最优化方法-一维搜索法
- 格式:ppt
- 大小:1.78 MB
- 文档页数:58
第二章 一维搜索法● 概述● 确定初始单谷区间的进退法 ● 一维搜索法分类 ● 区间消去法 ● 函数逼近法概述求一元函数()F x 的极小点和极小值问题就是一维最优化问题。
求解一维优化问题的方法称为一维优化方法,又称一维搜索法。
一维搜索法是优化问题中最简单、最基本方法。
因为它不仅可以解决单变量目标函数的最优化问题,而且在求多变量目标函数的最优值时,大多数方法都要反复多次地进行一维搜索,用到一维优化法。
一般多维优化计算的迭代的基本格式:从一个已知点()k x 出发(()k x由上次迭代获得,开始时就是起始点(0)x),沿某一优化方法所规定的是目标函数值下降的搜索方向()k S,选择一个步长因子α,求得下一个新迭代点(1)k x +,(1)()()k k k xx S α+=+并且满足1()()k k F x F x +≤,即新点必须能够使目标函数值有所下降,这个新点就是下一次迭代的出发点,如此重复,直到求出目标函数的最优解为止。
理想步长kα可以通过()()()()k k F F x S αα=+的极小点获得min ()F α,使得目标函数达到最小()()min ()k k F x S α+,这种在第k 次迭代中求理想步长k α的过程,就是一维搜索过程。
大致分为两个步骤:1. 确定初始搜索区域[a,b],该区域应该包括一维函数极小点在内的单谷区域;2. 在单谷区域[a,b]上寻找极小点。
寻找极小点kα可以采用解析解和数值解等方法。
确定初始单谷区间的进退法单谷区域的定义:设函数()F x 在区域12[,]x x 内有定义,且(1) 在区域12[,]x x 内存在极小值x *,既有min ()()F x F x *=,12[,]x x x ∈; (2) 对区域1[,]x x *上任意自变量x ,有()()F x F x x >+∆,0x ∆>;对区域2[,]x x *上任意自变量x ,有()()F x F x x <+∆,0x ∆>;则称12[,]x x 为函数()F x 的单谷区域。
《最优化方法及其应用》课 程 实 验 报 告一、 实验内容项目一 一维搜索算法(一) [实验目的]编写加步探索法、对分法、Newton 法的程序。
[实验学时]2学时[实验准备]1.掌握一维收搜索中搜索区间的加步探索法的思想及迭代步骤;2.掌握对分法的思想及迭代步骤;3.掌握Newton 法的思想及迭代步骤。
[实验内容及步骤]编程解决以下问题:1.用加步探索法确定一维最优化问题12)(min 30+-=≥t t t t ϕ的搜索区间,要求选取2,1,000===αh t .2.用对分法求解)2()(min +=t t t ϕ,已知初始单谷区间]5,3[],[-=b a ,要求按精度3.0=ε,001.0=ε分别计算.3.用Newton 法求解12)(min 3+-=t t t ϕ,已知初始单谷区间]1,0[],[=b a ,要求精度01.0=ε.项目二 一维搜索算法(二)[实验目的]编写黄金分割法、抛物线插值法的程序。
[实验学时]2学时[实验准备]1.掌握黄金分割法的思想及迭代步骤;2.掌握抛物线插值法的思想及迭代步骤。
[实验内容及步骤]编程解决以下问题:1.用黄金分割法求解)2()(min +=t t t ϕ,已知初始单谷区间]5,3[],[-=b a ,要求精度001.0=ε.2.用抛物线插值法求解3728)(min 23+--=x x x x f ,已知初始单谷区间001.0]20[][==ε,,,b a .项目三 常用无约束最优化方法(一)[实验目的]编写最速下降法、Newton 法(修正Newton 法)的程序。
[实验学时]2学时[实验准备]1.掌握最速下降法的思想及迭代步骤。
2.掌握Newton 法的思想及迭代步骤;3.掌握修正Newton 法的思想及迭代步骤。
[实验内容及步骤]编程解决以下问题:1.用最速下降法求22120min ()25[22]0.01T f X x x X ε=+==,,,.2.用Newton 法求22121212min ()60104f X x x x x x x =--++-,初始点0[00]0.01T X ε==,,. 3.用修正Newton 求221212min ()4(1)2(1)10f X x x x x =++-+++,初始点0[00]0.01T X ε==,,.项目四 常用无约束最优化方法(二)[实验目的]编写共轭梯度法、变尺度法(DFP 法和BFGS 法)程序。
精品资料最优化方法一维搜索法C++程序........................................加步探索法#include<iostream>#include<math.h>using namespace std;double fun(double t){return (t*t*t-2*t+1);}double max(double a,double b){if(a>b)return a;else return b;}double min(double a,double b){if(a>b)return b;else return a;}double Addstep(double(*pfun)(double t)){int k=0;double t0=0,h=1,r=2,t,a=0,b=0;t=t0+h;do{if(fun(t)<fun(t0)){h=r*h;t0=t;t=t0+h;k++;}else{if(k=0){h=-h;k++;}else{a=min(t0,t);b=max(t0,t);return a;return b;}}}while(a=b);cout<<" 探索区间为:"<<"["<<min(t0,t)<<","<<max(t0,t)<<"]"<<endl; }int main(){Addstep(fun);return 0;}对分法#include<iostream>#include<math.h>using namespace std;double fun(double t){return (t*t-3*t);}double dfun(double t){return (2*t-3);}void Dichotomous(double(*pfun)(double t),double (*pdfun)(double t)) {int maxflag=1000,k=1;double a=-3,b=5,c,err=0.1,t;do{c=(a+b)/2;if(dfun(c)<0){a=c;}else {if(dfun(c)>0){b=c;}else{a=c;b=c;}}k++;}while(fabs(a-b)>err&&k<maxflag);if(k>=maxflag)cout<<endl<<"对分法迭代失败!迭代次数为k="<<k<<endl;else{cout<<endl<<" 对分法迭代成功!迭代次数为k="<<k-1<<endl; cout<<"迭代结果:近似根为root="<<t<<endl;cout<<" 函数值近似为:f(root)="<<fun(t)<<endl;}}int main(){Dichotomous(fun,dfun);return 0;}Newton切线法#include<iostream>#include<math.h>using namespace std;double fun(double t){return (t*t*t-2*t+1);}double dfun(double t){return (3*t*t-2);}void NewtonIterative(double(*pfun)(double t),double (*pdfun)(double t)) {int maxflag=1000,k=1;double t0=1,err=0.01,t;do{t0=t;t=t0-pfun(t0)/pdfun(t0);k++;}while(fabs(t-t0)>err&&k<maxflag);if(k>=maxflag)cout<<endl<<" 牛顿迭代失败!迭代次数为k="<<k<<endl;else{cout<<endl<<" 牛顿迭代成功!迭代次数为k="<<k-1<<endl;cout<<" 迭代结果:近似根为root="<<t<<endl; cout<<" 函数值近似为:f(root)="<<fun(t)<<endl; }}int main(){NewtonIterative(fun,dfun);return 0;}黄金分割法#include<iostream>#include<math.h>using namespace std;double fun(double t){return (t*t+2*t);}void Goldensection(double(*pfun)(double t)){int maxflag=1000,k=1;double a=-3,b=5,err=0.001,t,t1,t2;do{t1=a+0.618*(b-a);t2=b-0.618*(b-a);if(t1=t2){a=t2;b=t1;}else {if(t1<t2){a=t2;}else{b=t1;}}k++;}while(fabs(a-b)>err&&k<maxflag);if(k>=maxflag)cout<<endl<<"黄金分割法迭代失败!迭代次数为k="<<k<<endl; else{t=(a+b)/2;cout<<endl<<" 黄金分割法迭代成功!迭代次数为k="<<k-1<<endl; cout<<" 迭代结果:近似根为root="<<t<<endl;cout<<" 函数值近似为:f(root)="<<fun(t)<<endl;}}int main(){Goldensection(fun);return 0;}抛物线插值法#include<iostream>#include<math.h>using namespace std;double fun(double x){return (8*x*x*x-2*x*x-7*x+3);}double max(double a,double b){if(a>b)return a;else return b;}double min(double a,double b){if(a>b)return b;else return a;}void Parainterpolation(double(*pfun)(double x)){double a=0,b=2,err=0.001,x=0,x0=1,f,f0;do{x=((x0*x0-b*b)*fun(a)+(b*b-a*a)*fun(x0)+(a*a-x0*x0)*fun(b))/(2*((x0-b)*fun(a)+(b-a)*fun(x0)+(a-x0)*fun(b)));f0=fun(x0);f=fun(x);if(f=f0){a=min(x,x0);b=max(x,x0);x0=(a+b)/2;}else {if((fun(x)-f0)*(x-x0)>0){b=max(x,x0);x0=min(x,x0);}else{a=min(x,x0);x0=max(x,x0);}}}while(fabs(x-x0)>err);x=(x+x0)/2;cout<<" 迭代结果:近似根为root="<<x<<endl;cout<<" 函数值近似为:f(root)="<<fun(x)<<endl;}int main(){Parainterpolation(fun);return 0;}。
无约束优化:不对定义域或值域做任何限制的情况下,求解目标函数的最小值。
这是因为实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值。
(直接法:又称数值方法,它只需计算目标函数驻点的函数数值,而不是求其倒数,如坐标轮换法,单纯型法等。
间接法:又称解析法,是应用数学极值理论的解析方法。
首先计算出目标函数的一阶或一阶、二阶导数,然后根据梯度及海赛矩阵提供的信息,构造何种算法,从而间接地求出目标函数的最优解,如牛顿法、最速下降法共轭梯度法及变尺度法。
)在优化算法中保证整体收敛的重要方法就是线搜索法与信赖域法,这两种算法既相似又有所不同。
根据不同的线搜索准则就延伸出不同的线搜索算法,譬如比较常见和经典的最速下降法,牛顿法,拟牛顿法以及共辄梯度法等。
一维搜索又称线性搜索(Line Search),就是指单变量函数的最优化,它是多变量函数最优化的基础,是求解无约束非线性规划问题的基本方法之一。
一维搜索技术既可独立的用于求解单变量最优化问题,同时又是求解多变量最优化问题常用的手段,虽然求解单变量最优化问题相对比较简单,但其中也贯穿了求解最优化问题的基本思想。
由于一维搜索的使用频率较高,因此努力提高求解单变量问题算法的计算效率具有重要的实际意义。
在多变量函数的最优化中,迭代格式Xk+1=Xk+akdk其关键就是构造搜索方向dk和步长因子ak设Φ(a)=f(xk+adk)这样从凡出发,沿搜索方向dk,确定步长因子ak,使Φ(a)<Φ(0)的问题就是关于步长因子a的一维搜索问题。
其主要结构可作如下概括:首先确定包含问题最优解的搜索区间,然后采用某种分割技术或插值方法缩小这个区间,进行搜索求解。
一维搜索通常分为精确的和不精确的两类。
如果求得ak使目标函数沿方向dk达到极小,即使得f (xk+akdk)=minf(xk+adk) (a>0)则称这样的一维搜索为最优一维搜索,或精确一维搜索,ak叫最优步长因子;如果选取ak使目标函数f得到可接受的下降量,即使得下降量f(xk)一f(xk+akdk)>0是用户可接受的,则称这样的一维搜索为近似一维搜索,或不精确一维搜索,或可接受一维搜索。
最优化理论与算法一维搜索一维是最优化问题求解中常用的一种算法。
在一维中,我们需要在给定的区间内寻找函数的最小值或最大值。
一维算法的基本思想是通过不断的迭代,在区间内不断缩小最优解的范围,最终找到最优解。
常用的一维算法包括黄金分割法、斐波那契法、插值法等。
黄金分割法是一种较为简单且常用的一维算法。
该算法基于黄金分割点的性质,通过不断缩小区间来逼近最优解。
黄金分割法的具体步骤如下:1.初始化区间的上下界,确定迭代终止条件;2.计算黄金分割点的位置;3.根据黄金分割点分割区间;4.更新区间的上下界;5.判断是否满足迭代终止条件,如果满足,则输出最优解;如果不满足,则返回第2步。
斐波那契法是另一种常用的一维算法。
该算法通过斐波那契数列的性质,不断缩小区间来逼近最优解。
斐波那契法的具体步骤如下:1.初始化斐波那契数列,确定迭代终止条件;2.计算斐波那契点的位置;3.根据斐波那契点分割区间;4.更新区间的上下界;5.判断是否满足迭代终止条件,如果满足,则输出最优解;如果不满足,则返回第2步。
插值法是一种基于函数插值的一维算法。
该算法通过插值函数来拟合原函数,并通过求解插值函数的最小值或最大值来近似求解原函数的最小值或最大值。
插值法的具体步骤如下:1.初始化区间的上下界,确定迭代终止条件;2.根据插值函数拟合原函数,得到插值函数的表达式;3.求解插值函数的最小值或最大值;4.更新区间的上下界;5.判断是否满足迭代终止条件,如果满足,则输出最优解;如果不满足,则返回第2步。
除了上述算法,还存在其他一维算法,如割线法、牛顿法等。
这些算法各有特点,适用于不同类型的最优化问题。
一维算法的优势在于其计算简单、耗时少的特点。
然而,一维算法也存在一些缺点,例如容易陷入局部最优解、收敛速度较慢等。
因此,对于一些复杂的最优化问题,可能需要使用更高维度的算法进行求解。
总之,一维是最优化问题求解中常用的一种算法。
通过在给定的区间内不断迭代,可以逼近最优解。