B 点为圆心,1为半径作弧交半圆于点C (如图);第三步:以A 点为圆心,AC 为半径作弧交数轴的正半轴于点M .请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M 表示的数为________.14.圆内接正六边形的一条边所对的圆心角的度数为________.15.整数m 满足052(4)3m y m m m -=-+---,若以m 值为直角三角形的斜边长,则该直角三角形外接圆半径为_____.16.如图,⊙O 的半径为2,点A 的坐标为(2,23),直线AB 为⊙O 的切线,B 为切点.则B 点的坐标为_______.17.如图,四边形ABCD 为⊙O 的内接四边形,且对角线AC 为直径,AD =BC ,过点D 作DG ⊥AC ,垂足为E ,DG 分别与AB ,⊙O 及CB 延长线交于点F 、G 、M .(1)求证:四边形ABCD 为矩形;(2)若N为MF中点,求证:NB是⊙O的切线;(3)若F为GE中点,且DE=6,求⊙O的半径.18.如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合)、我们称∠APB 是⊙O上关于点A、B的滑动角.(1)已知∠APB是⊙O上关于点A、B的滑动角,①若AB是⊙O的直径,则∠APB=°;②若⊙O的半径是1,AB=2,求∠APB的度数;(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线P A、PB分别交⊙O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.19.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C,(1)若∠ADE=28°,求∠C的度数;(2)若AC=6,CE=3,求⊙O半径的长.20.如图,在△ABC中,AB=AC,以腰AB为直径作半圆,分别交BC、AC于点D、E,连结DE.(1)求证:BD=DE;(2)若AB =13,BC =10,求CE 的长.21.对于平面直角坐标系xOy 中的任意两点M ()11 ,x y ,N ()22,x y ,给出如下定义:点M 与点N 的“折线距离”为:(),d M N =12x x -+12y y -.例如:若点M (-1,1),点N (2,-2),则点M 与点N 的“折线距离”为:()(),1212336d M N =--+--=+=.根据以上定义,解决下列问题:(1)已知点P (3,-2).①若点A (-2,-1),则d (P ,A )= ;②若点B (b ,2),且d (P ,B )=5,则b = ;③已知点C (m ,n )是直线y x =-上的一个动点,且d (P ,C )<3,求m 的取值范围.(2)⊙F 的半径为1,圆心F 的坐标为(0,t ),若⊙F 上存在点E ,使d (E ,O )=2,直接写出t 的取值范围.22.如图所示,△ABC 中,点D 是AB 上一点,且AD =CD ,以CD 为直径的⊙O 交BC 于点E ,交AC 于点F ,且点F 是半圆CD 的中点.(1)求证:AB 与⊙O 相切.(2)若tanB =2,AB =6,求CE 的长度.专题10圆高中必备知识点1:直线与圆的位置关系设有直线l 和圆心为O 且半径为r 的圆,怎样判断直线l 和圆O 的位置关系?观察图3.3-1,不难发现直线与圆的位置关系为:当圆心到直线的距离d r >时,直线和圆相离,如圆O 与直线1l ;当圆心到直线的距离d r =时,直线和圆相切,如圆O 与直线2l ;当圆心到直线的距离d r <时,直线和圆相交,如圆O 与直线3l .在直线与圆相交时,设两个交点分别为A 、B.若直线经过圆心,则AB 为直径;若直线不经过圆心,如图3.3-2,连结圆心O 和弦AB 的中点M 的线段OM 垂直于这条弦AB .且在Rt OMA V 中,OA 为圆的半径r ,OM 为圆心到直线的距离d ,MA 为弦长AB 的一半,根据勾股定理,有222()2AB r d -=.当直线与圆相切时,如图3.3-3,,PA PB 为圆O 的切线,可得PA PB =,.OA PA ⊥,且在Rt POA V 中,222PO PA OA =+.如图3.3-4,PT 为圆O 的切线,PAB 为圆O 的割线,我们可以证得PAT PTB V :V ,因而2PT PA PB =⋅.典型考题【典型例题】在同一平面直角坐标系中有5个点:A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2.﹣2).(1)画出△ABC的外接圆⊙P,并指出点D与⊙P相的位置关系;(2)E点是y轴上的一点,若直线DE与⊙P相切,求点E的坐标.【答案】(1)见解析,点D在⊙P上;(2)E(0,﹣3).【解析】(1)如图所示:△ABC外接圆的圆心为(﹣1,0),点D在⊙P上;(2)连接PD,∵直线DE与⊙P相切,∴PD⊥PE,利用网格过点D做直线的DF⊥PD,则F(﹣6,0),设过点D,E的直线解析式为:y=kx+b,∵D(﹣2,﹣2),F(﹣6,0),∴,解得:,∴直线DE解析式为:y=﹣x﹣3,∴x=0时,y=﹣3,∴E(0,﹣3).【变式训练】在平面直角坐标系xOy中,对于P、Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P、Q两点为“等距点”,如图中的P、Q 两点即为“等距点”.(1)已知点A的坐标为(﹣3,1)①在点E(0,3)、F(3,﹣3)、G(2,﹣5)中,点A的“等距点”是;②若点B在直线y=x+6上,且A、B两点为“等距点”,则点B的坐标为;(2)直线l:y=kx﹣3(k>0)与x轴交于点C,与y轴交于点D.①若T1(﹣1,t1)、T2(4,t2)是直线l上的两点,且T1、T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M、N两点为“等距点”,直接写出r的取值范围.【答案】(1)①E、F;②(﹣3,3);(2)①k的值为1或2;②≤r≤3.【解析】(1)①∵点A(﹣3,1)到x、y轴的距离中最大值为3,∴与A点是“等距点”的点是E、F.②点B在直线y=x+6上,当点B坐标中到x、y轴距离其中至少有一个为3的点有(3,9)、(﹣3,3)、(﹣9,﹣3),这些点中与A符合“等距点”的是(﹣3,3).故答案为①E、F;②(﹣3,3);(2)∵T1(﹣1,t1)、T2(4,t2)是直线l上的两点,∴t1=﹣k﹣3,t=4k﹣3.∵k>0,∴|﹣k﹣3|=k+3>3,4k﹣3>﹣3.依据“等距点”定义可得:当﹣3<4k﹣3<4时,k+3=4,解得k=1;当4k﹣3≥4时,k+3=4k﹣3,解得k=2.综上所述,k的值为1或2.②∵k=1,∴y=x﹣3与坐标轴交点C(0,﹣3)、D(3,0),线段CD=3.N点在CD上,则N点到x、y轴的距离最大值中最小数为,若半径为r的⊙O上存在一点M与N是“等距点”,则r最小值为,r的最大值为CD长度3.所以r的取值范围为≤r≤3.故答案为E、F;(﹣3,3)【能力提升】如图,在平面直角坐标系中,已知点.请在图中作出经过点A、B、C三点的,并写出圆心M的坐标;,试判断直线BD与的位置关系,并说明理由.【答案】如图所示见解析,圆心M的坐标为直线BD与相切,理由见解析.【解析】如图所示,即为所求.由图知,圆心M的坐标为;连接MB,DB,DM,,,是直角三角形,,即,直线BD与相切.高中必备知识点2:点的轨迹在几何中,点的轨迹就是点按照某个条件运动形成的图形,它是符合某个条件的所有点组成的.例如,把长度为r的线段的一个端点固定,另一个端点绕这个定点旋转一周就得到一个圆,这个圆上的每一个点到定点的距离都等于r;同时,到定点的距离等于r的所有点都在这个圆上.这个圆就叫做到定点的距离等于定长r的点的轨迹.我们把符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹.这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都满足条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上.下面,我们讨论一些常见的平面内的点的轨迹.从上面对圆的讨论,可以得出:到定点的距离等于定长的点的轨迹是以定点为圆心,定长为半径的圆.我们学过,线段垂直平分线上的每一点,和线段两个端点的距离相等;反过来,和线段两个端点的距离相等的点,都在这条线段的垂直平分线上.所以有下面的轨迹:和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线.由角平分线性质定理和它的逆定理,同样可以得到另一个轨迹:到已知角的两边距离相等的点的轨迹,是这个角的平分线.典型考题【典型例题】如图,点,将绕点旋转得到.(1)请在图中画出,并写出点的坐标;(2)求旋转过程中点的轨迹长.【答案】(1)图形见解析, ;(2)5π.【解析】解:(1)如图所示,即为所求出;;(2)连接,∵,∴旋转过程中点的轨迹长.【变式训练】阅读理解:在平面直角坐标系中,若两点P、Q的坐标分别是P(x1,y1)、Q(x2,y2),则P、Q这两点间的距离为|PQ|=.如P(1,2),Q(3,4),则|PQ|==2.对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.解决问题:如图,已知在平面直角坐标系xOy中,直线y=kx+交y轴于点A,点A关于x 轴的对称点为点B,过点B作直线l平行于x轴.(1)到点A的距离等于线段AB长度的点的轨迹是;(2)若动点C(x,y)满足到直线l的距离等于线段CA的长度,求动点C轨迹的函数表达式;问题拓展:(3)若(2)中的动点C的轨迹与直线y=kx+交于E、F两点,分别过E、F作直线l的垂线,垂足分别是M、N,求证:①EF是△AMN外接圆的切线;②为定值.【答案】(1)x2+(y﹣)2=1;(2)动点C轨迹的函数表达式y=x2;(3)①证明见解析;②证明见解析.【解析】(1)设到点A的距离等于线段AB长度的点D坐标为(x,y),∴AD2=x2+(y﹣)2,∵直线y=kx+交y轴于点A,∴A(0,),∵点A关于x轴的对称点为点B,∴B(0,﹣),∴AB=1,∵点D到点A的距离等于线段AB长度,∴x2+(y﹣)2=1,故答案为:x2+(y﹣)2=1;(2)∵过点B作直线l平行于x轴,∴直线l的解析式为y=﹣,∵C(x,y),A(0,),∴AC2=x2+(y﹣)2,点C到直线l的距离为:(y+),∵动点C(x,y)满足到直线l的距离等于线段CA的长度,∴x2+(y﹣)2=(y+)2,∴动点C轨迹的函数表达式y=x2;(3)①如图,设点E(m,a)点F(n,b),∵动点C的轨迹与直线y=kx+交于E、F两点,∴,∴x2﹣2kx﹣1=0,∴m+n=2k,mn=﹣1,∵过E、F作直线l的垂线,垂足分别是M、N,∴M(m,﹣),N(n,﹣),∵A(0,),∴AM2+AN2=m2+1+n2+1=m2+n2+2=(m+n)2﹣2mn+2=4k2+4,MN2=(m﹣n)2=(m+n)2﹣4mn=4k2+4,∴AM2+AN2=MN2,∴△AMN是直角三角形,MN为斜边,取MN的中点Q,∴点Q是△AMN的外接圆的圆心,∴Q(k,﹣),∵A(0,),∴直线AQ的解析式为y=﹣x+,∵直线EF的解析式为y=kx+,∴AQ⊥EF,∴EF是△AMN外接圆的切线;②∵点E(m,a)点F(n,b)在直线y=kx+上,∴a=mk+,b=nk+,∵ME,NF,EF是△AMN的外接圆的切线,∴AE=ME=a+=mk+1,AF=NF=b+=nk+1,∴=2,即:为定值,定值为2.【能力提升】在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P的坐标满足(m,m﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy中就是一次函数y=x﹣1的图象.即点P的轨迹就是直线y=x﹣1.(1)若m、n满足等式mn﹣m=6,则(m,n﹣1)在平面直角坐标系xOy中的轨迹是;(2)若点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,求点P的轨迹;(3)若抛物线y=上有两动点M、N满足MN=a(a为常数,且a≥4),设线段MN的中点为Q,求点Q到x轴的最短距离.【答案】(1);(2)y=x2;(3)点Q到x轴的最短距离为1.【解析】(1)设m=x,n﹣1=y,∵mn﹣m=6,∴m(n﹣1)=6,∴xy=6,∴∴(m,n﹣1)在平面直角坐标系xOy中的轨迹是故答案为:;(2)∴点P(x,y)到点A(0,1),∴点P(x,y)到点A(0,1)的距离的平方为x2+(y﹣1)2,∵点P(x,y)到直线y=﹣1的距离的平方为(y+1)2,∵点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,∴x2+(y﹣1)2=(y+1)2,∴(3)设直线MN的解析式为y=kx+b,M(x1,y1),N(x2,y2),∴线段MN的中点为Q的纵坐标为∴∴x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,∴∴∴∴点Q到x轴的最短距离为1.专题验收测试题1.四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A.1:3:2:4 B.7:5:10:8 C.13:1:5:17 D.1:2:3:4 【答案】C【解析】解:A、1+2≠3+4,所以A选项不正确;B、7+10≠5+8,所以B选项不正确;C、13+5=1+17,所以C选项正确;D、1+3≠2+4,所以D选项不正确.故选:C.2.如图,在平面直角坐标系中,⊙P的圆心是(2,a),半径为2,直线y=﹣x与⊙P相交于A、B两点,若弦AB的长为23,则a的值是()A.﹣2B.﹣2C.﹣23D.﹣22【答案】D【解析】解:设⊙P与y轴相切于点C,连接PC,则有PC⊥O C.∵点P的坐标为(2,a),∴PC=2.①若点P在直线y=x上方,如图1,连接CP并延长交直线y=x于点E,则有CE=O C.∵CE⊥OC,CE=OC,∴∠COE=∠CEO=45°.过点P作PD⊥AB于D,由垂径定理可得:AD=BD=12AB=12332⨯=在Rt△ADP中,PD2222PA AD2(3)-=-1.在Rt△PDE中,sin∠PED=122 PDPE PE==,解得:PE2.∴OC=CE=CP+PE=2.∴a=﹣2﹣2.3.如图,在边长为2的正方形ABCD中,以点D为圆心,AD为半径画,再以BC为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S2﹣S1的值为()A.﹣4 B.+4 C.﹣2 D.+2【答案】A【解析】解:由图形可知,扇形ADC的面积+半圆BC的面积+阴影部分①的面积﹣正方形ABCD的面积=阴影部分②的面积,∴S2﹣S1=扇形ADC的面积+半圆BC的面积﹣正方形ABCD的面积,故选:A.4.如图,在平面直角坐标系xOy中,直线AB过点A(﹣2,0),B(0,2),⊙O 的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A .7B .22C .3D .10【答案】B【解析】解:连接OP 、OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ; 根据勾股定理知PQ 2=OP 2﹣OQ 2,∵当PO ⊥AB 时,线段PQ 最短;又∵A (﹣32,0),B (0,32),∴OA =OB =32,∴AB =22OA OB + =6,∴OP =12AB =3, ∴PQ =22OP OQ - =22.故选:B5.以O 为中心点的量角器与直角三角板ABC 如图所示摆放,直角顶点B 在零刻度线所在直线DE 上,且量角器与三角板只有一个公共点P ,若点P 的读数为35°,则∠CBD 的度数是()A.55°B.45°C.35°D.25【答案】C【解析】∵AB是⊙O的切线,∴∠OPB=90°,∵∠ABC=90°,∴OP∥BC,∴∠CBD=∠POB=35°,故选:C.6.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=23,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=( )A.1 B.2 C.3 D.4【答案】B【解析】解:在Rt△ABO中,sin∠OAB=OBOA233∴∠OAB=60°,∵直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=12OA=2.故选:B.7.在平面直角坐标系xOy中,点O(0,0),A(2,0),B(0,3,C(﹣2,0).将△OAB绕点O顺时针旋转α(0°<α<360°)得到△OA′B′((其中点A旋转到点A′的位置),设直线AA ′与直线BB ′相交于点P ,则线段CP 长的最小值是( )A .222-B .232-C .2D .252-【答案】B【解析】∵△OAB 是直角三角形,点P 在以AB 为直径的圆上运动,∵A (2,0),B (0,23),∴AB =4,AB 的中点为(1,3),∵C (﹣2,0),∴CP 的最小值为23﹣2;故选:B .8.如图,在平面直角坐标系中,点P 是以C (﹣2,7)为圆心,1为半径的⊙C 上的一个动点,已知A (﹣1,0),B (1,0),连接P A ,PB ,则P A 2+PB 2的最小值是( )A .6B .8C .10D .12【答案】C【解析】设P (x ,y ), ∵P A 2=(x +1)2+y 2,PB 2=(x ﹣1)2+y 2,∴P A 2+PB 2=2x 2+2y 2+2=2(x 2+y 2)+2,∵OP 2=x 2+y 2,∴P A 2+PB 2=2OP 2+2,当点P 处于OC 与圆的交点上时,OP 取得最值,∴OP 的最小值为CO ﹣CP =3﹣1=2,∴P A 2+PB 2最小值为2×22+2=10. 故选:C .9.如图,OA 在x 轴上,OB 在y 轴上,OA =4,OB =3,点C 在边OA 上,AC =1,⊙P 的圆心P 在线段BC 上,且⊙P 与边AB ,AO 都相切.若反比例函数y =k x (k ≠0)的图象经过圆心P ,则k 的值是( )A .22->-b aB .35- C .52-D .﹣2 【答案】A【解析】解:作PM ⊥AB 于M ,PN ⊥x 轴于N ,如图,设⊙P 的半径为r ,∵⊙P 与边AB ,AO 都相切,∴PM =PN =r ,∵OA =4,OB =3,AC =1,∴AB =5,∵S △P AB +S △P AC =S △ABC ,∴12•5r +12•r •1=12•3•1,解得r =12,∴BN =12,∵OB =OC ,∴△OBC 为等腰直角三角形,∴∠OCB =45°,∴NC =NB =12,∴ON =3﹣12=12, ∴P 点坐标为(52,﹣12),把P (52,﹣12)代入y =k x 得k =52×(﹣12)=﹣54.故选:A .10.如图,在平面直角坐标系中,点B的坐标(0,23),∠AOC=45°,∠ACO=30°,则OC的长为()A.6+2B.6﹣2C.23+2D.22+3【答案】A【解析】连接BC,过点B作BD⊥CO于D,∵∠AOC=45°,∴∠BOD=45°,∵点B的坐标(0,3),∴OB=3∴BD=OD6,∵A,O,B,C四点共圆,∴∠CAO+∠CBO=180°,∵∠AOC=45°,∠ACO=30°,∴∠CAO=105°,∴∠CBO=75°,∴∠CBD=30°,∴CD=2,∴CO=2+6,故选:A.11.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD 为____m.【答案】4.【解析】解:∵CD⊥AB,AB=16,∴AD=DB=8,在Rt△OAD中,AB=16m,半径OA=10m,∴OD=2222OA AD108-=-=6,∴CD=OC﹣OD=10﹣6=4(m).故答案为:4.12.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为18cm,BD 的长为9cm,则»DE的长为_____cm.【答案】15 2π【解析】解:∵AB=18,BD=9,∴¶150π915π1802 DE==n n13.阅读以下作图过程:第一步:在数轴上,点O 表示数0,点A 表示数1,点B 表示数5,以AB 为直径作半圆(如图);第二步:以B 点为圆心,1为半径作弧交半圆于点C (如图);第三步:以A 点为圆心,AC 为半径作弧交数轴的正半轴于点M .请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M 表示的数为________.【答案】作图见解析, 151+ 【解析】解:如图,点M 即为所求.连接AC 、B C .由题意知:AB =4,BC =1.∵AB 为圆的直径,∴∠ACB =90°,则AM =AC =22AB BC -=2241-=15,∴点M 表示的数为151+.故答案为: 151+.点睛:本题主要考查作图﹣尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理.14.圆内接正六边形的一条边所对的圆心角的度数为________.【答案】60°【解析】根据正多边形的圆心角公式: 360n︒=圆心角,所以正六边形的圆心角是60°,故答案为: 60°.15.整数m 满足052(4)m y m m -=-+--,若以m 值为直角三角形的斜边长,则该直角三角形外接圆半径为_____.【答案】1或52 【解析】解:由题意得,m ﹣2≥0,5﹣m ≥0,m ﹣3≠0,m ﹣4≠0, 解得,2≤m ≤5,m ≠3,m ≠4,则整数m =2或5,∴该直角三角形外接圆的直径为2或5,∴该直角三角形外接圆半径为1或52, 故答案为:1或52. 16.如图,⊙O 的半径为2,点A 的坐标为(2,23),直线AB 为⊙O 的切线,B 为切点.则B 点的坐标为_______.【答案】(3)-【解析】解:过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ,∵⊙O 的半径为2,点A 的坐标为(2,3,即OC =2,∴AC 是圆的切线.∵点A 的坐标为(2,3,∴OA 222(23)+=4,∵BO =2,AO =4,∠ABO =90°,∴∠AOB =60°,∵OA =4,OC =2,∴sin∠OAC=12,∴∠OAC=30°,∴∠AOC=60°,即∠AOB=∠AOC=60°,∴∠BOD=180°﹣∠AOB﹣∠AOC=60°,∴OD=1,BD=3,即B点的坐标为(﹣1,3).17.如图,四边形ABCD为⊙O的内接四边形,且对角线AC为直径,AD=BC,过点D作DG⊥AC,垂足为E,DG分别与AB,⊙O及CB延长线交于点F、G、M.(1)求证:四边形ABCD为矩形;(2)若N为MF中点,求证:NB是⊙O的切线;(3)若F为GE中点,且DE=6,求⊙O的半径.【答案】(1)详见解析;(2)详见解析;(3)⊙O92【解析】解:(1)∵AC为⊙O直径,∴∠ADC=∠CBA=90°,在Rt△ADC与Rt△CBA中,AC AC AD BC=⎧⎨=⎩,∴Rt△ADC≌Rt△CBA,∴CD=AB,∵AD=BC,∴四边形ABCD是平行四边形,∵∠CBA=90°,∴四边形ABCD是矩形;(2)连接OB,∵∠MBF=∠ABC=90°,∴NB=12MF=NF,∴∠1=∠2,∵∠2=∠3,∴∠1=∠3,∵OB=OA,∴∠5=∠4,∵DG⊥AC,∴∠AEF=90°,∴∠3+∠4=90°,∴∠1+∠5=90°,∴OB⊥NB,∴NB是⊙O的切线;(3)∵AC为⊙O直径,AC⊥DG,∴DE=GE=6,∵F为GE中点,∴EF=GF=3,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠F AE+∠DAE=90°,∵∠ADE+∠DAE=90°,∴∠F AE=∠ADE,∵∠AEF=∠DEA=90°,∴△AEF∽△DEA,∴AE EF DE AE,∴AE=32,连接OD,设⊙O的半径为r,∴OA=OD=r,OE=r﹣32,∵OE2+DE2=OD2,∴(r﹣32)2+62=r2,∴r=922,∴⊙O的半径是922.18.如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合)、我们称∠APB 是⊙O上关于点A、B的滑动角.(1)已知∠APB是⊙O上关于点A、B的滑动角,①若AB是⊙O的直径,则∠APB=°;②若⊙O的半径是1,AB=2,求∠APB的度数;(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线P A、PB分别交⊙O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.【答案】(1)①90°;②45°或90°;(2)详见解析.【解析】解:(1)①若AB是⊙O的直径,则∠APB=90.②如图,连接AB、OA、O B.在△AOB中,∵OA=OB=1.AB=2,∴OA2+OB2=AB2.∴∠AOB=90°.当点P在优弧¼APB上时,∠APB=12∠AOB=45°;当点P在劣弧»AB上时,∠AP′B=12(360°﹣∠AOB)=135°(2)根据点P在⊙O1上的位置分为以下四种情况.第一种情况:点P在⊙O2外,且点A在点P与点M之间,点B在点P与点N之间,如图①∵∠MAN=∠APB+∠ANB,∴∠APB=∠MAN﹣∠ANB;第二种情况:点P在⊙O2外,且点A在点P与点M之间,点N在点P与点B之间,如图②.∵∠MAN=∠APB+∠ANP=∠APB+(180°﹣∠ANB),∴∠APB=∠MAN+∠ANB﹣180°;第三种情况:点P在⊙O2外,且点M在点P与点A之间,点B在点P与点N之间,如图③.∵∠APB+∠ANB+∠MAN=180°,∴∠APB=180°﹣∠MAN﹣∠ANB,第四种情况:点P在⊙O2内,如图④,∠APB=∠MAN+∠AN B.19.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C,(1)若∠ADE=28°,求∠C的度数;(2)若AC=6,CE=3,求⊙O半径的长.【答案】(1)∠C=34°;(2)⊙O半径的长是92.【解析】解:(1)如图,连接OA,∵∠ADE=28°,∴由圆周角定理得:∠AOC=2∠ADE=56°,∵AC切⊙O于A,∴∠OAC=90°,∴∠C=180°﹣∠AOC﹣∠OAC=180°﹣56°﹣90°=34°;(2)设OA=OE=r,在Rt△OAC中,由勾股定理得:OA2+AC2=OC2,即r2+62=(r+3)2,解得:r=92,答:⊙O半径的长是92.20.如图,在△ABC中,AB=AC,以腰AB为直径作半圆,分别交BC、AC于点D、E,连结DE.(1)求证:BD=DE;(2)若AB=13,BC=10,求CE的长.【答案】(1)证明见解析;(2)CE=50 13.【解析】解:(1)连接AD,DE,∵AB为半圆的直径,∴AD⊥BC,∵AB=AC,∴∠BAD=∠CAD,∴¶BD=¶DE,∴BD=DE;(2)∵AB=AC=13,AD⊥BC,∴BD=CD=12BC=5,∵∠CDE=∠BAC,∠C=∠C,∴△CDE∽△CAB,∴CD CA CE BC =, ∴5CE =1310, ∴CE =5013. 21.对于平面直角坐标系xOy 中的任意两点M ()11 ,x y ,N ()22,x y ,给出如下定义:点M 与点N 的“折线距离”为:(),d M N =12x x -+12y y -.例如:若点M (-1,1),点N (2,-2),则点M 与点N 的“折线距离”为:()(),1212336d M N =--+--=+=.根据以上定义,解决下列问题:(1)已知点P (3,-2).①若点A (-2,-1),则d (P ,A )= ;②若点B (b ,2),且d (P ,B )=5,则b = ;③已知点C (m ,n )是直线y x =-上的一个动点,且d (P ,C )<3,求m 的取值范围.(2)⊙F 的半径为1,圆心F 的坐标为(0,t ),若⊙F 上存在点E ,使d (E ,O )=2,直接写出t 的取值范围.【答案】(1)① 6,② 2或4,③ 1<m <4;(2)223t -≤≤或322t -≤≤-. 【解析】 解:(1) ①d(P, A)=|3-(-2)|+|(-2)-(-1)|=6② (,)3(2)2345d P B b b =-+--=-+=∴ 31b -=∴ b =2或4③ (,)3(2)32323d P C m n m m m m =-+--=-+-+=-+-<, 即数轴上表示数m 的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1<m <4(2)设E (x ,y ),则2x y +=,如图,若点E 在⊙F 上,则223322t t -≤≤-≤≤-或.22.如图所示,△ABC 中,点D 是AB 上一点,且AD =CD ,以CD 为直径的⊙O 交BC 于点E ,交AC 于点F ,且点F 是半圆CD 的中点.(1)求证:AB 与⊙O 相切.(2)若tanB =2,AB =6,求CE 的长度.【答案】(1)见解析;(2)CE 85.【解析】(1)连接DF,∵CD为⊙O的直径,∴∠CFD=90°,∵点F是半圆CD的中点,∴CF=DF,∴∠ACD=45°,∵AD=CD,∴∠A=∠ACD=45°,∴∠ADC=90°,∴AB与⊙O相切;(2)∵CD⊥AB,tanB=2,∴CD=2BD,∵AD=CD,∴AB=3BD,∵AB=6,∴BD=2,CD=4,∴BC=25,∵BD与⊙O相切,∴BD2=BE•BC,∴BE=225=25,∴CE=BC﹣BE=85.。
250 初高中数学衔接教材1.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题: (1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m251(2)不论a ,b 为何实数,22248a b a b +--+的值 ( ) (A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数2.因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).-1 -2x x图1.1-1-1 -21 1图1.1-2-2 61 1图1.1-3 -ay -byx x图1.1-4252 说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。
3.3圆
3.3.1 直线与圆,圆与圆的位置关系
设有直线l 和圆心为O 且半径为r 的圆,怎样判断直线l 和圆O 的位置关系?
观察图 3.3-1,不难发现直线与圆的位置关系为:当圆心到直线的距离d r 时,直线
和圆相离,如圆O 与直线1l ;当圆心到直线的距离d
r 时,直线和圆相切,如圆O 与直线
2l ;当圆心到直线的距离d r 时,直线和圆相交,如圆O 与直线3l 。
在直线与圆相交时,设两个交点分别为A 、B 。
若直线经过圆心,则AB 为直径;若直线不经过圆心,如图3.3-2,连结圆心O 和弦AB 的中点M 的线段OM 垂直于这条弦AB 。
且在Rt OMA 中,OA 为圆的半径r ,OM 为圆心到直线的距离d ,MA 为弦长AB 的一半,根据勾股定理,有2
2
2
(
)2
AB r d 。
当直线与圆相切时,如图3.3-3,,PA PB 为圆O 的切线,可得PA PB =,.OA PA ⊥,且在POA Rt ∆中,2
2
2
PO PA
OA =+。
图3.3-2
图 3.3-3 图3.3-4
图3.3-5
图3.3-1
如图3.3-4,PT 为圆O 的切线,PAB 为圆O 的割线,我们可以证得PTB PAT ∆∆~,因而2PT PA PB =⋅。
例1如图3.3-5,若⊙O 的半径OB =5cm ,弦AB =6cm ,D 是弧AB 的中点,求弦BD 的长度。
解:连结OD ,交AB 于点E 。
D 是弧AB 的中点,O 是圆心,。
cm 32
1
,==
=⊥∴AB AE BE AB OD 在
B OE Rt ∆中,OB =5cm,BE =3cm,224.OE OB BE cm ∴=-=
5,1.OD cm DE cm =∴=在DE B Rt ∆中,BE =3cm,DE =1cm,10.BD cm ∴=
例2若圆的两条平行弦的长度分别为6和64,且这两条线的距离为3。
求该圆的半径。
解:设圆的半径为r ,分两种情况(如图3.3-6): ①若O 在两条平行线的外侧,
如图(1),AB =6,CD =64,则由3OM ON ,
得2
2
9
243r r ,解得5r 。
(2)若O 在两条平行线的内侧(含线上),AB =6,CD =64, 则由3OM
ON
,得39r 24r 22=-+-,无解。
综上可得,圆的半径为5。
设圆1O 与圆2O 半径分别为,()R r R r ≥,它们可能有哪几种位置关系?
图3.3-6
图3.3-7 图3.3-8
观察图3.3-7,两圆的圆心距为12O O ,不难发现:当12O O R r =-时,两圆相内切,如图(1);当12O O R r =+时,两圆相外切,如图(2);当12O O R r <-时,两圆相内含,如图(3);当12R r O O R r -≤≤+时,两圆相交,如图(4);当12O O R r >+时,两圆相外切,如图(5).
例3设圆1O 与圆2O 的半径分别为3和2,124O O =,,A B 为两圆的交点,试求两圆的公共弦AB 的长度。
解:连AB 交12O O 于C ,则12O O AB ⊥,且C 为AB 的中点, 设AC x =,则22129,4,O C x O C x =-=-2212944O O x x =-+-=,
解得315
8
x =。
故弦AB 的长为315
24
x =。
练习1 1.如图3.3-9,⊙O 的半径为17cm ,弦AB =30cm ,AB 所对的劣弧和优弧的中点分别为D 、C ,求弦AC 和BD 的长。
图3.3-9
2.已知四边形ABCD 是⊙O 的内接梯形,AB //CD ,AB =8cm,CD =6cm, ⊙O 的半径等于5cm ,求梯形ABCD 的面积。
3.如图3.3-10,⊙O 的直径AB 和弦CD 相交于点E ,
1,5,60,o
AE cm EB cm DEB ==∠=求CD 长。
4.若两圆的半径分别为3和8,圆心距为13,试求两圆的公切线的长度。
图3.3-10
3.3.2 点的轨迹
在几何中,点的轨迹就是点按照某个条件运动形成的图形,它是符合某个条件的所有点组成的。
例如,把长度为r的线段的一个端点固定,另一个端点绕这个定点旋转一周就得到
一个圆,这个圆上的每一个点到定点的距离都等于r;同时,到定点的距离等于r的所有点
都在这个圆上。
这个圆就叫做到定点的距离等于定长r的点的轨迹。
我们把符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。
这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都满足条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上。
下面,我们讨论一些常见的平面内的点的轨迹。
从上面对圆的讨论,可以得出:
(1)到定点的距离等于定长的点的轨迹是以定点为圆心,定长为半径的圆。
我们学过,线段垂直平分线上的每一点,和线段两个端点的距离相等;反过来,和线段两个端点的距离相等的点,都在这条线段的垂直平分线上。
所以有下面的轨迹:(2)和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线。
由角平分线性质定理和它的逆定理,同样可以得到另一个轨迹:
(3)到已知角的两边距离相等的点的轨迹,是这个角的平分线。
例3⊙O过两个已知点A、B,圆心O的轨迹是什么?画出它的图形。
分析:如图3.3-11,如果以点O为圆心的圆经过点A、B,
那么OA OB;
反过来,如果一个点O到A、B两点距离相等,即OA OB,
图3.3-11 那么以O为圆心,OA为半径的圆一定经过A、B两点。
这就是说,过A、B点的圆的圆心的轨迹,就是到A、B两点距离相等的点的轨迹,
即和线段AB两个端点距离相等的点的轨迹。
答:经过A、B两点的圆的圆心O的轨迹是线段AB的垂直平分线。
练习2
1.画图说明满足下列条件的点的轨迹:
①到定点A的距离等于3cm的点的轨迹;②到直线l的距离等于2cm的点的轨迹;
③已知直线//
AB CD,到AB、CD的距离相等的点的轨迹。
2.画图说明,到直线l的距离等于定长d的点的轨迹。
习题3.3
A组1.已知弓形弦长为4,弓形高为1,则弓形所在圆的半径为()
A B.5
2
C.3 D.4
2.在半径等于4的圆中,垂直平分半径的弦长为()
A.B.C.D
3.AB为⊙O的直径,弦CD AB
,E为垂足,若BE=6,AE=4,则CD等于()
图3.3-12
A .221
B .46
C .82
D .26
4.如图3.3-12,在⊙O 中,E 是弦AB 延长线上的一点,已知OB =10cm,OE =12cm ,
30,o OEB ∠=求AB 。
B 组1.如图3.3-13,已知在AB
C R ∆t 中,90,5,12,o
C AC cm BC cm ∠===以C 为圆心,C A 为半径的圆交斜边于
D ,求AD 。
2.如图
3.3-14,在直径为100mm 的半圆铁片上切去一块高为20mm 的弓形铁片,求弓形的弦AB 的长。
图3.3-13
图3.3-14
3.如图3.3-15,ABC ∆内接于⊙O ,D 为弧BC 的中点,AE BC ⊥于E 。
求证:AD 平分OAE ∠。
4.如图3.3-16,90o
AOB ∠=,C 、D 是弧AB 的三等分点,AB 分别交OC 、OD 于点E 、F ,求证:AE =BF =CD 。
5.已知线段4AB
cm 。
画出到点A 的距离等于3cm 的点的轨迹,再画出到点B 的距
离等于2cm 的点的轨迹,指出到点A 的距离等于3cm ,且到点B 的距离等于2cm 的点,这样的点有几个?
图 3.3-16
图3.3-15
答案: 练习1
1.取AB 中点M ,连CM ,MD ,则,CM AB DM AB ⊥⊥,且C ,O ,M ,D 共线,
8151722=-=OM ,
25=CM ,9=DM ,,AC BD ==。
2.O 到AB ,CD 的距离分别为3cm,4cm ,梯形的高为1cm 或7cm ,梯形的面积为7或492
cm 。
3. 半径为3cm ,OE =2cm 。
,OF CD =。
4.外公切线长为12,内公切线长为 练习2
1.(1)以A 为圆心,3cm 为半径的圆;(2)与l 平行,且与l 距离为2cm 的两条平行线;(3)与AB 平行,且与AB,CD 距离相等的一条直线。
2.两条平行直线,图略。
习题
3.3 A 组
1.B 2.A 3.B 4.AB =16cm 。
B 组
1.作CM AD ⊥于M ,AB =13cm,1360=CM ,cm 13
50
=AD 。
2.AB =80cm 。
3.先证BAO EAC ∠=∠,再证OAD DAE ∠=∠。
4.先证明75,o
AEC ACE ∠=∠=再证AE=BF=AC=CD 。
5.有2个,图略。