红外区光谱用波长和波数(wave number)来 表征 ;
波长多用μm做单位; 波数:以σ表示,定义为波长得倒数,单位cm-1,其
物理意义就是每厘米长光波中波得数目。 σ=1/λ(cm)=104/λ(μm)=υ/c 用波数表示频率得好处就是比用频率要方便,
且数值小。 一般用透光率-波数曲线或透光度-波长曲线来
第三章 红外吸收光谱分析
3、2 基本原理 3、2、2 双原子分子得振动
红外光谱就是由于分子振动能级得跃迁(同时伴有转动能级跃迁) 而产生,即分子中得原子以平衡位置为中心作周期性振动,其振幅非 常小。这种分子得振动通常想象为一根弹簧联接得两个小球体系, 称为谐振子模型。这就是最简单得双原子分子情况,如下图所示。
基频峰、倍频峰和泛频峰
分子吸收红外辐射后,由基态振动能级(V=0)跃迁至 第一振动激发态(V=1)时,所产生得吸收峰称为基频 峰。因为△V=1时, L= ,所以 基频峰得位置等于 分子得振动频率。
在红外吸收光谱上除基频峰外,还有振动能级由基态 ( V =0)跃迁至第二激发态( V =2)、第三激发态( V =3),所产生得吸收峰称为倍频峰。
在室温时,分子处于基态( V = 0): EV= 1/2h ,此时,伸缩振动得频率很小。
条件一:辐射光子得能量应与振动跃 迁所需能量相等
当有红外辐射照射到分子时,若红 外辐射得光子(L)所具有得能量(EL) 恰好等于分子振动能级得能量差 (△EV)时,则分子将吸收红外辐射而跃
迁至激发态,导致振幅增大。
多原子分子振动
多原子分子由于原子数目增多,组成分子得键 或基团和空间结构不同,其振动光谱比双原子 分子要复杂。但就是可以把她们得振动分解 成许多简单得基本振动,即简正振动。
简正振动:简正振动得振动状态就是分子质 心保持不变,整体不转动,每个原子都在其平 衡位置附近做简谐振动。