高考数学绝对值不等式
- 格式:pdf
- 大小:166.39 KB
- 文档页数:11
解题宝典含绝对值不等式问题是高考的必考内容,此类型问题常与函数、方程、数列等知识点相结合,题型多样,具有一定的难度,需要灵活运用化归、分类讨论、数形结合等数学思想进行解答.本文对三类常见的含绝对值不等式题型及其解法进行了归纳,以帮助同学们提升解答此类问题的效率.一、||f (x )<a ,||f (x )>a ,()a ∈R 型不等式的解法对于该类型不等式,我们需要考虑a =0,a >0,a <0这三种情形.1.当a >0时,ìíî||f (x )<a ⇔-a <f (x )<a ,||f (x )>a ⇔f (x )>a 或f (x )<-a .2.当a =0时,ìíî||f (x )<a ⇔无解,||f (x )>a ⇔f (x )≠0的解集.3.当a <0时,ìíî||f (x )<a ⇔无解,||f (x )>a ⇔使y =f (x )成立的x 解集为R.因此,在处理||f (x )<a ,||f (x )>a ,()a ∈R 型不等式时,我们首先要对参数a 进行分类讨论,以便去掉绝对值符号,将绝对值不等式问题转化为常规不等式问题进行求解.例1.若不等式||3x -b <4解集中x 的正整数解有且仅有1,2,3,求b 的取值范围.解:∵||3x -b <4解集中x 的正整数解有且仅有1,2,3,∴||3x -b <4,解得b -43<x <b +43,∴0≤b -43<1,且3<b +43≤4,解得5<b <7.由于题目中给出了||3x -b <4解集,所以我们需要根据其正整数解1,2,3,列出新的不等式0≤b -43<1,且3<b +43≤4,从而求得b 的取值范围.二、||f (x )<||g (x )型不等式的解法在解该类型不等式时,我们首先要考虑在不等式的两边同时取平方,以便去除绝对值符号,再解不含绝对值的不等式,即:||f (x )<||g (x )⇔||f (x )2<||g (x )2⇔||f (x )2-||g (x )2<0,亦或者将之转化为[]f (x )+g (x )[]f (x )-g (x )<0.这样可以避免对绝对值内部式子进行分类讨论,能有效简化解题的过程,提升解题的效率.例2.求不等式||x +1-||x -3≥0的解集.分析:首先需将不等式移项,然后在不等式两边同取平方,将其化简成二次不等式进行求解.解:将不等式平方得||x +12≥||x -32,化简得x 2+2x +1≥x 2-6x +9,解得x ≥1.除了上述思路,同学们还可以利用绝对值的几何意义解答本题,即把||x +1-||x -3看作数轴上的点x 到点-1与到点3的距离之差,利用数轴得出x 的取值范围.三、|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法该类型不等式较为复杂,常规的解题方法是零点区域法.根据绝对值的定义取零点,将定义域将分为几个区间段,去掉绝对值符号,最后把所得的解集进行汇总便可得出不等式的解集.第二种方法是利用绝对值不等式的几何意义求解;第三种是构造函数,利用函数的图象求解.例3.解不等式||x +1>||2x -3-2.解:令x +1=0,则x =-1;令2x -3=0,则x =32,①当x ≤-1时,-()x +1>-(2x -3)-2,得x >2,不符合题意舍去,②当-1<x ≤32时,x +1>-(2x -3)-2,得0<x ≤32,③当x >32时,x +1>2x -3-2,得32<x <6.综合①②③得不等式的解集为{x |0<x <}6.这里采用的是零点区域法,首先取零点,并将定义域分为三段x ≤-1、-1<x ≤32、x >32,然后再分段进行求解,最后将结果进行汇总.通过上述分析,同学们可以发现,求解含绝对值不等式问题的关键在于去掉绝对值符号,将含绝对值不等式转为普通的不等式进行求解.因此同学们在解题时,要善于结合不等式的特点,采用分类讨论、取平方、利用绝对值不等式的几何意义、构造函数等方法来简化问题.(作者单位:湖北省汉川市第一高级中学)祁海成36。
【高中数学】绝对值不等式一、基础知识1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.↓|a|-|b|≤|a-b|≤|a|+|b|,当且仅当|a|≥|b|且ab≥0时,左边等号成立,当且仅当ab≤0时,右边等号成立.2.绝对值不等式的解法(1)|x|<a与|x|>a型不等式的解法不等式a>0a=0a<0|x|<a{x|-a<x<a}∅∅|x|>a{x|x>a或x<-a}{x|x∈R且x≠0}R(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法及体现数学思想①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.考点一绝对值不等式的解法[典例](2016·全国卷Ⅰ)已知函数f(x)=|x+1|-|2x-3|.(1)画出y =f (x )的图象;(2)求不等式|f (x )|>1的解集.[解](1)由题意得f (x )-4,x ≤-1,x -2,-1<x ≤32,x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知,当f (x )=1时,可得x =1或x =3;当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1|x <13或x>5所以|f (x )|>1|x <13或1<x <3或x>5[题组训练]1.解不等式|x +1|+|x -1|≤2.解:当x <-1时,原不等式可化为-x -1+1-x ≤2,解得x ≥-1,又因为x <-1,故无解;当-1≤x ≤1时,原不等式可化为x +1+1-x =2≤2,恒成立;当x >1时,原不等式可化为x +1+x -1≤2,解得x ≤1,又因为x >1,故无解;综上,不等式|x +1|+|x -1|≤2的解集为[-1,1].2.(2019·沈阳质检)已知函数f (x )=|x -a |+3x ,其中a ∈R .(1)当a =1时,求不等式f (x )≥3x +|2x +1|的解集;(2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.解:(1)当a =1时,f (x )=|x -1|+3x .法一:由f (x )≥3x +|2x +1|,得|x -1|-|2x +1|≥0,当x >1时,x -1-(2x +1)≥0,得x ≤-2,无解;当-12≤x ≤1时,1-x -(2x +1)≥0,得-12≤x ≤0;当x <-12时,1-x -(-2x -1)≥0,得-2≤x <-12.∴不等式的解集为{x |-2≤x ≤0}.法二:由f (x )≥3x +|2x +1|,得|x -1|≥|2x +1|,两边平方,化简整理得x 2+2x ≤0,解得-2≤x ≤0,∴不等式的解集为{x |-2≤x ≤0}.(2)由|x -a |+3x ≤0≥a ,x -a ≤0<a ,x +a ≤0,≥a ,≤a 4<a ,≤-a 2.当a >0|x ≤-a 2由-a2=-1,得a =2.当a =0时,不等式的解集为{x |x ≤0},不合题意.当a <0|x ≤a 4由a4=-1,得a =-4.综上,a =2或a =-4.考点二绝对值不等式性质的应用[典例](2019·湖北五校联考)已知函数f (x )=|2x -1|,x ∈R .(1)解不等式f (x )<|x |+1;(2)若对x ,y ∈R,有|x -y -1|≤13,|2y +1|≤16,求证:f (x )<1.[解](1)∵f (x )<|x |+1,∴|2x -1|<|x |+1,≥12,x -1<x +1x <12,-2x <x +1≤0,-2x <-x +1,得12≤x <2或0<x <12或无解.故不等式f (x )<|x |+1的解集为{x |0<x <2}.(2)证明:f (x )=|2x -1|=|2(x -y -1)+(2y +1)|≤|2(x -y -1)|+|2y +1|=2|x -y -1|+|2y +1|≤2×13+16=56<1.故不等式f (x )<1得证.[解题技法]绝对值不等式性质的应用利用不等式|a +b |≤|a |+|b |(a ,b ∈R )和|a -b |≤|a -c |+|c -b |(a ,b ∈R),通过确定适当的a ,b ,利用整体思想或使函数、不等式中不含变量,可以求最值或证明不等式.[题组训练]1.求函数f (x )=|x +2019|-|x -2018|的最大值.解:因为f (x )=|x +2019|-|x -2018|≤|x +2019-x +2018|=4037,所以函数f (x )=|x +2019|-|x -2018|的最大值为4037.2.若x ∈[-1,1],|y |≤16,|z |≤19,求证:|x +2y -3z |≤53.证明:因为x ∈[-1,1],|y |≤16,|z |≤19,所以|x +2y -3z |≤|x |+2|y |+3|z |≤1+2×16+3×19=53,所以|x +2y -3z |≤53成立.考点三绝对值不等式的综合应用[典例](2018·合肥质检)已知函数f (x )=|2x -1|.(1)解关于x 的不等式f (x )-f (x +1)≤1;(2)若关于x 的不等式f (x )<m -f (x +1)的解集不是空集,求m 的取值范围.[解](1)f (x )-f (x +1)≤1⇔|2x -1|-|2x +1|≤1,≥12,x -1-2x -1≤1-12<x <12,-2x -2x -1≤1≤-12,-2x +2x +1≤1,解得x ≥12或-14≤x <12,即x ≥-14,所以原不等式的解集为-14(2)由条件知,不等式|2x -1|+|2x +1|<m 有解,则m >(|2x -1|+|2x +1|)min 即可.由于|2x -1|+|2x +1|=|1-2x |+|2x +1|≥|1-2x +(2x +1)|=2,当且仅当(1-2x )(2x +1)≥0,即x ∈-12,12时等号成立,故m >2.所以m 的取值范围是(2,+∞).[解题技法]两招解不等式问题中的含参问题(1)转化①把存在性问题转化为求最值问题;②不等式的解集为R 是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .(2)求最值求含绝对值的函数最值时,常用的方法有三种:①利用绝对值的几何意义;②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||;③利用零点分区间法.[题组训练]1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|.(1)当a =1时,求不等式f (x )≥0的解集;(2)若f (x )≤1,求a 的取值范围.解:(1)当a =1时,f (x )x +4,x <-1,,-1≤x ≤2,2x +6,x >2.当x <-1时,由2x +4≥0,解得-2≤x <-1,当-1≤x ≤2时,显然满足题意,当x >2时,由-2x +6≥0,解得2<x ≤3,故f (x )≥0的解集为{x |-2≤x ≤3}.(2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立.故f (x )≤1等价于|a +2|≥4.由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞).2.(2018·广东珠海二中期中)已知函数f (x )=|x +m |+|2x -1|(m ∈R ),若关于x 的不等式f (x )≤|2x +1|的解集为A ,且34,2⊆A ,求实数m 的取值范围.解:∵34,2⊆A ,∴当x ∈34,2时,不等式f (x )≤|2x +1|恒成立,即|x +m |+|2x -1|≤|2x +1|在x ∈34,2上恒成立,∴|x +m |+2x -1≤2x +1,即|x +m |≤2在x ∈34,2上恒成立,∴-2≤x +m ≤2,∴-x -2≤m ≤-x +2在x ∈34,2上恒成立,∴(-x -2)max ≤m ≤(-x +2)min ,∴-114≤m ≤0,故实数m 的取值范围是-114,0.[课时跟踪检测]1.求不等式|2x -1|+|2x +1|≤6的解集.解:<-12,-2x -2x -1≤6-12≤x ≤12,-2x +2x +1≤6>12,x -1+2x +1≤6.解得-32≤x ≤32,|-32≤x ≤322.已知函数f (x )=|x -4|+|x -a |(a ∈R )的最小值为a .(1)求实数a 的值;(2)解不等式f (x )≤5.解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a ,从而解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|2x +6,x ≤2,,2<x ≤4,x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2;当2<x ≤4时,显然不等式成立;当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5|12≤x ≤1123.(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|.(1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围.解:(1)当a =1时,f (x )=|x +1|-|x -1|,即f (x )2,x ≤-1,x ,-1<x <1,,x ≥1.故不等式f (x )>1|x >12(2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立.若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,则|ax -1|<1|0<x <2a 所以2a ≥1,故0<a ≤2.综上,a 的取值范围为(0,2].4.设函数f (x )=|3x -1|+ax +3.(1)若a =1,解不等式f (x )≤4;(2)若f (x )有最小值,求实数a 的取值范围.解:(1)当a =1时,f (x )=|3x -1|+x +3≤4,即|3x -1|≤1-x ,x -1≤3x -1≤1-x ,解得0≤x ≤12,所以f(x)≤4的解集为0,12.(2)因为f(x)3+a)x+2,x≥13,a-3)x+4,x<13,所以f(x)+3≥0,-3≤0,解得-3≤a≤3,即实数a的取值范围是[-3,3].5.(2019·贵阳适应性考试)已知函数f(x)=|x-2|-|x+1|.(1)解不等式f(x)>-x;(2)若关于x的不等式f(x)≤a2-2a的解集为R,求实数a的取值范围.解:(1)原不等式等价于f(x)+x>0,不等式f(x)+x>0可化为|x-2|+x>|x+1|,当x<-1时,-(x-2)+x>-(x+1),解得x>-3,即-3<x<-1;当-1≤x≤2时,-(x-2)+x>x+1,解得x<1,即-1≤x<1;当x>2时,x-2+x>x+1,解得x>3,即x>3,综上所述,不等式f(x)+x>0的解集为{x|-3<x<1或x>3}.(2)由不等式f(x)≤a2-2a可得|x-2|-|x+1|≤a2-2a,∵|x-2|-|x+1|≤|x-2-x-1|=3,当且仅当x∈(-∞,-1]时等号成立,∴a2-2a≥3,即a2-2a-3≥0,解得a≤-1或a≥3.∴实数a的取值范围为(-∞,-1]∪[3,+∞).6.已知函数f(x)=|x-a|+|x+1|.(1)若a=2,求不等式f(x)>x+2的解集;(2)如果关于x的不等式f(x)<2的解集不是空集,求实数a的取值范围.解:(1)当a=2时,f(x)2x+1,x<-1,,-1≤x<2,x-1,x≥2,不等式f(x)>x+2<-1,2x+1>x+21≤x<2,>x+2≥2,x-1>x+2,解得x<1或x>3,故原不等式的解集为{x|x<1或x>3}.(2)∵f(x)=|x-a|+|x+1|≥|(x-a)-(x+1)|=|a+1|,当(x-a)(x+1)≤0时取等号.∴若关于x的不等式f(x)<2的解集不是空集,只需|a+1|<2,解得-3<a<1,即实数a的取值范围是(-3,1).7.已知函数f(x)=|2x-a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围.解:(1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6,得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3,即|x -a 2|+|12-x |≥3-a2.又x -a 2|+|12-x=|12-a 2|,所以|12-a2|≥3-a2,解得a ≥2.所以a 的取值范围是[2,+∞).8.(2018·福州质检)设函数f (x )=|x -1|,x ∈R .(1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M M ,求实数a 的取值范围.解:(1)因为f (x )≤3-f (x -1),所以|x -1|≤3-|x -2|⇔|x -1|+|x -2|≤3<1,-2x ≤3≤x ≤2,≤3或>2,x -3≤3,解得0≤x <1或1≤x ≤2或2<x ≤3,所以0≤x ≤3,故不等式f (x )≤3-f (x -1)的解集为[0,3].(2)M ,所以当x f (x )≤f (x +1)-|x -a |恒成立,而f (x )≤f (x +1)-|x -a |⇔|x -1|-|x |+|x -a |≤0⇔|x -a |≤|x |-|x -1|,因为x |x -a |≤1,即x -1≤a ≤x +1,由题意,知x -1≤a ≤x +1对于任意的x 所以12≤a ≤2,故实数a 的取值范围为12,2.。
高中数学中的不等式与绝对值在高中数学中,不等式和绝对值是重要的概念和工具。
它们在解决实际问题、证明数学定理以及推导其他数学结论时起到了至关重要的作用。
本文将介绍不等式和绝对值的定义、性质,以及它们在数学中的应用。
一、不等式的定义和性质不等式是指含有大小关系的数学表达式,通常用不等号(<、>、≤、≥)表示。
【举例】通过以下例子来了解不等式的定义和性质:1. x + 2 > 5:表示x加上2的和大于5。
2. 3x - 4 ≤ 10:表示3x减去4的差小于或等于10。
不等式可通过一系列的代数运算进行求解。
在运算过程中,需要遵守不等式的运算规则:1.相同的不等式符号(<、>、≤、≥)可同时加减一个相同的数,不等式不会改变。
2.相同的不等式符号可同时乘或除一个正数,不等式不会改变。
但如果是乘或除一个负数,不等式符号会颠倒。
3.两个不等式可相加或相减,不等式的符号不变。
但需要注意运算过程中的符号规定,以确保不等式成立。
二、绝对值的定义和性质绝对值是指一个数到原点的距离,通常用 "|" 符号表示。
绝对值始终是非负的。
【举例】通过以下例子来了解绝对值的定义和性质:1. |3| = 3:绝对值3等于3。
2. |-5| = 5:绝对值-5等于5。
对于任意实数x和y,绝对值具有以下性质:1.非负性质:|x| ≥ 0,绝对值始终是非负的。
2.零绝对值性质:|x| = 0 当且仅当 x = 0。
3.同号绝对值等式:|xy| = |x|·|y| 当且仅当 x、y同号。
4.异号绝对值等式:|xy| = -|x|·|y| 当且仅当 x、y异号。
5.三角不等式:|x+y| ≤ |x| + |y|,任意两个数之和的绝对值小于等于它们绝对值之和。
三、不等式与绝对值的应用1.求解不等式:不等式与绝对值经常被用来求解数学问题。
例如,求解一个含有不等式的方程,确定一个变量的取值范围等。
高三绝对值不等式的知识点在高三数学学科中,绝对值不等式是一个重要的知识点。
绝对值不仅在数学中有着重要的应用,也在现实生活中扮演着重要的角色。
本文将介绍高三绝对值不等式相关的知识点,并对其应用进行一些讨论。
一、绝对值的定义和性质绝对值是一个实数的非负数表示,可以用符号“|a|”表示。
如果a是一个实数,那么|a|的值是a的绝对值。
在讨论绝对值不等式之前,我们要了解绝对值的一些基本性质。
1. |a| ≥ 0:绝对值的值永远是非负的。
2. 当a ≥ 0时,有|a| = a;当a < 0时,有|a| = -a。
即绝对值表示这个数的距离与零的距离,如果这个数是非负的,则绝对值等于其本身;如果这个数是负数,则绝对值等于其相反数。
3. |a-b| 表示a与b之间的距离。
4. |a| + |b| ≥ |a+b|:这是绝对值的三角不等式,用来计算两个数绝对值之和与它们的和的绝对值之间的关系。
二、绝对值不等式的形式及求解方法绝对值不等式是用“≥”或“≤”表示的不等式,其解集是满足不等式条件的实数的集合。
对于一元绝对值不等式,我们可以通过以下两个步骤来求解。
步骤一:消去绝对值符号当绝对值不等式中只有绝对值的时候,可以根据绝对值的定义,列出两个不等式,分别求解。
例如对于|2x-3| ≥ 5,可以列出以下两个不等式:2x-3 ≥ 5 或者 2x-3 ≤ -5。
步骤二:求解不等式通过解第一步得到的两个不等式,可以得到解集。
对于每个不等式,可使用解二元一次不等式的方法求解。
三、绝对值不等式的应用举例1. 绝对值不等式在数轴上的表示考虑一个绝对值不等式|x-3| < 2,我们可以使用数轴来表示它的解集。
首先,在数轴上找到数值为3的点,然后从这个点开始向左右两侧延伸2个单位长度。
最终,我们得到的区间[-1, 5]表示满足这个绝对值不等式的实数。
2. 绝对值不等式在几何中的应用绝对值不等式在几何中也有一些应用。
例如,在平面几何中,我们可以利用绝对值不等式来证明三角形中的一些性质。
【数学知识点】绝对值不等式公式四个绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示。
|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。
绝对值不等式的公式为:||a|-|b||≤|a±b|≤|a|+|b|。
|a|表示数轴上的点a与原点的距离叫做数a的绝对值。
|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。
当a,b同号时它们位于原点的同一边,此时a与﹣b的距离等于它们到原点的距离之和。
当a,b异号时它们分别位于原点的两边,此时a与﹣b的距离小于它们到原点的距离之和。
(|a-b|表示a-b与原点的距离,也表示a与b之间的距离)。
绝对值重要不等式推导过程:我们知道|x|={x,(x>0);x,(x=0);-x,(x<0);因此,有:-|a|≤a≤|a|......①-|b|≤b≤|b|......②-|b|≤-b≤|b|......③由①+②得:-(|a|+|b|)≤a+b≤|a|+|b|即|a+b|≤|a|+|b|......④由①+③得:-(|a|+|b|)≤a-b≤|a|+|b|即|a-b|≤|a|+|b|......⑤另:|a|=|(a+b)-b|=|(a-b)+b||b|=|(b+a)-a|=|(b-a)+a|由④知:|a|=|(a+b)-b|≤|a+b|+|-b|=>|a|-|b|≤|a+b|.......⑥|b|=|(b+a)-a|≤|b+a|+|-a|=>|a|-|b|≥-|a+b|.......⑦|a|=|(a-b)+b|≤|a-b|+|b|=>|a|-|b|≤|a-b|.......⑧|b|=|(b-a)+a|≤|b-a|+|a|=>|a|-|b|≥-|a-b|.......⑨由⑥,⑦得:| |a|-|b| |≤|a+b|......⑩由⑧,⑨得:| |a|-|b| |≤|a-b|......⑪综合④⑤⑩⑪得到有关绝对值的重要不等式:|a|-|b|≤|a±b|≤|a|+|b|要注意等号成立的条件(特别是求最值),即:|a-b|=|a|+|b|→ab≤0|a|-|b|=|a+b|→b(a+b)≤0|a|-|b|=|a-b|→b(a-b)≥0注:|a|-|b|=|a+b|→|a|=|a+b|+|b|→|(a+b)-b|=|a+b|+|b|→b(a+b)≤0同理可得|a|-|b|=|a-b|→b(a-b)≥0。
高考数学一轮总复习绝对值不等式的解法与数列极限的关系与绝对值的应用绝对值是数学中常见的概念,它的应用广泛且重要。
在高考数学一轮总复习中,不等式与绝对值的联系及数列极限与绝对值的应用是我们需要重点掌握的知识点。
本文将介绍绝对值不等式的解法与数列极限的关系,并探讨绝对值的应用。
1. 绝对值不等式的解法绝对值不等式是一种形式特殊的不等式,它的解法与普通的不等式有所区别。
下面介绍几种常见的解法:1.1 分类讨论法当绝对值中的表达式包含不同情况时,可以通过分类讨论的方式来解决。
例如,对于不等式|2x+3|≥5,可以分别讨论2x+3的取值范围,然后求解得出满足条件的x的值。
1.2 倍角法倍角法是解决绝对值不等式的常用方法之一。
例如,对于不等式|sinx|>0.5,可以通过考虑sinx和cosx的正负性来得出满足条件的x的取值范围。
1.3 区间法对于一些特殊的不等式,可以利用区间的性质来进行求解。
例如,对于不等式|2x-1|<3,可以通过构造区间[-3,3],然后确定满足条件的x的取值范围。
2. 数列极限与绝对值的应用数列极限是高中数学中的重要知识点,与绝对值的应用有紧密的联系。
下面介绍两种常见的相关应用:2.1 极限定义的证明在数列极限的证明中,常常需要使用到绝对值的性质。
例如,证明数列{an}的极限是A,需要证明对于任意给定的误差ε>0,存在正整数N,使得当n>N时就有|an-A|<ε成立。
这里的绝对值就是用来限制误差范围的。
2.2 极限计算的辅助工具在一些求极限的过程中,需要用到绝对值的性质来简化计算。
例如,求极限lim(x→∞)|x-1|/x,可以利用绝对值的非负性质,将|x-1|替换为x-1,从而得到简化后的表达式1-1/x。
3. 绝对值的应用除了与不等式及数列极限的联系外,绝对值还有许多其他的应用。
下面介绍一些常见的应用情景:3.1 函数定义的拆分在一些函数的定义中,需要将函数分段来描述。
高三数学绝对值不等式试题答案及解析1.(不等式选讲题)对于任意实数和不等式恒成立,则实数x的取值范围是_________.【答案】【解析】依题意可得恒成立,等价于小于或等于的最小值.因为.所以.【考点】1绝对值不等式的性质.2.恒成立问题.3.最值问题.2.关于x的不等式|x-3|+|x-4|<a的解集不是空集,求a的取值范围.【答案】(1,+∞)【解析】∵|x-3|+|x-4|≥|(x-3)-(x-4)|=1,∴a>1.即a的取值范围是(1,+∞).3.设函数f(x)=|2x-1|+|2x-3|,x∈R.(1)求关于x的不等式f(x)≤5的解集.(2)若g(x)=的定义域为R,求实数m的取值范围.【答案】(1) x∈[-,] (2) m>-2【解析】(1)或或不等式的解集为x∈[-,].(2)若g(x)=的定义域为R.则f(x)+m≠0恒成立,即f(x)+m=0在R上无解,又f(x)=|2x-1|+|2x-3|≥|2x-1-2x+3|=2,f(x)的最小值为2,所以m>-2.4.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.【答案】[-2,4]【解析】|x-a|+|x-1|≥|a-1|,则只需要|a-1|≤3,解得-2≤a≤4.5.若关于实数x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是________.【答案】(-∞,8]【解析】因为|x-5|+|x+3|表示数轴上的动点x到数轴上的点-3,5的距离之和,而(|x-5|+|x+=8,∴当a≤8时,|x-5|+|x+3|<a无解,3|)min故实数a的取值范围为(-∞,8].6.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈时,f(x)≤g(x),求a的取值范围.【答案】(1){x|0<x<2}(2)【解析】(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.设函数y=|2x-1|+|2x-2|-x-3,则y=其图象如图所示,由图象可知,当且仅当x∈(0,2)时,y<0.所以原不等式的解集是{x|0<x<2}.(2)当x∈时,f(x)=1+a,不等式f(x)≤g(x)化为1+a≤x+3,所以x≥a-2对x∈都成立,应有-≥a-2,则a≤,从而实数a的取值范围是.7.若不等式的解集为,则实数的取值范围是____.【答案】【解析】不等式的解集为,所以.,所以,.【考点】不等式8.设函数.(Ⅰ)当时,解不等式;(Ⅱ)当时,不等式的解集为,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)原不等式的解集等价于不等式组或的解集的并集;(Ⅱ)当时,不等式的解集为,恒成立问题,对分类讨论,①,②.试题解析:(Ⅰ)当时,,或或,∴不等式的解集是. 5分[(Ⅱ)不等式可化为,∴,由题意,时恒成立,当时,可化为,,,,综上,实数的取值范围是. 10分【考点】绝对值不等式,恒成立问题.9.(本题满分10分)《选修4-5:不等式选讲》已知函数(1)证明:(2)求不等式:的解集【答案】(1);(2)【解析】(1)对于x进行分三类讨论,得到关于x的分段函数,进而分别求解得到解集取其并集得到。