计算机组成原理内存条历史
- 格式:doc
- 大小:88.50 KB
- 文档页数:4
DRAM的发展1. 简介DRAM(Dynamic Random Access Memory)是一种常见的半导体存储器,用于电子设备中的主存储器。
它具有高速读写、容量大和低功耗等优点,因此在计算机、手机、平板电脑和其他消费电子产品中广泛应用。
本文将详细介绍DRAM的发展历程。
2. DRAM的起源DRAM的起源可以追溯到上世纪60年代。
当时,计算机使用的主存储器是磁芯存储器,但它的成本高昂且容量有限。
为了解决这些问题,DRAM被发明出来。
它使用了电容器和晶体管来存储和读取数据,具有较高的集成度和较低的成本。
3. DRAM的发展历程3.1 第一代DRAM第一代DRAM于1970年代初问世,采用了单晶体管和电容器的结构。
它的容量较小,速度较慢,但相对于磁芯存储器来说,它的成本更低,因此得到了广泛应用。
3.2 第二代DRAM第二代DRAM于1970年代末和1980年代初出现。
它采用了MOSFET(金属氧化物半导体场效应晶体管)作为存储单元,并引入了刷新技术,解决了电容器漏电的问题。
这使得DRAM的容量和速度都有了显著的提升。
3.3 第三代DRAM第三代DRAM于1990年代初问世,采用了存储单元中的多个电容器和晶体管,称为多晶体管DRAM(Multi-transistor DRAM)。
它的容量进一步增加,速度也有所提升。
3.4 第四代DRAM第四代DRAM于2000年代初出现,采用了新的存储单元结构和制造工艺。
其中最重要的是DDR(Double Data Rate)DRAM,它在同一时钟周期内进行两次数据传输,提高了数据传输速度。
DDR DRAM在计算机和消费电子产品中得到广泛应用。
3.5 当前的DRAM技术目前,DDR4和DDR5是最常见的DRAM技术。
DDR4于2014年发布,相对于DDR3,它提供了更高的频率、更低的功耗和更大的容量。
DDR5于2020年发布,进一步提升了频率和容量,为高性能计算和数据中心提供了更好的支持。
简述内存发展历史内存发展历史可以追溯到计算机发明的早期阶段。
以下是内存发展历史的主要里程碑:1. 真空管内存(1940年代):最早的计算机中使用了真空管作为存储器件,真空管内存具有很小的存储容量,价格昂贵且需要频繁维护。
2. 磁鼓存储器(1950年代):使用旋转磁鼓储存数据,磁鼓存储器能够容纳更多数据,但读写速度较慢。
3. 磁芯存储器(1960年代):磁芯存储器使用了磁性材料制成的小环,可以保存二进制数据。
磁芯存储器相对较小、昂贵,但速度更快和更可靠。
4. 动态随机存储器(DRAM)(1970年代):DRAM是第一种现代内存技术,它使用电容器来存储数据,以及由于电容器需要不断刷新而被称为“动态”的特征。
DRAM具有更高的容量和较低的成本,成为主流内存技术。
5. 静态随机存储器(SRAM)(1980年代):SRAM是另一种常见的内存技术,它使用了触发器来存储数据,相对于DRAM更快速和更稳定,但价格也更高。
6. 扩展内存技术(1990年代):随着个人计算机的普及,内存需求不断增加。
因此,一些技术被开发用于扩展内存,如虚拟内存和缓存。
7. 变址RAM(2000年代):变址RAM(e.g. DDR SDRAM)是现代计算机中常用的内存类型,具有更高的速度和较大的容量。
8. 非易失性内存(NVM)(近年来):非易失性内存是一种新兴的内存技术,能够保持数据即使在断电的情况下。
NVM比传统的存储器技术具有更快的读写速度和更高的可靠性。
总的来说,内存的发展历史可以总结为不断追求更大、更快、更稳定的内存技术,以满足计算机性能和存储需求的不断提升。
内存发展历程作为PC不可缺少的重要核心部件一一内存,它伴随着DIY硬件走过了多年历程。
从286时代的30pin SIMM内存、486时代的72pin SIMM内存,至U Pentium 时代的EDODRA内存、PII时代的SDRA内存,至U P4时代的DDF内存和目前9X5 平台的DDR2内存。
内存从规格、技术、总线带宽等不断更新换代。
不过我们有理由相信,内存的更新换代可谓万变不离其宗,其目的在于提高内存的带宽,以满足CPU不断攀升的带宽要求、避免成为高速CPU运算的瓶颈。
那么,内存在PC 领域有着怎样的精彩人生呢?下面让我们一起来了解内存发展的历史吧。
、历史起源一一内存条概念如果你细心的观察,显存(或缓存)在目前的DIY硬件上都很容易看到,显卡显存、硬盘或光驱的缓存大小直接影响到设备的性能,而寄存器也许是最能代表PC硬件设备离不开RAM勺,的确如此,如果没有内存,那么PC将无法运转,所以内存自然成为DIY用户讨论的重点话题。
在刚刚开始的时候,PC上所使用的内存是一块块的IC,要让它能为PC服务,就必须将其焊接到主板上,但这也给后期维护带来的问题,因为一旦某一块内存IC坏了,就必须焊下来才能更换,由于焊接上去的IC不容易取下来,同时加上用户也不具备焊接知识(焊接需要掌握焊接技术,同时风险性也大),这似乎维修起来太麻烦。
因此,PC设计人员推出了模块化的条装内存,每一条上集成了多块内存IC,同时在主板上也设计相应的内存插槽,这样内存条就方便随意安装与拆卸了(如图1),内存的维修、升级都变得非常简单,这就是内存“条”的来源。
图1,内存条与内存槽的出现小帖士:内存(Random Access Memory, RAM的主要功能是暂存数据及指令。
我们可以同时写数据到RAM内存,也可以从RAM读取数据。
由于内存历来都是系统中最大的性能瓶颈之一,因此从某种角度而言,内存技术的改进甚至比CPU以及其它技术更为令人激动。
作为PC不可缺少的重要核心部件——内存,它伴随着DIY硬件走过了多年历程。
从286时代的30pin SIMM内存、486时代的72pin SIMM 内存,到Pentium时代的EDO DRAM内存、PII时代的SDRAM内存,到P4时代的DDR内存和目前9X5平台的DDR2内存。
内存从规格、技术、总线带宽等不断更新换代。
不过我们有理由相信,内存的更新换代可谓万变不离其宗,其目的在于提高内存的带宽,以满足CPU不断攀升的带宽要求、避免成为高速CPU运算的瓶颈。
那么,内存在PC领域有着怎样的精彩人生呢?下面让我们一起来了解内存发展的历史吧。
一、历史起源——内存条概念如果你细心的观察,显存(或缓存)在目前的DIY硬件上都很容易看到,显卡显存、硬盘或光驱的缓存大小直接影响到设备的性能,而寄存器也许是最能代表PC硬件设备离不开RAM的,的确如此,如果没有内存,那么PC将无法运转,所以内存自然成为DIY用户讨论的重点话题。
在刚刚开始的时候,PC上所使用的内存是一块块的IC,要让它能为PC服务,就必须将其焊接到主板上,但这也给后期维护带来的问题,因为一旦某一块内存IC 坏了,就必须焊下来才能更换,由于焊接上去的IC不容易取下来,同时加上用户也不具备焊接知识(焊接需要掌握焊接技术,同时风险性也大),这似乎维修起来太麻烦。
因此,PC设计人员推出了模块化的条装内存,每一条上集成了多块内存IC,同时在主板上也设计相应的内存插槽,这样内存条就方便随意安装与拆卸了(如图1),内存的维修、升级都变得非常简单,这就是内存“条” 的来源。
图1,内存条与内存槽的出现小帖士:内存(Random Access Memory,RAM)的主要功能是暂存数据及指令。
我们可以同时写数据到RAM 内存,也可以从RAM 读取数据。
由于内存历来都是系统中最大的性能瓶颈之一,因此从某种角度而言,内存技术的改进甚至比CPU 以及其它技术更为令人激动。
计算机存储器的发展历史1. 早期计算机存储器的发展早期计算机存储器的发展可以追溯到二十世纪四十年代末和五十年代初。
当时的计算机存储器主要采用了一种叫做“延迟线存储器”的技术。
延迟线存储器是一种利用声波在长绳上传播的原理来存储和读取数据的技术。
这种存储器虽然容量较小且读取速度较慢,但是在当时来说已经是一项重要的技术突破。
2. 磁芯存储器的出现到了五十年代中期,磁芯存储器开始出现并逐渐取代了延迟线存储器。
磁芯存储器利用小巧而坚固的磁铁环来表示二进制数据,这些环可以通过电流来改变其磁性状态,从而实现数据的读写操作。
相比于延迟线存储器,磁芯存储器容量更大、速度更快,并且更加可靠。
3. 位片式DRAM随着计算机技术不断发展,DRAM(动态随机访问内部)逐渐取代了磁芯存储器成为主流存储器技术。
位片式DRAM是DRAM的一种重要形式,它的出现使得存储器的容量得以大幅提升。
位片式DRAM是一种基于半导体技术的存储器,它将大量的存储单元集成在一片芯片上,使得容量可以达到几百兆字节甚至几十吉字节。
4. SRAM和DRAM的竞争在位片式DRAM流行之后,静态随机访问内存(SRAM)也开始逐渐发展起来。
SRAM和DRAM之间存在着一些差异。
首先,SRAM不需要刷新操作,因此读写速度更快;其次,SRAM相对于DRAM来说更加稳定可靠;最后,SRAM相对于DRAM来说也更加昂贵。
这些差异使得SRAM和DRAM在不同应用场景中各有优势。
5. 闪存技术的兴起随着计算机应用场景不断扩大以及移动计算设备日益普及,闪存技术开始逐渐兴起并成为主流存储器技术之一。
闪存是一种基于非易失性内部(NAND)原理的半导体内部,在断电情况下也能够保持数据。
闪存具有容量大、体积小、耐用性强等优点,因此被广泛应用于移动设备、存储卡等领域。
6. 存储器技术的未来发展在当前的技术发展趋势下,存储器技术也在不断演进。
一方面,DRAM 和闪存等传统存储器技术仍在不断优化和升级,以满足更高容量和更快速度的需求。
DRAM的发展DRAM(Dynamic Random Access Memory)是一种常见的计算机内存芯片,用于存储和读取数据。
随着科技的不断进步,DRAM的发展也在不断推进。
本文将详细介绍DRAM的发展历程、技术特点以及未来的发展趋势。
一、发展历程DRAM最早出现在上世纪70年代,当时的DRAM容量较小,速度较慢,且价格昂贵。
然而,随着集成电路技术的进步,DRAM开始逐渐发展壮大。
在80年代,DRAM容量得到了显著提升,速度也有了明显改善,成为了主流的计算机内存产品。
二、技术特点1. 容量:DRAM的容量不断增大,从最初的几KB到现在的几GB,甚至更高。
这使得计算机能够处理更多的数据,提高了系统的性能。
2. 速度:DRAM的速度也在不断提高。
随着技术的进步,DRAM的访问速度大幅度增加,从而提高了数据的读取和写入效率。
3. 功耗:DRAM的功耗逐渐降低。
随着制程工艺的改进,DRAM芯片的功耗越来越低,这有助于降低整个系统的能耗。
4. 可靠性:DRAM的可靠性也得到了提高。
通过引入纠错码(ECC)等技术,DRAM能够检测和纠正内存中的错误,提高系统的稳定性和可靠性。
5. 成本:DRAM的成本逐渐降低。
随着技术的成熟和市场的竞争,DRAM的价格逐渐下降,使得更多的用户能够购买到高性能的内存产品。
三、未来发展趋势1. 容量持续增加:随着计算机应用的不断扩大,对内存容量的需求也在不断增加。
未来,DRAM的容量将持续增加,以满足大数据处理、人工智能等领域的需求。
2. 速度进一步提升:随着计算机处理速度的提高,对内存速度的要求也越来越高。
未来,DRAM的速度将进一步提升,以满足高性能计算的需求。
3. 低功耗设计:随着节能环保意识的增强,DRAM的低功耗设计将成为未来的发展方向。
通过采用新的材料和结构设计,降低DRAM芯片的功耗,以提高系统的能效。
4. 新技术的应用:未来,随着新的技术的涌现,如3D堆叠技术、新型存储器技术等,将会对DRAM的发展产生重要影响。
DRAM的发展概述:动态随机存取存储器(DRAM)是一种常见的计算机内存类型,被广泛应用于个人电脑、服务器、挪移设备等各种计算设备中。
本文将详细介绍DRAM的发展历程、技术特点以及未来的发展趋势。
一、DRAM的历史发展:1. 早期DRAM的诞生:20世纪60年代末,美国IBM公司的研究人员发明了第一款DRAM芯片,其存储容量为1K位。
这标志着DRAM技术的诞生,为计算机存储领域带来了革命性的变革。
2. 发展阶段:1970年代,DRAM技术经历了多个发展阶段。
首先是DRAM存储容量的不断增加,从最初的几千位增加到了几十万位。
其次是DRAM存取时间的缩短,使得数据读写速度得到了显著提升。
此外,DRAM芯片的集成度也不断提高,从单片集成到多片集成,进一步提高了存储容量和性能。
3. 现代DRAM的发展:进入21世纪,DRAM技术继续取得了巨大的突破。
首先是DRAM存储容量的大幅增加,从几百兆字节增加到了数十兆字节。
其次是DRAM的能耗和成本的不断降低,使得DRAM成为了主流的计算机内存选择。
此外,DRAM的数据传输速率也得到了显著提升,满足了日益增长的计算需求。
二、DRAM的技术特点:1. 存储原理:DRAM采用电容存储原理,每一个存储单元由一个电容和一个开关构成,电容的充电状态表示存储的数据。
2. 数据刷新:由于电容会逐渐漏电,因此DRAM需要定期进行数据刷新,以保持数据的正确性。
数据刷新会带来额外的延迟,影响DRAM的访问速度。
3. 存取时间:DRAM的存取时间通常比静态随机存取存储器(SRAM)要长,这是由于DRAM需要经过一系列的行选通、列选通等操作才干读取或者写入数据。
4. 容量和集成度:DRAM的存储容量和集成度不断增加,目前已经发展到了数十兆字节的级别。
高集成度的DRAM芯片可以在较小的空间内实现更大的存储容量。
5. 数据传输速率:现代DRAM的数据传输速率已经达到了几千兆字节每秒的级别,可以满足高性能计算和大数据处理的需求。
详解内存(RAM,SRAM,SDRAM)工作原理及发展历程/csrwzt/blog/item/7ec462ef44e87fe9cf1b3e6f.htmlRAM(Random Access Memory)随机存取存储器对于系统性能的影响是每个PC 用户都非常清楚的,所以很多朋友趁着现在的内存价格很低纷纷扩容了内存,希望借此来得到更高的性能。
不过现在市场是多种内存类型并存的,SDRAM、DDR SDRAM、RDRAM等等,如果你使用的还是非常古老的系统,可能还需要EDO DRAM、FP DRAM(块页)等现在不是很常见的内存。
虽然RAM的类型非常的多,但是这些内存在实现的机理方面还是具有很多相同的地方,所以本文的将会分为几个部分进行介绍,第一部分主要介绍SRAM和异步DRAM(asynchronous DRAM),在以后的章节中会对于实现机理更加复杂的FP、EDO和SDRAM进行介绍,当然还会包括RDRAM和SGRAM等等。
对于其中同你的观点相悖的地方,欢迎大家一起进行技术方面的探讨。
存储原理:为了便于不同层次的读者都能基本的理解本文,所以我先来介绍一下很多用户都知道的东西。
RAM主要的作用就是存储代码和数据供CPU在需要的时候调用。
但是这些数据并不是像用袋子盛米那么简单,更像是图书馆中用有格子的书架存放书籍一样,不但要放进去还要能够在需要的时候准确的调用出来,虽然都是书但是每本书是不同的。
对于RAM等存储器来说也是一样的,虽然存储的都是代表0和1的代码,但是不同的组合就是不同的数据。
让我们重新回到书和书架上来,如果有一个书架上有10行和10列格子(每行和每列都有0-9的编号),有100本书要存放在里面,那么我们使用一个行的编号+一个列的编号就能确定某一本书的位置。
如果已知这本书的编号87,那么我们首先锁定第8行,然后找到第7列就能准确的找到这本书了。
在RAM 存储器中也是利用了相似的原理。
现在让我们回到RAM存储器上,对于RAM存储器而言数据总线是用来传入数据或者传出数据的。
计算机内存发展史
计算机内存的发展可以追溯到1949年,当时贝尔实验室的工程师将磁性货币排列在一起,创造出了第一块存储计算机数据的记忆体,“磁针板”,并被称为“磁性登记簿”。
它可以实时存储几千个计算机指令,并有条件地执行它们。
磁针板的缺点是它存储的信息和指令有限,而且读取速度比较慢。
1951年,IBM推出了第一台使用硅片存储单元(SSU)的计算机,称为“701”。
硅片存储单元是以半导体技术构成的存储元件,可以存储多达18位的数字数据,其读取速度还比磁针板快得多。
但是,由于硅片存储单元费用昂贵,只有最大的计算机们才能拥有它。
1966年,Intel发明了第一块可编程只读存储器(PROM),它可以把数据固化到存储硅晶片上,而且不受环境影响,因此可以直接使用不用通过半导体技术。
只读存储器扩展了计算机的能力,使其可以存储大量的程序,并能够自动执行它们。
1970年,Intel发明了随机存取存储器(RAM),它以电容为介质,具有可编程和可擦除的特性,可以存储大量的计算机指令和数据。
它的主要缺点是被删除或注销数据的时间较长。
1971年,Intel发明了软盘,它是磁碟系统,可以用来存储大量数据和程序。
DRAM的发展DRAM(Dynamic Random Access Memory)是一种常见的计算机内存芯片,它在计算机系统中起着至关重要的作用。
本文将详细介绍DRAM的发展历程、技术特点、应用领域以及未来发展趋势。
一、发展历程DRAM的发展可以追溯到上世纪60年代末期。
最早的DRAM芯片容量较小,速度较慢,同时也比较昂贵。
随着技术的进步,DRAM的容量逐渐增加,速度不断提高,价格也逐渐下降,成为了主流的内存技术。
二、技术特点1. 存储方式:DRAM采用电容存储数据,每一个存储单元由一个电容和一个开关构成。
电容的充放电状态表示0和1两种不同的数据。
2. 刷新机制:由于电容的电荷会逐渐泄漏,DRAM需要定期进行刷新操作,以保持数据的稳定性。
这一刷新机制是DRAM与其他内存技术的一个显著区别。
3. 高密度:DRAM芯片的集成度非常高,可以在有限的芯片面积上存储大量的数据。
这使得DRAM成为了计算机系统中存储容量最大的内存技术之一。
4. 快速访问速度:DRAM的访问速度相对较快,可以满足计算机系统对内存的高速数据读写需求。
5. 功耗较低:相比于其他内存技术,DRAM的功耗较低,这使得它在挪移设备等功耗敏感的领域有着广泛的应用。
三、应用领域1. 个人电脑:DRAM是个人电脑中最常见的内存技术,用于存储计算机程序和数据,提供高速的数据读写能力。
2. 服务器:服务器需要处理大量的数据和请求,对内存的要求非常高。
DRAM在服务器领域得到广泛应用,提供高速的数据存取能力。
3. 挪移设备:随着挪移设备的普及,对内存的需求也越来越大。
DRAM在智能手机、平板电脑等挪移设备中广泛应用,为用户提供流畅的使用体验。
4. 嵌入式系统:嵌入式系统通常需要高性能的内存来支持实时数据处理和快速响应。
DRAM在嵌入式系统中被广泛应用,满足对高速、高密度内存的需求。
四、未来发展趋势1. 容量持续增加:随着计算机应用场景的扩大和数据量的增加,DRAM的容量将继续增加,以满足对大容量内存的需求。
DRAM的发展概述:动态随机存取存储器(DRAM)是一种常见的计算机内存类型,用于存储和访问数据。
它的发展经历了多个阶段,从最早的SDRAM到现在的DDR4和DDR5。
本文将详细介绍DRAM的发展历程、技术特点和未来趋势。
一、DRAM的起源和发展历程DRAM最早浮现于1970年代,它是一种基于电容存储原理的内存技术。
最早的DRAM采用单电容和单晶体管的结构,每一个存储单元由一个电容和一个晶体管组成。
这种结构相比于之前的静态随机存取存储器(SRAM)更加简单和经济,因此很快得到了广泛应用。
随着计算机技术的发展,DRAM逐渐进入了商业化阶段。
1980年代,DRAM的容量和速度得到了显著提升,开始应用于个人电脑和工作站等计算机系统中。
1990年代,SDRAM(同步动态随机存取存储器)成为主流,它引入了同步时钟信号,提高了数据传输效率和性能。
2000年代,DDR SDRAM(双倍数据率同步动态随机存取存储器)逐渐取代了SDRAM,它在数据传输上实现了前沿沿技术,提供了更高的带宽和更低的功耗。
二、DRAM的技术特点1. 存储单元结构:DRAM的存储单元由电容和晶体管组成。
电容用于存储数据,晶体管用于控制读写操作。
2. 容量和密度:DRAM的容量和密度随着技术的进步不断增加。
目前,单个DRAM芯片的容量可以达到数GB,而整个内存模块的容量可以达到数十GB。
3. 速度和带宽:DRAM的速度和带宽也在不断提升。
通过增加数据总线宽度和提高时钟频率,DRAM可以实现更快的数据传输速度和更高的带宽。
4. 刷新机制:DRAM的存储单元是由电容存储数据的,电容会逐渐漏电,因此需要定期进行刷新操作来保持数据的正确性。
5. 电源需求:DRAM需要稳定的电源供应,因为电容存储的数据会随着电压的变化而变化。
三、DRAM的未来趋势1. 容量和密度的增加:随着技术的不断进步,DRAM的容量和密度将继续增加。
未来可能会浮现更高容量的DRAM芯片和内存模块,以满足日益增长的数据存储需求。
第二章 计算机组成原理2.1 计算机的组成与分类 2.1.1 计算机的发展与作用一、 计算机的发展过去很长时间人们都按照计算机主机所使用的元器件,为计算机划代。
二、计算机的巨大作用1开拓了人类认识自然、改造自然的新资源 2增添了人类发展科学技术的新手段 3提供了人类创造文化的新工具 4引起了人类的工作与生活方式的变化2.1.2 计算机系统的组成● 硬件:计算机系统中所有实际物理装置的总称● 软件:在计算机中运行的各种程序和相关的数据及文档 程序:用来向计算机指出应如何一步步地进行规定的操作 数据:程序处理的对象深入到各行各业,家庭和个人开始使用计算机软件工程、分布式计算、网络软件等开始广泛使用CPU :LSI 、VLSI 内存:LSI 、VLSI 的半导体存储器20世纪70年代中期以来第4代在科学计算、数据处理、工业控制等领域得到广泛应用操作系统,数据库管理系统等开始使用CPU :SSI ,MSI 内存:SSI ,MSI 半导体存储器60年代中期~70年代初期第3代开始广泛应用于数据处理领域使用FORTRAN 等高级程序设计语言CPU :晶体管 内存:磁芯50年代中后期~60年代中期 第2代 科学计算和工程计算使用机器语言和汇编语言编写程序CPU :电子管 内存:磁鼓20世纪40年代中期~50年代末期 第1代 主要应用 配置的软件 主要元器件 年 代 代 别文档:提供给用于使用的操作说明、技术资料等它们都是软件不可缺少的组成部分计算机硬件组成示意图一、输入设备●输入(input)指把信息(程序,数据,信息)送入计算机的过程(名词)向计算机输入的内容输入设备,用来向计算机输入信息的设备输入到计算机中的信息都使用二进制中的“0”和“1”两个符号来表示输入设备类别●按照输入信息的类型划分●数字和文字输入设备(键盘、写字板等)●位置和命令输入设备(鼠标器、触摸屏等)●图形输入设备(扫描仪,数码相机等)●声音输入设备(话筒,MIDI演奏器等)●视频输入设备(摄像机)●温度、压力输入设备(温度、压力传感器)二、中央处理器CPU●处理器能高速地进行算术运算和逻辑运算,负责对输入信息进行各种处理●微处理器简称μP或MP,通常指使用单片大规模集成电路制成的、具有运算和控制功能的处理器包含运算器和控制器。
DRAM的发展引言概述:随着科技的不断进步,动态随机存取存储器(DRAM)作为计算机主要的内存设备之一,也在不断发展和演变。
本文将探讨DRAM的发展历程,从其起源到现在的发展趋势,以及未来可能的发展方向。
一、DRAM的起源1.1 早期的DRAM早期的DRAM是在1960年代发展起来的,最早的DRAM只有几KB的存储容量,速度较慢,成本较高,主要用于大型计算机系统。
1.2 发展历程随着技术的不断进步,DRAM的存储容量不断增加,速度也在不断提高,成本逐渐下降,逐渐普及到个人电脑和移动设备中。
1.3 技术革新在发展过程中,DRAM经历了多次技术革新,如SDRAM、DDR、DDR2、DDR3、DDR4等,每一代技术的推出都带来了更高的性能和更低的功耗。
二、DRAM的应用领域2.1 个人电脑在个人电脑中,DRAM主要用于存储操作系统和运行程序所需的数据,速度和容量的提升对于提升计算机性能至关重要。
2.2 服务器在服务器领域,DRAM的需求量较大,用于存储大量的数据和运行多个虚拟机,对性能和稳定性要求较高。
2.3 移动设备在移动设备中,DRAM的需求也在不断增加,用于存储应用程序和数据,随着移动设备的普及,对功耗和体积的要求也越来越高。
三、DRAM的发展趋势3.1 高密度随着数据量的不断增加,对DRAM的存储容量也在不断提升,未来DRAM将朝着更高密度的方向发展。
3.2 低功耗随着移动设备的普及,对功耗的要求也在不断提高,未来DRAM将朝着更低功耗的方向发展。
3.3 高性能随着计算机应用的不断发展,对DRAM的速度和性能也在不断提升,未来DRAM将朝着更高性能的方向发展。
四、DRAM的未来发展方向4.1 3D堆叠技术未来DRAM可能会采用3D堆叠技术,将多层芯片堆叠在一起,提高存储密度和性能。
4.2 光存储技术未来DRAM可能会采用光存储技术,利用光信号代替电信号进行数据存储,提高速度和功耗效率。
4.3 量子存储技术未来DRAM可能会采用量子存储技术,利用量子特性进行数据存储,提高存储容量和安全性。
DRAM的发展一、引言动态随机存取存储器(DRAM)是一种常见的计算机内存类型,被广泛应用于个人电脑、服务器、移动设备等各种计算设备中。
本文将探讨DRAM的发展历程,包括其起源、技术进步、应用领域以及未来发展趋势。
二、起源DRAM最早由美国计算机科学家罗伯特·德内德(Robert Dennard)于1968年提出。
它的出现是为了解决早期计算机内存容量有限、成本高昂的问题。
相对于静态随机存取存储器(SRAM),DRAM具有更高的存储密度和低成本的优势,因此很快成为主流内存技术。
三、技术进步1. 第一代DRAM第一代DRAM采用了单晶片结构,每个存储单元由一个电容和一个开关管组成。
它的存储密度相对较低,容量较小,但已经取得了突破性的进展。
2. 第二代DRAM第二代DRAM采用了多晶片结构,通过将多个DRAM芯片封装在同一个模块中来提高存储容量。
此外,它还引入了行地址和列地址的概念,提高了访问速度和数据传输效率。
3. 第三代DRAM第三代DRAM引入了同步动态随机存取存储器(SDRAM)技术,通过与系统时钟同步来提高性能。
它还支持双倍数据传输率(DDR)和四倍数据传输率(QDR)等技术,进一步提高了数据传输速度。
4. 第四代DRAM第四代DRAM采用了双倍数据传输率第二代(DDR2)和双倍数据传输率第三代(DDR3)技术。
DDR2和DDR3具有更高的频率和更低的功耗,同时提供更大的存储容量。
5. 第五代DRAM第五代DRAM采用了双倍数据传输率第四代(DDR4)技术,它具有更高的频率、更低的功耗和更大的存储容量。
此外,DDR4还引入了错误校验和纠正(ECC)功能,提高了数据的可靠性。
四、应用领域DRAM广泛应用于各种计算设备中,包括个人电脑、服务器、移动设备等。
在个人电脑中,DRAM用于存储操作系统、应用程序和数据。
在服务器中,DRAM用于存储大量的数据和应用程序,提供高性能的计算和存储服务。
RAM、ROM发展史RAM:随机存储器ROM:只读存储器区别:(1)RAM存储速度⽐ROM快(2)RAM掉电后数据会丢失,ROM掉电后数据不会丢失(3)RAM中的数据是程序运⾏的中间或最终结果值,ROM中的数据是程序在STM32和51单⽚机中:(1)程序存储器是Flash memory(闪存),Flash memory是RAM和ROM长处的结合长处(2)数据存储器是SRAM(静态RAM)ROM发展史:ROM(只读存储器)-> PROM(⼀次可编程只读存储器)-> EROM(紫外线擦除可编程只读存储器)->EEPROM(点擦除可编程只读存储器)-> Flash memory(闪存)-> Flash Card(闪存卡)ROM(Read Only Memory,只读存储器)芯⽚:在微机的发展初期,BIOS都存放在ROM芯⽚中。
ROM内部的资料是在ROM的制造⼯序中,在⼯⼚⾥⽤特殊的⽅法被烧录进去的,其中的内容只能读不能改,⼀旦烧录进去,⽤户只能验证写⼊的资料是否正确,不能再作任何修改。
如果发现资料有任何错误,则只有舍弃不⽤,重新订做⼀份。
ROM是在⽣产线上⽣产的,由于成本⾼,⼀般只⽤在⼤批量应⽤的场合。
PROM(Programmable ROM,可编程ROM)芯⽚:由于ROM制造和升级的不便,后来⼈们发明了PROM(Programmable ROM,可编程ROM)。
最初从⼯⼚中制作完成的PROM内部并没有资料,⽤户可以⽤专⽤的编程器将⾃⼰的资料写⼊,但是这种机会只有⼀次,⼀旦写⼊后也⽆法修改,若是出了错误,已写⼊的芯⽚只能报废。
PROM的特性和ROM相同,但是其成本⽐ROM⾼,⽽且写⼊资料的速度⽐ROM的量产速度要慢,⼀般只适⽤于少量需求的场合或是ROM量产前的验证。
EPROM(Erasable Programmable ROM,可擦除可编程ROM)芯⽚:可重复擦除和写⼊,解决了PROM芯⽚只能写⼊⼀次的弊端。
现代计算机存储器件的发展历史和趋势1. 存储器简介存储器(Memory)是计算机系统中的记忆设备,用来存放程序和数据。
计算机中的全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。
它根据控制器指定的位置存入和取出信息。
自世界上第一台计算机问世以来,计算机的存储器件也在不断的发展更新,从一开始的汞延迟线,磁带,磁鼓,磁芯,到现在的半导体存储器,磁盘,光盘,纳米存储等,无不体现着科学技术的快速发展。
2. 半导体存储器由于对运行速度的要求,现代计算机的内存储器多采用半导体存储器。
半导体存储器包括只读存储器(ROM)和随机读写存储器(RAM)两大类。
2.1 只读存储器ROM 是路线最简单的半导体电路,通过掩模工艺,一次性创造,在元件正常工作的情况下,其中的代码与数据将永久保存,并且不能够进行修改。
普通地,只读存储器用来存放固定的程序和数据,如微机的监控程序、BIOS (基本输入/输出系统Basic Input/Output System) 、汇编程序、用户程序、数据表格等。
根据编程方法不同,ROM 可分为以下五种:1、掩码式只读存储器,这种ROM 在创造过程中,其中的数据已经事先确定了,于是只能读出,而不能再改变。
它的优点是可靠性高,价格便宜,适宜批量生产。
2、可一次性编程只读存储器(PROM),为了使用户能够根据自己的需要来写ROM,厂家生产了一种PROM。
允许用户对其进行一次编程——写入数据或者程序。
一旦编程之后,信息就永久性地固定下来。
用户可以读出和使用,但再也无法改变其内容。
3、可擦可编程只读存储器(EPROM),这是一种具有可擦除功能,擦除后即可进行再编程的ROM 内存,写入前必须先把里面的内容用紫外线照射它的IC 卡上的透明视窗的方式来清除掉。
4、电可擦可编程只读存储器(EEPROM),功能与EPROM 一样,不同之处是清除数据的方式,它是以约20V 的电压来进行清除的。
内存条发展历史
一、内存诞生
1982年PC进入民用市场,而搭配80286处理器的30pin SIMM 内存是内存领域的开山鼻祖。
80286主板上的内存条采用了SIMM(Single In-lineMemory Modules,单边接触内存模组)接口,容量为30pin、256kb,必须是由8 片数据位和1 片校验位组成1个bank,所以30pin SIM一般是四条一起使用。
1988 ~1990 年,也就是386和486时代,此时CPU 已经向16bit 发展,30pin SIMM 内存再也无法满足需求,所以此时72pin SIMM 内存出现了,72pin SIMM支持32bit快速页模式内存,内存带宽得以大幅度提升。
72pin SIMM内存单条容量一般为512KB ~2MB,而且仅要求两条同时使用。
1991 年到1995 年,盛行EDO DRAM(Extended Date Out RAM 外扩充数据模式存储器)内存条。
此时EDO DRAM有72 pin和168 pin并存的情况,事实上EDO 内存也属于72pin SIMM 内存的范畴,不过它采用了全新的寻址方式。
此时单条EDO 内存的容量已经达到4 ~16MB 。
EDO 内存条
二、SDRAM时代
第一代SDRAM 内存为PC66 规范,但很快由于Intel 和AMD的频率之争将CPU外频提升到了100MHz,所以PC66内存很快就被PC100内存取代,接着133MHz 外频的PIII 以及K7时代的来临,PC133规范也以相同的方式进一步提升SDRAM 的整体性能,带宽提高到1GB/sec以上。
由于SDRAM 的带宽为64bit,正好对应CPU 的64bit 数据总线宽度,因此它只需要一条内存便可工作,便捷性进一步提高。
在性能方面,由于其输入输出信号保持与系统外频同步,因此速度明显超越EDO 内存。
不可否认的是,SDRAM 内存由早期的66MHz,发展后来的100MHz、133MHz,尽管没能彻底解决内存带宽的瓶颈问题,但此时CPU超频已经成为DIY用户永恒的话题,所以不少用户将品牌好的PC100品牌内存超频到133MHz使用以获得CPU超频成功,值得一提的是,为了方便一些超频用户需求,市场上出现了一些PC150、PC166规范的内存。
SDRAM内存条
三、DDR时代
DDR SDRAM(Dual Date Rate SDRAM)简称DDR,也就是“双倍速率SDRAM”的意思。
DDR可以说是SDRAM的升级版本,DDR在时钟信号上升沿与下降沿各传输一次数据,这使得DDR的数据传输速度为传统SDRAM的两倍。
DDR 内存是作为一种在性能与成本之间折中的解决方案,其目的是迅速建立起牢固的市场空间,继而一步步在频率上高歌猛进,最终弥补内存带宽上的不足。
第一代DDR200 规范并没有得到普及,第二代PC266 DDR SRAM(133MHz时钟×2倍数据传输=266MHz带宽)是由PC133 SDRAM内存所衍生出的,它将DDR 内存带向第一个高潮,目前还有不少赛扬和AMD K7处理器都在采用DDR266规格的内存,其后来的DDR333内存也属于一种过渡,而DDR400内存成为目前的主流平台选配,双通道DDR400内存已经成为800FSB处理器搭配的基本标准,随后的DDR533 规范则成为超频用户的选择对象。
DDR内存条
四、DDR2时代
DDR2(Double Data Rate 2)SDRAM是由JEDEC(电子设备工程联合委员会)进行开发的新生代内存技术标准,它与上一代DDR内存技术标准最大的不同就是,虽然同是采用了在时钟的上升/下降延同时进行数据传输的基本方式,但DDR2内存却拥有两倍于上一代DDR内存预读取能力(即:4bit数据读预取)。
换句话说,DDR2内存每个时钟能够以4倍外部总线的速度读/写数据,并且能够以内部控制总线4倍的速度运行。
此外,由于DDR2标准规定所有DDR2内存均采用FBGA封装形式,而不同于目前广泛应用的TSOP/TSOP-II封装形式,FBGA封装可以提供了更为良好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了坚实的基础
DDR2 能够在100MHz 的发信频率基础上提供每插脚最少400MB/s 的带宽,而且其接口将运行于1.8V 电压上,从而进一步降低发热量,以便提高频率。
此外,DDR2 将融入CAS、OCD、ODT 等新性能指标和中断指令,提升内存带宽的利用率。
从JEDEC组织者阐述的DDR2标准来看,针对PC等市场的DDR2内存将拥有400、533、667MHz等不同的时钟频率。
高端的DDR2内存将拥有800、1000MHz两种频率。
DDR-II内存将采用200-、220-、240-针脚的FBGA封装形式。
最初的DDR2内存将采用0.13微米的生产工艺,内存颗粒的电压为1.8V,容量密度为512MB。
PC-100的“接班人”除了PC一133以外,VCM(VirXual Channel Memory)也是很重要的一员。
VCM即“虚拟通道存储器”,这也是大多数较新的芯片组支持的一种内存标准,VCM 内存主要根据由NEC公司开发的一种“缓存式DRAM”技术制造而成,它集成了“通道缓存”,
由高速寄存器进行配置和控制。
在实现高速数据传输的同时,VCM还维持着对传统SDRAM 的高度兼容性,所以通常也把VCM内存称为VCM SDRAM。
VCM与SDRAM的差别在于不论是否经过CPU处理的数据,都可先交于VCM进行处理,而普通的SDRAM就只能处理经CPU处理以后的数据,所以VCM要比SDRAM处理数据的速度快20%以上。
可以支持VCM SDRAM的芯片组很多,包括:Intel的815E、VIA的694X等。
RDRAM
Intel在推出:PC-100后,由于技术的发展,PC-100内存的800MB/s带宽已经不能满足需求,而PC-133的带宽提高并不大(1064MB/s),同样不能满足日后的发展需求。
Intel为了达到独占市场的目的,与Rambus公司联合在PC市场推广Rambus DRAM(DirectRambus DRAM),如图4-3所示。
Rambus DRAM是:Rambus公司最早提出的一种内存规格,采用了新一代高速简单内存架构,从而可以减少数据的复杂性,使得整个系统性能得到提高。
Rambus使用400MHz 的16bit总线,在一个时钟周期内,可以在上升沿和下降沿的同时传输数据,这样它的实际速度就为400MHz×2=800MHz,理论带宽为(16bit×2×400MHz/8)1.6GB/s,相当于PC-100的两倍。
另外,Rambus也可以储存9bit字节,额外的一比特是属于保留比特,可能以后会作为:ECC(ErroI·Checking and Correction,错误检查修正)校验位。
Rambus的时钟可以高达400MHz,而且仅使用了30条铜线连接内存控制器和RIMM(Rambus In-line MemoryModules,Rambus内嵌式内存模块),减少铜线的长度和数量就可以降低数据传输中的电磁干扰,从而快速地提高内存的工作频率。
不过在高频率下,其发出的热量肯定会增加,因此第一款Rambus内存甚至需要自带散热风扇。
五、DDR3时代
DDR3相比起DDR2有更低的工作电压,从DDR2的1.8V降落到1.5V,性能更好更为省电;DDR2的4bit预读升级为8bit预读。
DDR3最高能够1600Mhz的速度,由于最为快速的DDR2内存速度已经提升到800Mhz/1066Mhz的速度,因而首批DDR3内存模组将会从1333Mhz的起跳。
在Computex大展我们看到多个内存厂商展出1333Mhz的DDR3模组。
DDR3在DDR2基础上采用的新型设计:
1.8bit预取设计,而DDR2为4bit预取,这样DRAM内核的频率只有接口频率的1/8,DDR3-800的核心工作频率只有100MHz。
2.采用点对点的拓扑架构,以减轻地址/命令与控制总线的负担。
3.采用100nm以下的生产工艺,将工作电压从1.8V降至1.5V,增加异步重置(Reset)与ZQ校准功能。
内存ddr,ddrii,ddr3的区别
内存条是连接CPU 和其他设备的通道,起到缓冲和数据交换作用。
我们平时使用的程序,一般都是安装在硬盘等外存上的,但仅此是不能使用其功能的,必须把它们调入内存中运行,才能真正使用其功能,通常我们把要永久保存的、大量的数据存储在外存上,而把一些临时的或少量的数据和程序放在内存上。
内存分为DRAM和ROM两种,前者又叫动态随机存储器,它的一个主要特征是断电后数据会丢失,我们平时说的内存就是指这一种;后者又叫只读存储器,我们平时开机首先启动的是存于主板上ROM中的BIOS程序,然后再由它去调用硬盘中的Windows,ROM 的一个主要特征是断电后数据不会丢失。
内存的性能指标
评价内存条的性能指标一共有四个:
(1) 存储容量:即一根内存条可以容纳的二进制信息量,如常用的168线内存条的存储容量一般多为32兆、64兆和128兆。
而DDRII3普遍为1GB到2GB。
(2) 存取速度(存储周期):即两次独立的存取操作之间所需的最短时间,又称为存储周期,半导体存储器的存取周期一般为60纳秒至100纳秒。
(3) 存储器的可靠性:存储器的可靠性用平均故障间隔时间来衡量,可以理解为两次故障之间的平均时间间隔。
(4)性能价格比:性能主要包括存储器容量、存储周期和可靠性三项内容,性能价格比是一个综合性指标,对于不同的存储器有不同的要求。