第十二章红外吸收光谱法
- 格式:ppt
- 大小:910.00 KB
- 文档页数:58
第十二章 红外吸收光谱法思考题和习题8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃?烷烃主要特征峰为233,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1。
烯烃主要特征峰为H C C C H C -==-=γνν,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1。
νC=C 峰位约在1650 cm -1。
H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。
炔烃主要特征峰为H C C C H C -≡≡-≡γνν,,,其中H C -≡ν峰位在3333-3267cm -1。
C C ≡ν峰位在2260-2100cm -1,是炔烃的高度特征峰。
9.如何在谱图上区别异丙基及叔丁基?当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3δ分裂为双峰。
如果是异丙基,双峰分别位于1385 cm -1和1375 cm -1左右,其峰强基本相等。
如果是叔丁基,双峰分别位于1365 cm -1和1395cm -1左右,且1365 cm -1峰的强度约为1395 cm -1的两倍。
10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定:芳氢伸缩振动(ν=C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1苯环骨架振动(νc=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动(γ =C-H ),910~665cm -114.试用红外吸收光谱区别羧酸、酯、酸酐。
羧酸的特征吸收峰为v OH 、v C=O 及γOH 峰。
v OH (单体)~3550 cm -1(尖锐),v OH (二聚体)3400~2500(宽而散),v C=O (单体)1760 cm -1 (S),v as C=O (二聚体)1710~1700 cm -1 (S)。
第六章红外吸收光谱法
基本要点:
1.红外光谱分析基本原理;
2.红外光谱与有机化合物结构;
3.各类化合物的特征基团频率;
4.红外光谱的应用;
5.红外光谱仪.
学时安排:3学时
第一节概述
分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。
红外吸收光谱也是一种分子吸收光谱。
当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。
记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。
一、红外光区的划分
红外光谱在可见光区和微波光区之间,波长范围约为0.75 ~ 1000μm,根据仪器技术和应用不同,习惯上又将红外光区分为三个
1。
第十二章红外吸收光谱法- 经典习题1.下列叙述不正确的是(D)A.共轭效应使红外吸收峰向低波数方向移动B.氢键作用使红外吸收峰向低波数方向移动C.诱导效应使红外吸收峰向高波数方向移动D.氢键作用使红外吸收峰向高波数方向移动2.在红外光谱上νC-H发生在(高波数)区间,大体以(3000cm-1)为界,νC-H(>3000cm-1)时,连接氢的碳原子是不饱和的;νC-H(<3000cm-1)时,连接氢的碳原子是饱和的。
烷烃、烯烃、炔烃νC-H峰位由高到低的顺序为(ν≡C-H >ν=C-H>νC-H)。
3.某化合物在4000~600cm-1区间的红外吸收光谱如下图,试推断其为下列化合物中的哪一个?为什么?(A)CH3(CH2)5OH (B)(C)(D)(E)解:此题为已知范围的未知物,故不需按光谱解析程序解析。
(1)3060、3040、3020cm-1为芳香族的ν=C-H峰;1600、1584、1493cm-1为芳香族νC=C 峰;756、702cm-1为芳香族γ=C-H峰,A、B无上述峰。
否定A、B。
(2)图中无~2200cm-1峰,否定D。
(3)图中无~3300cm-1峰,否定C。
应为E。
综上所述,其峰归属:3060cm-1、3040cm-1、3020cm-1(苯环ν=C-H)、1600cm-1、1584cm-1、1493cm-1(苯环νC=C )、756cm-1、702cm-1(单取代苯γ=C-H)、2938cm-1、2918cm-1、2860cm-1(亚甲基νCH )、1452cm-1(亚甲基δCH2)。
4.某未知化合物的分子式为C14H14,测得其红外光谱如下图,试通过光谱解析推断其分子结构式。
解:(1)计算不饱和度:u=(2+2×14-14)/2=8,说明可能含有两个苯环、或一个苯环及两个叁键、或一个苯环及四个双键。
但由上图显示,2400~2100cm-1区间没有吸收峰,即结构中不含-C≡C-及-C≡N键;分子式中不含氧原子,1700cm-1左右也没有νC=O峰,即结构式中也不含C=O基。
第十二章 红外吸收光谱法一、选择题1.中红外区的特征区是指( )cm -1范围内的波数。
A 、4000~200B 、4000~1250C 、1250~200D 、10 000~102.已知CO 2的结构式为O=C=O ,请推测其红外光谱中,基本振动数为( )。
A 、4个B 、3个C 、2个D 、1个3.红外光谱中,不是分子的所有振动形式的相应红外谱带都能被观察到,这是因为()A 、分子中既有振动运动,又有转动运动B 、分子中有些振动能量是简并的C 、因为分子中有C 、H 、O 以外的原子存在D 、分子中有些振动能量相互抵消4.关于红外光谱的吸收峰,下列叙述不正确的是( )A 、共轭效应使红外吸收峰向低波数方向移动B 、诱导效应使红外吸收峰向高波数方向移动C 、氢键使红外吸收峰向低波数方向移动D 、氢键使红外吸收峰向高波数方向移动5.若 O —H 键的键力常数 K = 7.12N /cm ,则它的振动波数( cm -1)为( )A 、3584B 、3370C 、3474D 、35006.欲获得红外活性振动,吸收红外线发生能级跃迁,必须满足( )条件。
A 、△μ>0或△μ<0B 、△μ≠0并服从νL=v△VC 、△μ=0及vL=△VvD 、△μ≠07.CO 2的下列振动中,属于红外非活性振动的是( )。
8.下列三种物质:甲R-CO-CH2CH3、乙R-CO-CH=C(CH3)2、、丙R-COCl,问其V C=O波数大小次序为( )。
A、甲>乙>丙B、乙>甲>丙C、丙>乙>甲D、丙>甲>乙9.三种振动νc=o,νc=N及νc=C的频率大小次序为( )。
(电负性:C为2.6,N为3.0,O为3.5)A、νc=o>νc=N>νc=CB、νc=C>νc=N>νc=oC、νc=N>νc=C>νc=oD、νc=N>νc=o>νc=C10.同一分子中的某基团,其各振动形式的频率大小顺序为( )。
红外吸收光谱法的原理红外吸收光谱法(Infrared absorption spectroscopy)是一种常用的分析方法,通过测量物质对红外辐射的吸收来研究物质的结构和组成。
其原理基于物质分子的振动和转动,当红外辐射通过样品时,与样品分子相互作用并导致红外辐射被吸收或散射。
进一步,通过测量样品吸收的红外辐射强度,可以得到关于样品内部分子结构和组成的信息。
红外辐射是电磁波的一部分,具有比可见光更长的波长。
红外吸收光谱法利用这种波长特性,通过对样品在红外区域的吸收进行定量或定性分析。
红外吸收光谱法可以用于有机物、无机物、聚合物以及生物分子等各种类型的样品分析。
在红外吸收光谱法中,仪器设备包括一个红外光源、分光器、样品室和检测器。
红外光源产生宽频谱的红外辐射,经过分光器将红外辐射按波长分成多个特定范围。
样品室是一个透明的容器,用于容纳样品。
样品与红外辐射相互作用后,部分辐射被吸收,其余的辐射经过样品,最后被检测器接收。
检测器将接收到的辐射转化为电信号,并通过放大和处理,能够得到样品在各个波长下的吸收谱图。
红外吸收光谱图谱展示了样品在红外区域的吸收峰,峰的位置和强度可以提供关于样品中的化学键、官能团以及分子结构的信息。
每个官能团和化学键都有具有特定的频率和振动模式,当红外辐射与样品分子振动模式相吻合时,就会发生吸收。
因此,通过观察吸收峰的位置和形状,可以推断出样品中存在的官能团和化学键的类型。
总之,红外吸收光谱法利用物质对红外辐射的吸收特性,通过测量红外辐射在样品中的吸收程度,可以获得关于样品的结构和组成的信息。
这种分析方法广泛应用于化学、材料科学、生物科学等领域,为研究和分析各种样品提供了有力的工具。
第12章红外吸收光谱法学习目标1.掌握基频峰和泛频峰,特征峰和相关峰,特征区和指纹区等基本概念;红外吸收峰产生的条件;吸收峰位置的分布规律及影响峰位的因素:红外吸收光谱的解析程序与方法。
2.熟悉常见的几种振动形式,振动能级和振动频率;振动自由度。
3.了解红外光谱仪的主要部件及其工作原理,试样的制备方法。
案例12-12006年4月下旬,某药厂生产的亮菌甲素注射液,导致多名患者因肾衰竭而死亡。
事故调查结果显示,问题出现在误把二甘醇当作丙二醇。
丙二醇是一种药用溶剂,而二甘醇则是工业用溶剂,有很强的毒性。
.如何区别丙二醇和二甘醇呢?中国药典2005版上规定用红外光谱来鉴定丙二醇。
此外,在药典上还有许多需要用红外光谱区分的物质。
问题:1.什么是红外光谱?红外光谱是怎样产生的?2.红外光谱在药物的合成、提取分离、有效成分的分析中的作用?3.如何利用红外光谱对物质进行定性、定量和结构分析?红外线( infrared ray)是指波长为0.76 - 500 um(或1000 Vm)的电磁辐射(electromagnetic radiation)。
红外线常按波长分为三个区域。
这三个区域的红外线可引起3种不同的能级跃迁(表12-1]。
到的吸收光谱( absorption spectroscopy)称为中红外吸收光谱,亦称红外吸收光谱(infraredabsorption spectroscopy;IR),简称红外光谱(infrared spectrum)。
由于物质分子吸收该区域的红外光后引起分子振动能级之间跃迁,并伴随分子的转动能级的跃迁,故红外吸收光谱又称振一转光谱。
IR在化学领域中主要用于分子结构的基础研究以及化学组成的分析,其中应用最广泛的还是化合物的结构鉴定。
根据红外光谱的峰位、峰强及峰形,判断化合物中可能存在的官能团,从而推断出未知物的结构,因此IP是有机药物结构测定和鉴定最重要的方法之一。
红外吸收光谱的表示方法与紫外吸收光谱有所不同,早期棱镜光谱用TA曲线,现一般用t-a曲线,t-a曲线的“谷”是红外光谱上的吸收峰(图12-1)。
第十二章红外吸收光谱法思考题和习题1.化合物的结构式如下,试写出各基团的特征峰、相关峰、并估计峰位。
烯烃:ν=C-H : 3100-3000cm-1,νC=C:( ~1650cm-1) 因为连接苯环峰位置向低频移动.芳香烃(苯环): ν=C-H:(3100-3000cm-1), 苯环νC=C(1650-1430cm-1,共轭作用向低频移动.)羰基:ν=C-O: 1700cm-1.含氮化合物: νNH(仲胺):3500-3300cm-1, δNH(仲胺):1650-1510cm-1,νC-N(仲胺): 1360-1020cm-1.2.某化合物分子式为C5H6O,其紫外光谱的最大吸收在227 nm(ε=104),其红外光谱有吸收带:3015,2905,1687和1620cm-1.试判断该化合物的结构。
3.如合用红外吸收光谱区别一下化合物?νNH: 伯胺在3500cm-1和3400cm-1出现双峰,游离仲胺在3500~3300cm-1有一个峰,叔胺无此峰.4.下列基团的C-H伸缩振动(νC-H)出现在什么区域?(1) –CH3(2) =CH2(3) ≡CH (4) -CHOνCH3:~2962cm-1(as), ~2872cm-1(s).ν=CH2:~3100cm-1. ν≡CH:~ 3330cm-1.νCHO:~2820cm-1(as), ~2720cm-1(s).5.化合物(A)、(B)、(C)在红外区域有何吸收?(A)HC≡C-CH2OH (B)缺少化合物的结构图(C)缺少化合物的结构图6.如何用红外光谱法区别下列化合物?分别化合物各基团的红外吸收波数。
1) -CH3中的νas C-H 在2962cm-1,δas CH在1450cm-1,δs CH在1380cm-1处有一个峰.-CH(CH3)2的δs CH在1385cm-1和1375cm-1处出现两个峰,且峰强度相等.-C (CH3)3的δs CH在1365cm-1和1395cm-1处出现两个峰,且前者峰强度约是后者的两倍.2)苯甲胺:νNH(伯胺):在约3500和3400cm-1,出现双峰.苯甲醇:νOH(醇羟基):在约3600~3200 cm-1,出现单峰,且峰稍宽.苯乙酸:νOH: 在约3400~25 00 cm-1,出现峰,且峰宽而钝.νCO: 在1700cm-1左右出现峰.7.某化合物分子式为C10H10O,测得的红外光谱如图12-25.试通过光谱解析推断其分子结构式。
红外吸收光谱法思考题和习题3•简述红外吸收光谱产生的条件。
(1)辐射应具有使物质产生振动跃迁所需的能量,即必须服从V L= △ V-v(2)辐射与物质间有相互偶合作用,偶极矩必须发生变化,即振动过程△卩工0;4•何为红外非活性振动?有对称结构分子中,有些振动过程中分子的偶极矩变化等于零,不显示红外吸收,称为红外非活性振动。
5、何为振动自由度?为何基本振动吸收峰数有时会少于振动自由度?振动自由度是分子基本振动的数目,即分子的独立振动数。
对于非直线型分子,分子基本振动数为3n-6。
而对于直线型分子,分子基本振动数为3n-5。
振动吸收峰数有时会少于振动自由度其原因可能为:分子对称,振动过程无偶极矩变化的红外非活性活性。
两个或多个振动的能量相同时,产生简并。
吸收强度很低时无法检测。
振动能对应的吸收波长不在中红外区。
6•基频峰的分布规律有哪些?(1)折合质量越小,伸缩振动频率越高(2)折合质量相同的基团,伸缩力常数越大,伸缩振动基频峰的频率越高。
(3)同一基团,一般> >7、举例说明为何共轭效应的存在常使一些基团的振动频率降低。
共轭效应的存在,常使吸收峰向低频方向移动。
由于羰基与苯环共轭,其电子的离域增大,使羰基的双键性减弱,伸缩力常数减小,故羰基伸缩振动频率降低,其吸收峰向低波数方向移动。
以脂肪酮与芳香酮比较便可说明。
1715 on 11685 cm 11660 18•如何利用红外吸收光谱区别烷烃、烯烃及炔烃?烷烃主要特征峰为CH,嬴,爲,旳,其中V-H峰位一般接近3000cm-1又低于3000cm'10烯烃主要特征峰为CH,cc, CH,其中V C-H峰位一般接近3000cm,又高于3000cm'。
v=c峰位约在1650 cm-1。
C H是烯烃最具特征的峰,其位置约为1000-650 cm-1炔烃主要特征峰为CH, CC, CH,其中 C H峰位在3333-3267cm-1。