概率论与数理统计 习题四 参考答案及过程 许承德 哈尔滨工业大学出版社
- 格式:docx
- 大小:1.04 MB
- 文档页数:21
概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的).解:设表示一次抽检的10件产品的次品数为ξP =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)]查二项分布表1-=.因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=⎪⎪⎭⎫ ⎝⎛04××=.P (X =1)=⎪⎪⎭⎫ ⎝⎛14××=, P (X =2)= ⎪⎪⎭⎫⎝⎛24××=.P (X =3)=⎪⎪⎭⎫ ⎝⎛34××=, P (X =4)= ⎪⎪⎭⎫ ⎝⎛44××=. 从而E (X )=np =4×=习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==⎭⎬⎫⎩⎨⎧-=+j j X P jjj ,说明X的数学期望不存在.解: 由于1111133322(1)((1))3j j j j j j j j j P X j j j j ∞∞∞++===-=-==∑∑∑,而级数112j j ∞=∑发散,故级数11133(1)((1))j jj j j P X j j∞++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X-2 0 2 k p求)53(),(),(22+X E X E X E .解 E (X )=(-2)+0+2=由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2+02+22=E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[322+5]=如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3+5=4.135)(3)53(,8.23.04.0)(,2.03.023.004.02)(222222)2(=+=+=⨯+⨯=-=⨯+⨯+⨯-=-X E X E X E X E习题4-4 设随机变量X 的概率密度为⎩⎨⎧≤>=-0,0,0,)(x x e x f x 求XeY X Y 2)2(;2)1(-==的数学期望.解22)(2)0(2)(2)2()()(00=-=+-=+⋅===∞-∞+-∞-+∞-∞-+∞∞-⎰⎰⎰⎰xx xx e dx e xe dx xe dx x dx x xf X E Y E I3131)()()(0303022=-==⋅==∞-∞+-∞+---⎰⎰xx x x X edx e dx e e e E Y E II 习题4-5 设),(Y X 的概率密度为⎩⎨⎧≤≤≤=其它,0,10,12),(2x y y y x f求)(),(),(),(22Y X E XY E Y E X E +.解 各数学期望均可按照⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()],([计算。
概率论与数理统计(第四版)习题答案全概率论与数理统计习(第四版)题解答第一章 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。
设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品;(4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A第二章 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率. 解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=75.04341313131==-++=第三章 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=第四章 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++= 于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有 504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P 又设B 表示“电路发生间断”,则321A A A B += 于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+=328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++= 6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P 设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P)()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则)9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.第五章离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布.解:设X表示“在取得合格品以前已取出的废品数”,则X的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p.生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X表示“在两次调整之间生产的合格品数”,且设=1,则ξ的概率分布为q-p三、 已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布;(2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x CCC x X P x x从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xxx从而X 的概率分布为即四、 电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP 相对误差为.5168877.0168031355.0168877.000≈-=δ五、 设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P 32254115505)1()1()1(11p p C p p C p p C ------=16308.0≈六、 设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=第六章 随机变量的分布函数·连续随机变量的概率密度一、 函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-). 解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x因为)0( 0)1(2)('22<>+-=x x x x F ,所以)(x F 在(0,∞-)上单增.综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π. 解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、 一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤<≤<≤<≤=3,132,22021921,222110,430,0)(x x x x x x F四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A == 即)( ,arctan 121)(+∞<<-∞+=x x πx F . (2).21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P(3) X 的概率密度为)1(1)()(2x x F x f +='=π.五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Ae x f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2)).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰21102121)()(x e x e dx e dx x f x F x xx xx .第七章 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间 不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率. 解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰e e dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有 638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xe x F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有tt e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥. (2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx x f X P s X s X P x x.答:该电视机还能使用5年以上的概率约为6065.0. 四、 设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=.解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X X Y -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yXyYe F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即)( )1(2)(2+∞<<-∞+=y e e y f y yY π.第八章 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布.解:二维随机变量),(Y X 的联合概率分布为Y的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=. 求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π(3)X 及Y 的边缘分布函数分别为xxxXx dx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan 1)4(2),()(2ππ2arctan 121x π+=yxy Y ydy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan1)9(3),()(2ππ3arctan 121y π+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ)4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dxx y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有1610032==⎰⎰∞+∞+--A dy e dx e A yx,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x yy x xy⎩⎨⎧>>--=--其它00,0)1)(1(32y x e e y x(3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰020006),()(2032x x ex x dye e dy y xf x f xy x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰030006),()(3032y y ex x dxe e dx y xf y f yy x Y(4)⎰⎰⎰⎰---==∈x y xRdye dx edxdy y x f R Y X P 322033026),(}),{( 6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dydx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x .第九章 随机变量的独立性·二维随机变量函数的分布一、 设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥. 解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dxedx edy e dx dxdy y x f X Y P x xyxyxy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥102102212)(21),()(7869.0)1(2221122≈-=-=--e ex二、 设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(;,,2 ,1 ,0 ,)(212211n j q p C j p n i q p C i p j n j j n Y in i i n X====--证明它们的和Y X Z +=也服从二项分布. 证明: 设j i k +=, 则ik n i k i k n ki i n i i n ki Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()(∑=-+=ki kn n k in i n q p C C 02121)(由k nm ki ik nk m C C C +=-=∑0, 有 kn nki in i n C C C21210+==∑. 于是有),,2,1,0( )(212121n n k q p C k P k n n k in n Z +==-++由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,;2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ. 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0,2 1,10 ,210,10,),(其它当当y x y y x y y x fYX Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z∈=≤+=≤=,其中D 是z y x ≤+与),(y x f 的定义域的公共部分.故有⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z zz z z F Z从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、 电子仪器由六个相互独立的部件ijL (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ijX 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ 先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ第十章 随机变量的数学期望与方差一、 一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差.解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即于是有1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX 2X 的分布为即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、 对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为于是有p q p q q p q p iq p ipq EX i ii i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2X于是有pp p p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=-进一步有pp p p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P kk k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k kkk k kkkk kki iik k k X P k x X P x 不绝对收敛,所以ξ没有数学期望. 四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D . 解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdxx x dx xx dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为)( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)第十一章 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为于是有72.072.0128.00=⨯+⨯=EY72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为 ⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf .弦OB 的长为]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRR d R4sin 4cos 42020===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ; 0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<14110441141)()1(e e dx e dx x f X P x x进而有 41)1(1)1(-=<-=≥e X P X P 设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---e e e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量nX X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni iX nX 11的数学期望与方差. 解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量nX X X,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设iX 表示"第i 站的停车次数" (10,,2,1 =i ). 则iX 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i,1,0 于是iX 的概率分布为设∑==ni iX X 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-=即停车次数的数学期望为748.8.第十二章 二维随机变量的数字特征·切比雪夫不等式与大数定律一、 设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y x Ay x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X . 解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++11120022222A dr r rd A dxdy y x A πθπ解得, π1=A .(2)()11),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dxy xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰022022220223]11)1ln([1)1(211r r dr r r r r dr r r d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y x xydy dxdy y x xyf π.二、 设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么?解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-121322),(dx x dy xdx dxdy y x xf EX xx0),(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY 0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdyy x xyf ),(10==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有⎰⎰+∞∞--===xdy dy y x f x f x xX 2),()(; 当)1,0(∉x 时,有0)(=x f X.即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y 因为),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、 利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差 )(X σ的概率.解:91)3()3(2=≤>-ξξξξξD DD E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率.解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==npq D ξ 于是有npq p npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、 样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少 个产品,可使次品率为10%的一批产品不被接受的概率达到0.9?解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以)3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ 1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理) 因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ.查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.第十三章 正态分布的概率密度、分布函数、数学期望与方差一、 设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P)]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---=.0402.09973.09625.02=--二、 已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率.解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布). 解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F XY≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y. 当0>y 时,有dx ey X P y F yx Y⎰∞---=≤=ln 2)(2221)ln ()(σμσπ. 此时亦有222)(ln 21)(σμσπ--='y Yeyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数;(2) 随机变量函数XY Z =2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有 (1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.第十四章二维正态分布·正态随机变量线性函数的分布中心极限定理一、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.。
习题四r 一个袋子中装有四个球,它们上面分别标有数字1,223,今从袋中任取一球后不放回,再从袋中任取一球,以x*y分别表示第一次,第二次取出的球上的标号,求(x,y)的分布列.解(X,Y)的分布列为1212加中P(x=i, r = i)= p(x = i)p(y = iix = i)=oP(X=h r = 2) = P(X=1)P(Y = 2IX=1)1 2 1=—X—=—4 3 6余者类推。
2.将一枚硬币连掷三次,以X表示在三次中出现正面的次数,以y表示三次中出现正面次数与出现反而次数之差的绝对值,试写出(X,Y)的分布列及边缘分布列。
解-枚硬币连掷三次相当于三重贝努里试验,故X B(3,-).p(x )3, k=0丄2.3,于是(X,Y)的分布列和边缘分布为2Pj£ 8 2 8瓦中 P (X 1nI8 8 8 8=0. r = i)= p(x = o)P A = IIX =O )=O , 1 3P(x=h r = i)= p(x = i)p(r = iix = i)= cj(^/xi = ^,余者类推。
3.设(X.Y )的概率密度为c 、 一(6-x-y), 0<X<2, 2<y<4, f (兀y) = ( 80 ,其它.又(1) D = {(;v,y)lx<l,y <3} ; (2) D = {(x,y)lx + y <3}。
求P((X,y)e D}(1) P{(X, y) e D} = J J ;右(6 - X -y}dxdxy4. 1 9-4 2 __兀85 '方 设(X,Y )的概率密度为8(2) P{(X, r) e D) = J J i(6-X- y^dxdy/ *= i<!3-J^x(l-x)Jx-ij^[(3-x)'-4]J.r -0 2 0I 0 , 其他.系数C :(2) (XV )落在圆F + r<r (『<R )内的概率.(1) l = C JJ (R-下匚孑)dxdY = C7rR" -c[ :r 山d&(2)设£> = {(x,y)l 疋+ r <r}・所求概率为P{(X,r)eD}= Jf 务 R-Jx+'g'A' + >'<r-3r5・已知随机变量X 和y 的联合概率密度为4 卩 0<x<h0<y<l0 ■其它.求X 和y 的联合分布函数.解1设(X,y)的分布函数为F(x,y)»则0,J J 0 4itvchuh\I fJ oJ 0Fg y)= f f /(仏 v}diidv =<J --3C J 4-300<0<y<t 0<j<b y>l,X>t 0<y<l,0,j>t y>1. X < 0 或)< 0, 0<x<t 0<y<to<x<b y>tx>l, 0<y<l,x>l, y>L解2由联合密度可见,X#独立,边缘密度分别为边缘分布函数分别为竹(x). Fy(y}.则r o .x<(X 0<%<1,x> 1. 0, Fy (刃=J p/xU)旳 ny <0,0<y<l, y>i ・设(X#)的分布函数为Fgy),则F(x,y) = £¥(x)・Fy(y)n%<0 或 y<0, 0<%<1, 0<><10<x<t y>l, x>t 0<y<t x>U y>l ・6 •设二维随机变量(X")在区域D:O<%<1, \y\<x 内服从均匀分布, 求边缘概率密度。
习题4.11.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的数学期望.解 可得X 的概率分布为0123~77711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为7771()012310301201204531208E X =⨯+⨯+⨯+⨯==2..某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数X 的数学期望.解 可得X 的概率分布为12~111n X nn n ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为111()121(1)122E X n n n nn n n n =⨯+⨯++⨯++==3.设5次重复独立试验中每次试验的成功率为0.9,若记失败次数为X ,求X 的数学期望。
解 由题意~(5,0.1)X B ,则X 的数学期望为 ()50.10.E X =⨯= 4.设某地每年因交通事故死亡的人数服从泊松分布.据统计,在一年中因交通事故死亡一人的概率是死亡两人的概率的21,求该地每年因交通事故死亡的平均人数。
解 设该地每年因交通事故死亡的人数为X ,由题意X 服从泊松分布() (0)P λλ>.因1{1}{2}2P X P X === 即121 41!22!ee λλλλλ--=⇒= 于是X 的数学期望为()4E X λ== 所以地每年因交通事故死亡的平均人数为4人。
5.设随机变量X 在区间(1,7)上服从均匀分布,求2{()}P X E X <. 解 因X 在区间(1,7)上服从均匀分布,故X 的数学期望为17()42E X +== 于是22{()}{4}1 {22}6P X E X P X P X <=<=<-<<=6.设连续型随机变量X 的概率密度为01() (,0)0 b ax x p x a b ⎧<<=>⎨⎩其它又知()0.75E X =,求,a b 的值解 由密度函数的性质可得()1p x dx +∞-∞=⎰即1111b aax dx b =⇒=+⎰又由()0.75E X =,可得1()0.75b xp x dx x ax dx +∞-∞=⋅=⎰⎰即0.752ab =+ 求解110.752ab a b ⎧=⎪⎪+⎨⎪=⎪+⎩可得 3,2a b ==.7.设随机变量X 的概率密度为0<1()2 120 x x p x x x <⎧⎪=-≤<⎨⎪⎩其它求数学期望()E X解1201331221()() (2) ()133E X xp x dxx xdx x x dx x x x +∞-∞==⋅+⋅-=+-=⎰⎰⎰8.设随机变量X 的概率分布为X -2 -1 0 1 P 0.2 0.3 0.1 0.4 求 (1)(21)E X -;(2)2()E X .解 (1) (21)2()1E X E X -=- 其中()20.210.3010.40.3E X =-⨯-⨯++⨯=-则(21)2()12(0.3)1 1.6E X E X -=-=⨯--=-(2)22222()0.2(2)0.3(1)0.100.41 1.5E X =⨯-+⨯-+⨯+⨯=9.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作。
第四章 正态分布1、解:(0,1)ZN(1){ 1.24}(1.24)0.8925P Z ∴≤=Φ={1.24 2.37}(2.37)(1.24)0.99110.89250.0986P Z <≤=Φ-Φ==-= {2.37 1.24}( 1.24)( 2.37)(1.24)(2.37)0.89250.99110.0986P Z -<≤-=Φ--Φ-=-Φ+Φ=-+=(2){}0.9147()0.9147 1.37{}0.05261()0.0526()0.9474 1.62P Z a a a P Z b b b b ≤=∴Φ==≥=-Φ=Φ==,,得,,,得2、解:(3,16)XN8343{48}()()(1.25)(0.25)0.89440.59870.295744P X --∴<≤=Φ-Φ=Φ-Φ=-= 5303{05}()()(0.5)(0.75)44(0.5)1(0.75)0.691510.77340.4649P X --<≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 31(25,36){25}0.95442(3,4){}0.95X N C P X C X N C P X C -≤=>≥、()设,试确定,使;()设,试确定,使解:(1)(25,36){25}0.9544X N P X C -≤=,{2525}0.9544P C X C ∴-≤≤+=25252525()()0.954466()()2()10.9544666()0.9772,21266C C C C CC CC +---Φ-Φ=-Φ-Φ=Φ-=Φ=∴==即, (2)(3,4){}0.95XN P X C >≥,331()0.95()0.952231.6450.292C CCC ---Φ≥Φ≥-≥≤-即,,4、解:(1)2(3315,575)XN4390.2533152584.753315{2584.754390.25}()()575575(1.87)( 1.27)(1.87)1(1.27)0.969310.89800.8673P X --∴≤≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= (2)27193315{2719}()( 1.04)1(1.04)10.85080.1492575P X -≤=Φ=Φ-=-Φ=-=(25,0.1492)YB ∴4440{4}(0.1492)(10.1492)0.6664ii i i P Y C -=∴≤=-=∑5、解:(6.4,2.3)X N{}{}1()81(1.055)10.85540.14462.3(85}0.17615 6.451(0.923)(0.923)0.82121()2.3P X P X X P X -Φ>-Φ-∴>>======->-Φ-Φ-Φ6、解:(1)2(11.9,(0.2))XN12.311.911.711.9{11.712.3}()()(2)(1)(2)1(1)0.20.20.977210.84130.8185P X --∴<<=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 设A ={两只电阻器的电阻值都在11.7欧和12.3欧之间} 则2()(0.8185)0.6699P A ==(2)设X , Y 分别是两只电阻器的电阻值,则22(11.9,(0.2))(11.9,(0.2))XN Y N ,,且X , Y 相互独立[]22212.411.9{(12.4)(12.4)}1{12.4}{12.4)}1()0.21(2.5)1(0.9938)0.0124P X Y P X P Y -⎡⎤∴>>=-≤⋅≤=-Φ⎢⎥⎣⎦=-Φ=-=7、一工厂生产的某种元件的寿命X (以小时计)服从均值160μ=,均方差为的正态分布,若要求{120200}0.80P X <<≥,允许最大为多少?解:因为2(160,)XN σ由2001601201600.80{120200}()()P X σσ--≤<<=Φ-Φ从而 40402()10.80()0.9σσΦ-≥Φ≥,即,查表得401.282σ≥,故σ≤31.28、解:(1)2(90,(0.5))XN8990{89}()(2)1(2)10.97720.02280.5P X -∴<=Φ=Φ-=-Φ=-= (2)设2(,(0.5))XN d由808080{80}0.991()0.99()0.99 2.330.50.50.5d d d P X ---≥≥∴-Φ≥Φ≥≥,,,即 从而d ≥81.17 9、解:22~(150,3),~(100,4)X Y X N Y N 与相互独立,且则(1)2221~(150(100,3)4)(250,5)W X Y N N =+++=()222222~2150100,(2)314(200,52)W X Y N N =+-⨯+-⨯+⨯=-22325~(125,)(125,(2.5))22X Y W N N +== (2)242.6250{242.6}()( 1.48)1(1.48)10.93060.06945P X Y -+<=Φ=Φ-=-Φ=-= 12551255125522212551251255125()1()(2)1(2)2.5 2.522(2)220.97720.0456X Y X Y X Y P P P ⎧+⎫++⎧⎫⎧⎫->=<-+>+⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭--+-=Φ+-Φ=Φ-+-Φ=-Φ=-⨯=10、解:(1)22~(10,(0.2)),~(10.5,(0.2))X N Y N X Y ,且与相互独立22~(0.5,2(0.2))(0.5,(0.282))X Y N N ∴--⨯=-0(0.5){0}()(1.77)0.96160.282P X Y ---<=Φ=Φ=(2)22~(10,(0.2)),~(10.5,)X N Y N X Y σ设,且与相互独立222~(0.5,2(0.2))(0.5,(0.2))X Y N N σ∴--⨯=-+0.90{0}P X Y ≤-<=Φ=Φ由1.28≥,故σ≤0.334811、设某地区女子的身高(以m 计)2(1.63,(0.025))WN ,男子身高(以m 计)2(1.73,(0.05))MN ,设各人身高相互独立。
习 题 四1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解 (,)X Y 的分布列为其中 (1,1)(1)(1|1)P X Y P X P Y X =======(1,2)(1)(2|1)P X Y P X P Y X ======121436=⨯= 余者类推。
2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。
解 一枚硬币连掷三次相当于三重贝努里试验,故1~(3,).2X B 331()(),0,1,2,32k P X k C k ===,于是(,)X Y 的分布列和边缘分布为其中(0,1)(0)(1|0)P X Y P X P Y X =======,13313(1,1)(1)(1|1)()128P X Y P X P Y X C =======⨯=,余者类推。
3.设(,)X Y 的概率密度为1(6),02,24,(,)80,.x y x y f x y ⎧--<<<<⎪=⎨⎪⎩其它又(1){(,)|1,3}D x y x y =<<;(2){(,)|3}D x y x y =+<。
求{(,)}P X Y D ∈解 (1)13021{(,)}(6)8P x y D x y dxdxy ∈=--⎰⎰1194368228-⎡⎤--=⎢⎥⎣⎦;13021{(,)}(6)8x P X Y D x y dxdy -∈=--⎰⎰ 11200113(1)[(3)4]82x x dx x dx ⎧⎫-----⎨⎬⎩⎭⎰⎰524.4.设(,)X Y 的概率密度为222(,(,)0,.C R x y R f x y ⎧+≤⎪=⎨⎪⎩其他求(1)系数C ;(2)(,)X Y 落在圆222()x y r r R +≤<内的概率.解 (1)22223201(R x y R CR dxdy C R C r drd ππθ+≤==-⎰⎰⎰⎰333233R R C R C πππ⎡⎤=-=⎢⎥⎣⎦,∴ 33C Rπ=. (2)设222{(,)|}D x y x y r =+≤,所求概率为22233{(,)}(x y r P X Y D R dxdy R π+≤∈=⎰⎰322323232133r r r Rr R R R πππ⎡⎤⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎣⎦. 5.已知随机变量X 和Y 的联合概率密度为4,01,01(,)0,.xy x y f x y ≤≤≤≤⎧=⎨⎩其它 求X 和Y 的联合分布函数.解1 设(,)X Y 的分布函数为(,)F x y ,则(,)(,)x y F x y f u v dudv -∞+∞=⎰⎰001001000,00,4,01,01,4,01,1,4,1,01,1,1, 1.x y x y x y uvdudv x y uydudy x y xvdxdv x y x y ⎧<<⎪⎪≤≤≤≤⎪⎪⎪=≤≤>⎨⎪⎪>≤≤⎪⎪>>⎪⎩⎰⎰⎰⎰⎰⎰或22220,00,,01,01,,01,1,,1,01,1,1, 1.x y x y x y x x y y x y x y ⎧<<⎪≤≤≤≤⎪⎪=≤≤>⎨⎪>≤≤⎪⎪>>⎩或解2 由联合密度可见,,X Y 独立,边缘密度分别为2,01,()0,;X x x f x ≤≤⎧=⎨⎩其他 2,01,()0,.Y y y f y ≤≤⎧=⎨⎩其它 边缘分布函数分别为(),()X Y F x F y ,则20,0,()(),01,1, 1.x X X x F x f u du x x x -∞<⎧⎪==≤≤⎨⎪>⎩⎰20,0,()(),01,1, 1.y Y X y F y f v dv y y y -∞<⎧⎪==≤≤⎨⎪>⎩⎰设(,)X Y 的分布函数为(,)F x y ,则22220,00,,01,01(,)()(),01,1,,1,01,1,1, 1.X Y x y x y x y F x y F x F y x x y y x y x y ⎧<<⎪≤≤≤≤⎪⎪=⋅=≤≤>⎨⎪>≤≤⎪⎪>>⎩或6.设二维随机变量(,)X Y 在区域:01D x <<,|率密度。
习 题 四1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解 (,)X Y 的分布列为其中 (1,1)(1)(1|1)P X Y P X P Y X =======(1,2)(1)(2|P X Y P X P Y X ======121436=⨯= 余者类推。
2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。
解 一枚硬币连掷三次相当于三重贝努里试验,故1~(3,).2X B 331()(),0,1,2,32k P X k C k ===,于是(,)X Y 的分布列和边缘分布为其中 (0,1)(0)(1|0)P X Y P X P Y X =======,13313(1,1)(1)(1|1)()128P X Y P X P Y X C =======⨯=,余者类推。
3.设(,)X Y 的概率密度为1(6),02,24,(,)80,.x y x y f x y ⎧--<<<<⎪=⎨⎪⎩其它又(1){(,)|1,3}D x y x y =<<;(2){(,)|3}D x y x y =+<。
求{(,)}P X Y D ∈解 (1)13021{(,)}(6)8P x y D x y dxdxy ∈=--⎰⎰1194368228-⎡⎤=--=⎢⎥⎣⎦; 2)13021{(,)}(6)8x P X Y D x y dxdy -∈=--⎰⎰ 11200113(1)[(3)4]82x x dx x dx ⎧⎫=-----⎨⎬⎩⎭⎰⎰524=.4.设(,)X Y 的概率密度为222(,(,)0,.C R x y R f x y ⎧+≤⎪=⎨⎪⎩其他求(1)系数C ;(2)(,)X Y 落在圆222()x y r r R +≤<内的概率.解 (1)22223201(R x y R CR dxdy C R C r drd ππθ+≤==-⎰⎰⎰⎰333233R R C R C πππ⎡⎤=-=⎢⎥⎣⎦, ∴ 33C Rπ=. (2)设222{(,)|}D x y x y r =+≤,所求概率为 22233{(,)}(x y r P X Y D R dxdy R π+≤∈=⎰⎰322323232133r r r Rr R R R πππ⎡⎤⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎣⎦. 5.已知随机变量X 和Y 的联合概率密度为4,01,01(,)0,.xy x y f x y ≤≤≤≤⎧=⎨⎩其它求X 和Y 的联合分布函数.解1 设(,)X Y 的分布函数为(,)F x y ,则(,)(,)x y F x y f u v dudv -∞+∞=⎰⎰001001000,00,4,01,01,4,01,1,4,1,01,1,1, 1.x y x y x y uvdudv x y uydudy x y xvdxdv x y x y ⎧<<⎪⎪≤≤≤≤⎪⎪⎪=≤≤>⎨⎪⎪>≤≤⎪⎪>>⎪⎩⎰⎰⎰⎰⎰⎰或22220,00,,01,01,,01,1,,1,01,1,1, 1.x y x y x y x x y y x y x y ⎧<<⎪≤≤≤≤⎪⎪=≤≤>⎨⎪>≤≤⎪⎪>>⎩或解2 由联合密度可见,,X Y 独立,边缘密度分别为 2,01,()0,;X x x f x ≤≤⎧=⎨⎩其他 2,01,()0,.Y y y f y ≤≤⎧=⎨⎩其它边缘分布函数分别为(),()X Y F x F y ,则20,0,()(),01,1, 1.x X X x F x f u du x x x -∞<⎧⎪==≤≤⎨⎪>⎩⎰20,0,()(),01,1, 1.y Y X y F y f v dv y y y -∞<⎧⎪==≤≤⎨⎪>⎩⎰设(,)X Y 的分布函数为(,)F x y ,则22220,00,,01,01(,)()(),01,1,,1,01,1,1, 1.X Y x y x y x y F x y F x F y x x y y x y x y ⎧<<⎪≤≤≤≤⎪⎪=⋅=≤≤>⎨⎪>≤≤⎪⎪>>⎩或6.设二维随机变量(,)X Y 在区域:0D x <<求边缘概率密度。
解(,)X Y 的概率密度为1,(,),(,)0,.x y D f x y ∈⎧⎨⎩其他关于X 和Y 的密度为 0,01()(,),01,x X xx x f x f x y dy dy x +∞-∞-⎧≤≥⎪==⎨<<⎪⎩⎰⎰或 2,01,0,.x x <<⎧=⎨⎩其他110,1,,10,()(,),01,0, 1.yY y y d x y f y f x y d x d x y y +∞--∞≤-⎧⎪⎪-<≤⎪==⎨⎪<<⎪⎪≥⎩⎰⎰⎰1,10,1,01,0,.y y y y +-<≤⎧⎪=-<<⎨⎪⎩其他 1||,||1,0,.y y -<⎧=⎨⎩其他7.设(,)X Y 的概率密度为,0,(,)0,.y e x y f x y -⎧<<⎪=⎨⎪⎩其他求边缘密度和概率(1)P X Y +≤解 0,0,0,0,()(,),0.,0;X x yxx x f x f x y d y e x e dy x +∞+∞---∞≤⎧≤⎧⎪===⎨⎨>>⎩⎪⎩⎰⎰0,0,0,0,()(,),0.,0;y Y y yy y f y f x y d x y e y e d x y +∞---∞⎧≤⎧≤⎪⎪===⎨⎨>>⎪⎪⎩⎩⎰⎰111122001(1)(,)()x y x x x x y P X Y f x y dxdy e dy dx e e e dx ----+≤⎛⎫+≤===- ⎪⎝⎭⎰⎰⎰⎰⎰ 11212ee --=-+.8.一电子仪器由两个部件组成,以X 和Y 分别表示两个部件的寿命(单位:千小时)已知,X Y 的联合分布函数为:0.50.50.5()1,0,0(,)0,.xy x y ee e x y F x y ---+⎧--+≥≥⎪=⎨⎪⎩其他(1)问,X Y 是否独立?为什么?(2)求两个部件的寿命都超过100小时的概率. 解 (1)先求边缘分布函数:0.51,0,()lim (,)0,0.x X y e x F x F x y x -→+∞⎧-≥==⎨<⎩0.51,0,()lim (,)0,0.y Y x e y F y F x y y -→+∞⎧-≥==⎨<⎩因为(,)()()X Y F x y F x F y =⋅,所以,X Y 独立.(2)(0.1,0.1)(0.1)(0.1)[1(0.1)][1(0.1)]P X Y P X P Y P X P Y ≥≥=≥≥=-≤-≤0.050.050.1e e e ---=⋅=. 9.设(,)X Y 的概率密度为(),0,0,(,)0,.x y e x Y f x y -+⎧≥≥⎪=⎨⎪⎩其他间,X Y 是否独立?解 边缘密度为0,0,0,0,()(,),0.,0;X x x y x x f x f x y dy e x e e dy x +∞+∞----∞<⎧<⎧⎪===⎨⎨≥>⎩⎪⎩⎰⎰ 0,0,(),0.Y y y f y e y -<⎧=⎨>⎩因为 (,)()()X Y f x y f x f y =⋅,所以,X Y 独立. 10.设(,)X Y 的概率密度为8,01,(,)0,.xy x y f x y ≤<<⎧=⎨⎩其他问,X Y 是否独立. 解 边缘密度210,01,4(1),01,()(,)0,8,0 1.X xx x x x x f x f x y dy xydy x +∞-∞⎧<>⎧-≤≤⎪⎪===⎨⎨≤≤⎪⎩⎪⎩⎰⎰或其他;304,01,8,01,()(,)0,0,y Y y y xydx y f y f x y dx +∞-∞⎧⎧≤≤≤≤⎪⎪===⎨⎨⎪⎩⎪⎩⎰⎰其他;其他;因为(,)()()X Y f x y f x f y ≠⋅,所以,X Y 不独立。
11.设(,)X Y 的概率密度为1,||1,||1,(,)40,.xyx Y f x y +⎧<<⎪=⎨⎪⎩其他试证明X 与Y 不独立,但2X 与2Y 是相互独立的。
证 先求,X Y 的联合分布函数(,)F x y111111110,11,1,||1,||1,41(,),||1,1,41,1,||1,41,1,1;x yx y x y uv dudv x y uvF x y dudv x y uvdudv x y x y ------⎧≤-≤-⎪+⎪<<⎪⎪+⎪=<>⎨⎪+⎪><⎪⎪≥≥⎪⎩⎰⎰⎰⎰⎰⎰或220,1111(1)(1)(1)(1),||1,4161(1),1,||121(1),||1,1,21,1, 1.x y x y x y x y x y x x y x y ⎧≤-≤-⎪⎪+++++<⎪⎪⎪=+>≤⎨⎪⎪+≤>⎪⎪>>⎪⎩或关于X 的边缘分布函数为0,1,1()lim (,)(1),11,21,1.X y x F x F x y x x x →+∞⎧<-⎪⎪==+-≤≤⎨⎪⎪>⎩关于Y 的边缘分布函数为0,1,1()(1),11,21, 1.Y y F y y y y <-⎧⎪⎪=+-≤≤⎨⎪>⎪⎩因为(,)()()X Y F X Y F x F y ≠⋅,所以,X Y 不独立.再证2X 与2Y 独立:设22,X Y 的联合分布函数为1(,)F z t ,则0,0221(,)(,){z t F z t P X z Y t P x Y >>=≤≤====≤≤((F F F F =--+0,00,01,01,,1,01,01,1,1,1, 1.z t z t z t z t z t ⎧≤≤<<<<=≥<<<<≥⎪≥≥⎪⎩或关于22()X Y 的边缘分布函数分别为210,0,()lim (,)01,1, 1.X t z F z F z t z z →+∞⎧≤==<<≥⎪⎩20,0,()01,1, 1.Y t F t t t ⎧≤=<<≥⎪⎩因为221(,)()()X Y F z t F z F t =⋅,所以2X 与2Y 独立.证2 利用随机向量的变换(参见王梓坤《概率基础及其应用》83页) 设 22,Z X T Y ==.函数2z x =的反函数为212x x t y ===的反函数为12y y ==111111,,x x z t J y y z t∂∂∂∂===∂∂∂∂22111221,J J J J ===;于是22(,)X Y 的概率密度函数为 22111(,)(,)||ijiji j f z t f x y J===∑∑1[1111]01,01,40,.z t ⎧<<<<⎪=⎨⎪⎩其他01,01,0,z t <<<<=⎩其它.关于2X 的边缘密度为2101,()(,)0,.X z f z f z t dt +∞-∞<<==⎩⎰其它 关于2Y的边缘密度为201,()0,.Y t f t <<=⎩其他因为221(,)()()X Y f z t f z f t =⋅,所以22,X Y 独立.12.设随机变量X 与Y 相互独立,下表列出了二维随机变量(,)X Y 的联合分布律及关于X 和关于Y 的边缘分布律中的部分数值,试将其余值填入表中空白处.解 设(,)1,2,1,2,3.i j ij P X x Y y p i j =====由联合分布和边缘分布的关系知 11124p = 由独立性 11111311()68p p p =⨯++,即 131114248p =++,故13112p =, 11111248124p ⋅=++=,234p ⋅=222213()84p p =+⨯, 所以 2238p =,212p ⋅=31111623p ⋅=--= 231113124p =-=所以(,)X Y 的分布为13.已知随机变量1X 和2X 的概率分布为1101~111424X -⎡⎤⎢⎥⎢⎥⎣⎦, 201~1122X ⎡⎤⎢⎥⎢⎥⎣⎦而且 12(0)1P X X ==(1)求1X 和2X 的联合分布;(2)问1X 和2X 是否独立?为什么?解 (1)12(0)1P X X ==知1212(1,1)(1,1)0P X X P X X =-=====,再由联合分布和边缘分布的关系知12(,)X X 的分布为(2)因1212111(1,0)(1)(0)442P X X P X P X =-==≠⨯==-=,所以,X Y 不独立.14.设随机变量,X Y 相互独立,且都服从(,)b b -上的均匀分布,求方程20t tX Y ++=有实根的概率.解 设A =‘方程有实根’,则A 发生240X Y ⇔-≥即22()(4)x P A P X Y =≥=24214x bbbdxdy b --=⎰⎰3221[2]46b b b =+= 22(4)1)4x P X Y b dx -≥=--⎰33222111[4(88)]412b b b =-+1=15.已知随机变量X 和Y 的联合分布为(,)(0,0)(0,1)(1,0)(1,1)(2,0)(2,1)(,)0.100.150.250.200.150.15x y P X x Y y ==试求:(1)X 的概率分布;(2)X Y +的概率分布 解 (1)X 的分布为0120.250.450.30XP(2)X Y +的分布为01230.100.40.350.15X Y P +16.设X 与Y 为独立同分布的离散型随机变量,其概率分布列为()P X n =1()()2n P Y n ===,1,2,n =,求X Y +的分布列.解 设Z X Y =+,Z 的分布为 11()()()()k i P Z k P X Y k P X i P Y k i -===+====-∑1111()()22k i k ii --==∑1(1)()2,3,2k k k =-=17.设,X Y 是相互独立的随机变量,它们都服从参数为,n p 的二项分布,证明Z X Y =+服从参数为2,n p 的二项分布. 证 0()()()()ki P Z k P X Y k P X i P Y k i===+====-∑0(1)(1)kii n i k i k in k i n n i Cp p C p p ----+==-⋅-∑2220(1)(1)kkn kik i k k n kn n n i p p C CC p p ---==-=-∑ 0,1,,2k n = 故Z X Y =+服从参数为2,n p 的二项分布. 注:此处用到一个组合公式:kik i k mn m n i C CC -+==∑此公式的正确性可直观地说明如下:从m n +个不同的元素中取k 个共有km n C +种不同的取法。