高速DSP系统PCB板的可靠性设计
- 格式:doc
- 大小:32.50 KB
- 文档页数:3
高速PCB设计指南---PCB的可靠性设计
:
①非线性流。
②初级电路中功率晶体管外壳与散热器之间的容光焕发性耦合在电源输入端产生的传导共模噪声。
抑制方法:
①对开关电压波形进行修整。
②在晶体管与散热器之间加装带屏蔽层的绝缘垫片。
③在市电输入电路中加接电源滤波器。
2.2 开关电源的辐射骚扰与抑制
注意辐射骚扰与抑制
抑制方法:
①尽可能地减小环路面积。
②印刷线路板上正负载流导体的布局。
③在次线整流回路中使用软恢复二极管或在二极管上并联聚酯薄膜电容器。
④对晶体管开关波形进行修整。
2.3 输出噪声的减小
原因是二极管反向电流陡变及回路分布电感。
二极管结电容等形成高频衰减振荡,而滤波电容的等效串联电感又削弱了滤波的作用,因此在输出改波中出现尖峰干扰解决办法是加小电感和高频电容。
3 设备内部的布线
3.1 线间电磁耦合现象及抑制方法
对磁场耦合:。
浅谈高速DSP系统的电路板级电磁兼容性设计
印制线路板(PCB)提供电路元件和器件之间的电气连接,是各种电子设备最基本的组成部分,它的性能直接关系到电子设备质量的好坏。
随着电子技术的发展,各种电子产品经常在一起工作,它们之间的干扰越来越严重,所以电磁兼容问题成为一个电子系统能否正常工作的关键。
同样,随着PCB的密度越来越高,PCB设计的好坏对电路的干扰及抗干扰能力影响很大。
要使电子电路获得最佳性能,除了元器件的选择和电路设计之外,良好的PCB布线在电磁兼容性中也是一个非常重要的因素。
随着高速DSP技术的广泛应用,相应的高速DSP的PCB设计就显得十分重要。
由于DSP是一个相当复杂、种类繁多并有许多分系统的数、模混合系统,所以来自外部的电磁辐射以及内部元器件之间、分系统之间和各传输通道间的串扰对DSP及其数据信息所产生的干扰,已严重地威胁着其工作的稳定性、可靠性和安全性。
据统计,干扰引起的DSP事故占其总事故的90%左右。
因此设计一个稳定、可靠的DSP系统,电磁兼容和抗干扰至关重要。
1 DSP的电磁干扰环境
电磁干扰的基本模型由电磁干扰源、耦合路径和接收机3部分组成,如图1所示。
电磁干扰源包含微处理器、微控制器、静电放电、瞬时功率执行元件等。
随着大量高速半导体器件的应用,其边沿跳变速率非常快,这种电路可以产生高达300 MHz的谐波干扰。
耦合路径可以分为空间辐射电磁波和导线传导的电压与电流。
噪声被耦合到电路中的最简单方式是通过导体的传递,例。
高速pcb设计规则
高速PCB设计规则是指在设计PCB时需要遵循的一系列规则和原则,以确保信号传输的质量和稳定性。
高速 PCB 的设计需要考虑多
种因素,如信号传输速度、信号波形、传输距离、干扰等等。
以下是一些常见的高速 PCB 设计规则:
1. 避免信号线的走线路径过长,尽可能缩短信号线的长度,以
减小信号传输延迟和损耗。
2. 保证信号线之间的距离足够大,以避免互相干扰,同时也能
降低信号串扰的风险。
3. 使用合适的层次结构设计,尽可能将信号线和电源线分离,
以减少干扰和噪声。
4. 在 PCB 的布线中,保证地线和供电线的宽度足够宽,以确保稳定的供电和地面连接。
5. 在 PCB 的布线中,避免过多的弯曲或拐角,以减小信号传输中的损失和延迟。
6. 选用合适的 PCB 材料和厚度,以满足高速信号传输的需求。
7. 注意 PCB 的电磁兼容性,通过合理的布线和屏蔽来减少干扰。
以上是高速 PCB 设计中的一些基本规则,但实际上,高速 PCB 的设计涉及的方面非常广泛,需要根据具体的应用场景来进行设计。
为了保证高速 PCB 的质量和可靠性,需要有专业的技术人员进行设
计和测试。
- 1 -。
高速PCB布线设计的最佳实践在进行高速PCB布线设计时,采用最佳实践是至关重要的。
随着电子设备的发展,高速信号传输的需求越来越重要,因此,我们必须遵循一些规范和原则来确保电路板的性能和可靠性。
本文将介绍一些高速PCB布线设计的最佳实践,以帮助工程师们更好地应对这一挑战。
一、信号完整性的考虑在高速PCB布线设计中,信号完整性是至关重要的。
信号完整性指的是保持信号的稳定性和准确性,防止信号失真。
以下是一些考虑信号完整性的最佳实践:1. 短而直的走线:为了降低信号的传输延迟和损耗,应尽量采用短而直的走线。
避免使用过长的走线或过多的拐弯。
2. 控制阻抗:控制阻抗是确保信号传输稳定的重要因素。
在设计过程中,应根据信号特性选择合适的线宽和间距,以获得所需的阻抗。
3. 地线和电源线的布局:良好的地线和电源线布局对于信号完整性非常重要。
应尽量减小地线和电源线的回路面积,避免与高速信号走线交叉。
4. 终端匹配:为了减少信号的反射和干扰,需要对高速信号的发射和接收端进行匹配。
可以使用电阻、电容、电感等元件来实现匹配。
5. 绕线规则:在布线时,应尽量遵循绕线规则。
例如,将高速信号与低速信号分开布线,避免平行走线。
二、电磁兼容性的考虑电磁兼容性是高速PCB布线设计中另一个重要的方面。
电路板上的信号可能会产生电磁干扰,并且也容易受到外部电磁干扰的影响。
以下是一些考虑电磁兼容性的最佳实践:1. 地平面设计:良好的地平面设计可以起到屏蔽和引流作用,减少信号的辐射和接收到的外界干扰。
应尽量增加地平面的面积,并保持地网的连续性。
2. 屏蔽:对于一些特别敏感的信号,可以考虑使用屏蔽罩或屏蔽层来保护其不受干扰。
3. 波形整形:对于高速信号,可以使用波形整形器或滤波器来减少信号的波形畸变和噪音。
4. 分离模拟与数字信号:在高速PCB布线设计中,应尽量将模拟信号和数字信号分开布线,以减少相互之间的干扰。
5. 引入电磁兼容性测试:在设计完成后,应进行电磁兼容性测试,以确保电路板符合相关的电磁兼容性标准。
高速DSP PCB抗干扰设计近几年来,随着新工艺、新器件的迅速发展,高速器件变得越来越普及,高速电路设计也就成了普遍需要的技术。
TI公司的DsPs芯片TMS320C62xx、C64xx、C67xx系列器件是发展非常迅速的高速器件之一。
C6000内部结构为定点,浮点系列兼容DsP,目前CPU主频100MHz,-4i00MHz。
具有VelociTITM先进的甚长指令字(VLIW)结构内核,可以做到一个指令周期并行执行8条32 bit的指令。
由于其具有高速运算能力,广泛应用在通信、对抗、雷达和图像处理等需要高度智能化、高速处理能力的领域。
随着芯片集成度的越来越高,芯片的引脚也越来越多,器件的封装也在不断地发生变化,从DIP至OSOP,从SOP到PQFP,从PQFP到BGA。
TMS320C6000系列器件采用BGA封装,在电路应用方面,BGA封装具有高成功率、低返修率、高可靠性的特点,应用越来越广泛,但由于BGA封装属于球栅阵列贴片封装,在开发中系统的物理实现上,也就是板级设计牵涉到很多高速数字电路的设计技术。
高速系统中,噪声干扰的产生是第一影响因素,高频电路还会产生辐射和冲突,而较快的边缘速率则会产生振铃、反射和串扰。
如果不考虑高速信号布局布线的特殊性,设计出的将不能正常工作。
因此PCB板设计成功是DSPs 电路设计过程中非常关键的一个环节。
1 传输线效应1.1信号完整性信号完整性主要有反射、振铃、地弹和串扰等现象。
PCB板上的走线可等效为图1所示的串联和并联的电容、电阻和电感结构。
串联电阻的典型值0.25D./R-4)。
55DJft,并联电阻阻值通常很高。
将寄生电阻、电容和电感加到实际的PCB连线中之后,连线上的最终阻抗称为特征阻抗zo。
如果传输线和接收端的阻抗不匹配,这就会引起信号的反射和振荡。
布线的几何形状,不正确的线端接,经过连接器的传输及电源平面的不连续等因素的变化均会导致反射。
过冲和下冲是信号在电平上升沿和下降沿变化时产生的,会在瞬间产生高于或低于平稳电平的毛刺,容易损坏器件。
本文由290419905贡献doc文档可能在WAP端浏览体验不佳。
建议您优先选择TXT,或下载源文件到本机查看。
确保信号完整性的高速 PCB 电路板设计准则(2)布线后 SI 仿真一般来说,SI 设计指导规则很难保证实际布线完成之后不出现 SI 或时序问题。
即使设计是在指南的引导下进行,除非你能够持续自动检查设计,否则,根本无法保证设计完全遵守准则,因而难免出现问题。
布线后 SI 仿真检查将允许有计划地打破(或者改变)设计规则,但是这只是出于成本考虑或者严格的布线要求下所做的必要工作。
现在,采用 SI 仿真引擎,完全可以仿真高速数字 PCB(甚至是多板系统),自动屏蔽 SI 问题并生成精确的“引脚到引脚”延迟参数。
只要输入信号足够好,仿真结果也会一样好。
这使得器件模型和电路板制造参数的精确性成为决定仿真结果的关键因素。
很多设计工程师将仿真“最小”和“最大”的设计角落,再采用相关的信息来解决问题并调整生产率。
后制造阶段采取上述措施可以确保电路板的 SI 设计品质,在电路板装配完成之后,仍然有必要将电路板放在测试平台上,利用示波器或者 TDR(时域反射计)测量,将真实电路板和仿真预期结果进行比较。
这些测量数据可以帮助你改进模型和制造参数,以便你在下一次预设计调研工作中做出更佳的(更少的约束条件)决策。
模型的选择关于模型选择的文章很多,进行静态时序验证的工程师们可能已经注意到,尽管从器件数据表可以获得所有的数据,要建立一个模型仍然很困难。
SI 仿真模型正好相反,模型的建立容易,但是模型数据却很难获得。
本质上,SI 模型数据唯一的可靠来源是 IC 供应商,他们必须与设计工程师保持默契的配合。
IBIS 模型标准提供了一致的数据载体,但是 IBIS 模型的建立及其品质的保证却成本高昂,IC 供应商对此投资仍然需要市场需求的推动作用,而电路板制造商可能是唯一的需方市场。
未来技术的趋势设想系统中所有输出都可以调整以匹配布线阻抗或者接收电路的负载,这样的系统测试方便,SI 问题可以通过编程解决,或者按照 IC 特定的工艺分布来调整电路板使 SI 达到要求,这样就能使设计容差更大或者使硬件配置的范围更宽。
高速DSP系统PCB板的可靠性设计
摘要:本文先容了高速DSP系统PCB板的特点以及可靠性设计应留意的几个题目,包括电源设计、软硬件抗干扰设计、电磁兼容性设计、散热设计以及高速电路重要信号线的布线方法,使各项设计更加公道,易于工程实现。
关键词:PCB 板设计;电路板布线;抗干扰;散热
引言
由于微电子技术的高速发展,由IC芯片构成的数字电子系统朝着规模大、体积小、速度快的方向飞速发展,而且发展速度越来越快。
新器件的应用导致现代EDA设计的电路布局密度大,而且信号的频率也很高,随着高速器件的使用,高速DSP(数字信号处理) 系统设计会越来越多,处理高速DSP应用系统中的信号题目成为设计的重要题目,在这种设计中,其特点是系统数据速率、时钟速率和电路密集度都在不断增加,其PCB印制板的设计表现出与低速设计截然不同的行为特点,即出现信号完整性题目、干扰加重题目、电磁兼容性题目等等。
这些题目能导致或者直接带来信号失真,定时错误,不正确数据、地址和控制线以及系统错误甚至系统崩溃,解决不好会严重影响系统性能,并带来不可估量的损失。
解决这些题目的方法主要靠电路设计。
因此PCB印制板的设计质量相当重要,它是把最优的设计理念转变为现实的惟一途径。
下面讨论针对在高速DSP系统中PCB板可靠性设计应留意的若干题目。
电源设计
高速DSP系统PCB板设计首先需要考虑的是电源设计题目。
在电源设计中,通常采用以下方法来解决信号完整性题目。
考虑电源和地的往耦
随着DSP工作频率的进步,DSP和其他IC元器件趋向小型化、封装密集化,通常电路设计时考虑采用多层板,建议电源和地都可以用专门的一层,且对于多种电源,例如DSP的I/O 电源电压和内核电源电压不同,可以用两个不同的电源层,若考虑多层板的加工用度高,可以把接线较多或者相对关键的电源用专门的一层,其他电源可以和信号线一样布线,但要留意线的宽度要足够。
无论电路板是否有专门的地层和电源层,都必须在电源和地之间加一定的并且分布公道的电容。
为了节省空间,减少通孔数,建议多使用贴片电容。
可把贴片电容放在PCB板背面即焊接面,贴片电容到通孔用宽线连接并通过通孔与电源、地层相连。
考虑电源分布的布线规则
分开模拟和数字电源层
高速高精度模拟元件对数字信号很敏感。
例如,放大器会放大开关噪声,使之接近脉冲信号,所以在板上模拟和数字部分,电源层一般是要求分开的。
隔离敏感信号
有些敏感信号(如高频时钟) 对噪声干扰特别敏感,对它们要采取高等级隔离措施。
高频时钟(20MHz以上的时钟,或翻转时间小于5ns的时钟)必须有地线护送,时钟线宽至少10mil,护送地线线宽至少20mil,高频信号线的保护地线两端必须由过孔与地层良好接触,而且每5cm 打过孔与地层连接;时钟发送侧必须串接一个22Ω~220Ω的阻尼电阻。
可避免由这些线带来的信号噪声所产生的干扰。
软、硬件抗干扰设计
一般高速DSP应用系统PCB板都是由用户根据系统的具体要求而设计的,由于设计能力、实验室条件有限,如不采取完善、可靠的抗干扰措施,一旦碰到工作环境不理想、有电磁干扰就会导致DSP程序流程紊乱,当DSP正常工作代码不能恢复时,将出现跑飞程序或死机现象,甚至会损坏某些元器件。
应留意采取相应的抗干扰措施。
硬件抗干扰设计
硬件抗干扰效率高,在系统复杂度、本钱、体积可容忍的情况下,优先选用硬件抗干扰设计。
常用的硬件抗干扰技术可回纳为以下几种:
(1) 硬件滤波:RC 滤波器可以大大削弱各类高频干扰信号。
如可以抑制“毛刺”干扰。
(2) 公道接地:公道设计接地系统,对于高速的数字和模拟电路系统来说,具有一个低阻抗、大面积的接地层是很重要的。
地层既可以为高频电流提供一个低阻抗的返回通路,而且使EMI、RFI变得更小,同时还对外部干扰具有屏蔽作用。
PCB 设计时把模拟地和数字地分开。
(3) 屏蔽措施:交流电源、高频电源、强电设备、电弧产生的电火花,会产生电磁波,成为电磁干扰的噪声源,可用金属壳体把上述器件包围起来,再接地,这对屏蔽通过电磁感应引起的干扰非常有效。
(4) 光电隔离:光电隔离器可以有效地避免不同电路板间的相互干扰,高速的光电隔离器常用于DSP和其他设备(如传感器、开关等) 的接口。
软件抗干扰设计
软件抗干扰有硬件抗干扰所无法取代的上风,在DSP 应用系统中还应充分挖掘软件的抗干扰能力,从而将干扰的影响抑制到最小。
下面给出几种有效的软件抗干扰方法。
(1) 数字滤波:模拟输进信号的噪声可以通过数字滤波加以消除。
常用的数字滤波技术有:中值滤波、算术均匀值滤波等。
(2) 设置陷阱:在未用的程序区内设置一段引导程序,当程序受干扰跳到此区域时,引导程序将强行捕捉到的程序引导到指定的地址,在那里用专门程序对出错程序进行处理。
(3) 指令冗余:在双字节指令和三字节指令后插进两三个字节的空操纵指令NOP,可以防止当DSP系统受干扰程序跑飞时,将程序自动纳进正轨。
(4) 设置看门狗定时:如失控的程序进进“死循环”,通常采用“看门狗”技术使程序脱离“死循环”。
其原理是利用一个定时器,它按设定周期产生一个脉冲,假如不想产生此脉冲,DSP就应在小于设定周期的时间内将定时器清零;但当DSP程序跑飞时,就不会按规定把定时器清零,于是定时器产生的脉冲作为DSP复位信号,将DSP重新复位和初始化。
电磁兼容性设计
电磁兼容性是指电子设备在复杂电磁环境中仍可以正常工作的能力。
电磁兼容性设计的目的是使电子设备既能抑制各种外来干扰,又能减少电子设备对其他电子设备的电磁干扰。
在实际的PCB板中相邻信号间或多或少存在着电磁干扰现象即串扰。
串扰的大小与回路间的分布电容和分布电感有关。
解决这种信号间的相互电磁干扰可采取以下措施:
选择公道的导线宽度
由于瞬变电流在印制线条上产生的冲击干扰主要是印制导线的电感成分引起的,而其电感量与印制导线长度成正比,与宽度成反比。
所以采用短而宽的导线对抑制干扰是有利的。
时钟引线、总线驱动器的信号线常有大的瞬变电流,其印制导线要尽可能短。
对于分立元件电路,印制导线宽度在1.5mm左右即可满足要求;对于集成电路,印制导线宽度在0. 2mm~1. 0mm 之间选择。
采用井字形网状布线结构。
具体做法是在PCB印制板的一层横向布线,紧挨着的一层纵向布线。
散热设计
为有利于散热,印制板最好是自立安装,板间距应大于2cm,同时留意元器件在印制板上的布排规则。
在水平方向,大功率器件尽量靠近印制板边沿布置,从而缩短传热途径;在垂直方向大功率器件尽量靠近印制板上方布置,从而减少其对别的元器件温度的影响。
对温度较敏感的元器件尽量布放在温度比较低的区域,而不能放在发热量大的器件的正上方。
结束语
在高速DSP应用系统的各项设计中,如何把完善的设计从理论转化为现实,依靠于高质量的PCB印制板,DSP电路的工作频率越来越高,管脚越来越密,干扰加大,如何进步信号的质量很重要。
因此系统的性能是否良好,与设计者的PCB印制板质量密不可分。
如能公道布局设计,减少噪声,降扰,避开不必要的失误,对系统性能的发挥起到不低估的作用。