第2课时 实数的运算
- 格式:ppt
- 大小:3.35 MB
- 文档页数:21
第2课时实数的运算关键问答①本题用到的运算律是什么?1.-5的绝对值是( )A .-15B .-5C. 5 D .5 2.①计算:3 2-2+2=________.3.计算:327+16-14.命题点 1 实数的大小比较 [热度:90%]4.比较大小:|3-2|________|3|+|-2|.5.数轴上表示-3.14的点在表示-π的点的________边.6.实数a 在数轴上对应的点的位置如图6-3-6所示,试确定a ,-a ,1a,a 2的大小关系.图6-3-6命题点 2 实数的性质 [热度:93%]7.4的倒数是( )A .-2 B.12C .2 D .±128.下列实数中绝对值最小的是( )A .-4B .-2C .1D .39.②实数2-1的相反数是( )A.2-1B.2+1 C .1-2D .-2-1方法点拨②a 的相反数是-a .若两个数的和为0,则这两个数互为相反数.10.计算|3-2|的结果是( ) A .2-3B.3-2 C .-2-3D .2+ 311.③观察下列各式:①a 2;②|a |+1;③-a ;④23a .取一个适当的实数作为a 的值代入求值后,不可能互为相反数的式子序号为( )A .②④B .①②C .①③D .③④解题突破③两个数的符号不同才有可能互为相反数(0除外).12.④如果一个实数的绝对值为11-5,那么这个实数为______________.易错警示 ④本题容易丢掉11-5这种情况.13.若无理数a 使得|a -4|=4-a ,则a 的一个值可以是________.14.若(x +3)2+|y -2|=0,则|x +y |=________.15.若a 是15的整数部分,b 是15的小数部分,则a -b -ab =____________.16.已知7+5=x +y ,其中x 是整数,且0<y <1,求x -y +5的相反数.17.⑤在数轴上点A 表示的数是 5.(1)若把点A 向左平移2个单位长度得到点B ,求点B 表示的数;(2)若点C 和(1)中的点B 所表示的数互为相反数,求点C 表示的数;(3)在(1)(2)的条件下,求线段OA ,OB ,OC 的长度之和.解题突破⑤求线段OA ,OB ,OC 的长度之和,即求A ,B ,C 三个点所表示的数的绝对值之和. 命题点 3 实数的运算 [热度:98%]18.若等式2□2=2 2成立,则□内的运算符号为( )A .+B .-C .×D .÷19.计算|3-4|-3-22的结果是( )A .23-8B .0C .-23D .-820.定义新运算“☆”:a ☆b =ab +1,则2☆(3☆5)=__________. 21.⑥有四个实数分别是|-9|,22,-38,2 2.请你计算其中有理数的积与无理数的积的差,结果是__________.解题突破⑥(1)先确定四个数中的有理数和无理数;(2)再分别计算它们的积;(3)最后求两个积 的差.22.⑦已知数轴上有A ,B 两点,且这两点之间的距离为4 2.若点A 在数轴上表示的数为3 2,则点B 在数轴上表示的数为____________.解题突破⑦点B 在点A 的左边还是右边?23.计算: (1)19+32627-1+|3-2|-(-2)2+2 3;(2)(-1)3+||3-2+2÷23- 4.24.⑧我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=p q.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,那么我们称正整数a 是完全平方数,求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数字与十位上的数字得到的新数减去原来的两位正整数所得的差为18,那么我们称t 为“吉祥数”,求所有“吉祥数”中,F (t )的最大值.解题突破⑧(1)读懂新定义的条件:一个正整数分解成两个正整数的积,且取两因数之差的绝对值最小的情况.(2)在列举的所有情况中,找出满足条件的情况.典题讲评与答案详析1.C 2.22+23.解:原式=3+4-12=132. 4.< [解析]∵|3-2|=3-2,|3|+|-2|=3+2,∴3-2<3+ 2.故填“<”.5.右 [解析] 因为3.14<π,所以-3.14>-π,所以数轴上表示-3.14的点在表示-π的点的右边.6.解:∵-1<a <0,不妨令a =-12,∴-a =12,1a =-2,a 2=14. ∵-2<-12<14<12,∴1a<a <a 2<-a . 7.B [解析] 因为4=2,所以4的倒数是12. 8.C [解析] -4的绝对值是4,-2的绝对值是2,1的绝对值是1,3的绝对值是3.因为4>3>2>1,所以这些实数中绝对值最小的是1.9.C [解析] 实数2-1的相反数是-(2-1)=1- 2.10.A [解析] 因为3<2,所以3-2<0,所以|3-2|=-(3-2)=2- 3.11.B [解析]∵a 2≥0,|a |+1≥1,∴①和②不可能互为相反数.12.11-5或5-11[解析] 因为|11-5|=11-5,|5-11|=11-5,所以这个实数为11-5或5-11.13.2(答案不唯一) [解析] 答案不唯一,只要a 是小于4的无理数即可.14.3-2 [解析] 由题意,得x =-3,y =2,所以|x +y |=|-3+2|=-(-3+2)=3- 2.15.15-415 [解析] 因为3<15<4,所以a =3,b =15-3,所以a -b -ab = 3-(15-3)-3×(15-3)=3-15+3-315+9=15-415.16.解:∵4<5<9,∴2<5<3.又∵7+5=x +y ,其中x 是整数,且0<y <1,∴x =9,y =5-2,∴x -y +5=9-(5-2)+5=11,∴x -y +5的相反数是-11.17.解:(1)点B 表示的数是5-2.(2)点C 表示的数是2- 5.(3)由题意,得点A 表示5,点B 表示5-2,点C 表示2-5,∴OA =5,OB =5-2,OC =|2-5|=5-2,∴OA +OB +OC =5+5-2+5-2=3 5-4.18.A [解析] 因为2+2=2 2,2-2=0,2×2=2,2÷2=1,所以选A.19.C [解析] 原式=4-3-3-4=-2 3.故选C. 20.3 [解析] 2☆(3☆5)=2☆(3×5+1)=2☆4=2×4+1=3.21.-20 [解析] 有理数为|-9|,-38,它们的积为|-9|×(-38)=-18.无理数为22, 2 2,它们的积为22×2 2=2.有理数与无理数积的差为-18-2=-20. 22.-2或7 2[解析] 本题要分两种情况进行分析:①当点B 在点A 的左边时, 则3 2-4 2=-2,故点B 表示的数是-2;②当点B 在点A 的右边时, 则4 2+3 2=7 2,故点B 表示的数是7 2.综上,点B 在数轴上表示的数为-2或7 2.23.解:(1)原式=13-13+2-3-4+2 3=3-2. (2)原式=-1+2-3+2×32-2=-1. 24.解:(1)证明:对任意一个完全平方数m ,设m =n 2(n 为正整数).∵|n -n |=0,∴n ×n 是m 的最佳分解,∴对任意一个完全平方数m ,总有F (m )=n n=1. (2)设交换t 的个位上的数字与十位上的数字得到的新数为t ′,则t ′=10y +x . ∵t 为“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=18,∴y =x +2.∵1≤x ≤y ≤9,x ,y 为自然数,∴“吉祥数”有13,24,35,46,57,68,79.∵F (13)=113,F (24)=46=23,F (35)=57, F (46)=223,F (57)=319,F (68)=417, F (79)=179, 又∵57>23>417>319>223>113>179, ∴所有“吉祥数”中,F (t )的最大值是57. 【关键问答】①乘法分配律的逆用.。
第2课时实数的运算法则实数的运算法则.重点掌握实数的运算法则.难点实数运算法则的正确应用.一、创设情境,引入新课师:有理数的运算法则是什么?生:先算高级运算,同级运算从左至右,遇有括号的先算括号内.二、讲授新课师:很好.有理数运算法则仍适用于实数,请大家看几个题目:展示课件:【例1】计算下列各式的值:(1)(3+2)-2;(2)33+2 3.学生活动:尝试独立完成,两名学生上黑板板演,其余学生在位上做.教师活动:巡视、指导.师生共同完成:(1)(3+2)-2=3+(2-2)(加法结合律)=3+0= 3(2)33+2 3=(3+2) 3 分配律=5 3师:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.【例2】计算(结果保留小数点后两位):(1)5+π;(2)3· 2.学生尝试独立计算,一学生上黑板板演.教师巡视、纠正.师生共同完成:(1)5+π≈2.236+3.142≈5.38(2)3· 2≈1.732×1.414≈2.45三、随堂练习课本第56页第4题,第57页第4、5、6题.四、课堂小结通过本节课的学习,你有哪些收获?首先通过课本引例问题,旨在使学生通过自己的探究活动,经过老师的引导,感受并经历实数的运算、化简;让学生根据实例进行探索,通过学生互相交流合作,得出两个化简的公式,培养他们的合作精神和探索能力,也让他们获得成功的体验,充分调动、发挥学生主动性的多样化学习方式,促进学生在老师指导下主动地、富有个性地学习.典型例题:平行线的特征例1 两条直线被第三条直线所截,则( )A .同位角必相等B .内错角必相等C .同旁内角必互补D .同位角不一定相等例2 解答下列问题:①如果一个角的两边分别平行于另一角的两边,则这两个角( )A .相等B .互补C .相等或互补D .这两个角无数量关系②已知:(如图所示),则不正确的是:( )A .21∠=∠ ,∴43∠=∠B .52∠=∠ ,∴76∠=∠C .︒=∠+∠18085 ,∴21∠=∠D .︒=∠+∠18043 ,∴21∠=∠例3 如图,︒=∠︒=∠70,60,//BAE C CD AB ,求x ∠的度数.例4 如图:︒=∠651,//,//3221l l l l ,求2∠的度数.例5 如图,已知直线b a //,直线︒=∠1051,//d c ,求32∠∠、的度数.例6 试说明平行于同一条直线的两条直线平行.例7 如图,AD ABC ADC ,18021,︒=∠+∠∠=∠为FDB ∠的平分线,试说明BC 为DBE ∠的平分线.例8 潜望镜中的两个镜子MN 和PQ 是互相平行(如图)放置的,光线AB 经镜面反射时,43,21∠=∠∠=∠,试说明,进入的光线AB 与射出的光线CD 平行吗?为什么?参考答案例1 分析:这题是考查学生审题是否仔细,概念是否清楚,可举例说明.如图,直线A.b 被直线c 所截,显然同位角21∠≠∠,内错角32∠≠∠,同旁内角︒≠∠+∠18042,故A.B.C 均不正确.只有两平行直线被第三条直线所截,才有同位角必相等,内错角必相等,同旁内角必互补.故选D .例2 解析:①应选C (如图所示)②选D .A .21∠=∠ ,∴b a //,∴43∠=∠正确B .52∠=∠ ,∴b a //,∴76∠=∠正确C .︒=∠+∠18085 ,∴b a //,∴21∠=∠D .不正确,不能推出21∠=∠例3 分析:由CD AB //,可得︒=∠+∠180BAC C ,从而求出x ∠的度数.解:因为CD AB //,所以︒=∠+∠180BAC C ,即1806070=++x所以50=x ,答:x ∠等于50°.说明:平行线的特征必须是在两条直线平行的前提下,才存在后面的结论,所以在应用两条直线平行的特征时,必须先找到平行这个条件.例4 分析:由21//l l ,可得32∠=∠,由32//l l 可得31∠=∠,所以有21∠=∠,故求出2∠.解:因为21//l l ,所以32∠=∠;又因为32//l l ,所以13∠=∠;所以︒=∠=∠=∠65132.答:2∠是65°.说明:这是应用两条直线平行,内错角相等这一结论,在应用时应注意找出结论存在的条件.例5 分析:这里要利用平行线的条件弄清321∠∠∠、、与直线d 之间的关系才能解决问题.解:b a // (已知),∴12∠=∠(两直线平行,内错角相等).︒=∠1051 (已知),∴︒=∠1052(等量代换).d c // (已知),∴23∠=∠(两直线平行,同位角相等).∴︒=∠1053(等量代换).例6 分析:如图,3231//,//l l l l ,画直线a 截321,,l l l ,得3,2,1∠∠∠,则有32,31∠=∠∠=∠,所以21∠=∠,所以21//l l .解:作3231//,//l l l l ,直线a 截321,,l l l ,得3,2,1∠∠∠. 因为3231//,//l l l l ,所以32,31∠=∠∠=∠,所以21∠=∠,所以21//l l .即平行于同一直线的两条直线平行.说明:(1)这类通过单纯文字给出的题,我们在说明时应先根据题意画出图形;(2)该题既用到了平行线的特征,也用到了两直线平行的条件;在应用时我们要注意二者的区别.例7 解:︒=∠+∠18021 (已知),而︒=∠+∠18032(补角意义),∴31∠=∠(同角的补角相等).∴CF AE //(同位角相等,两直线平行).∴︒=∠+∠180C ABC (两直线平行,同旁内角互补).又ABC ADC ∠=∠(已知),∴︒=∠+∠180C ADC (等量代换).∴BC AD //(同旁内角互补,两直线平行).∴65,4∠=∠∠=∠A (两直线平行,同位角、内错角相等).又CF AE // (已证),∴7∠=∠A (两直线平行,内错角相等).∴74∠=∠(等量代换).又AD 为FDB ∠的平分线(已知),∴76∠=∠(角平分线的意义).∴54∠=∠(等量代换).∴BC 为DBE ∠的平分线.例8 解析:光线CD AB //,PQ MN // (已知)∴32∠=∠(两直线平行,内错角相等)又43,21∠=∠∠=∠ (已知)∴4321∠+∠=∠+∠∴65∠=∠(平角定义)∴CD AB //(内错角相等,两直线平行)【知识与技能】1.了解等式的两条性质.2.会用等式的性质解简单的(用等式的一条性质)一元一次方程.【过程与方法】1.渗透“化归”的思想.2.培养学生观察、分析、概括及逻辑思维能力.【情感态度】培养言必有据的思维能力和良好的思维品质.【教学重点】理解和应用等式的性质.【教学难点】应用等式的性质把简单的一元一次方程化成“x=a”.一、情境导入,初步认识用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.【教学说明】第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,此时教师提出:我们必须学习解一元一次方程的其他方法.二、思考探究,获取新知1.实验演示:教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律,然后按教科书第81页图3.1-1的方法演示实验.教师可以进行两次不同物体的实验.2.归纳:请几名学生回答前面的问题.在学生叙述发现的规律后,教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8+6=8+6”;两边都减去11,就有“8-11=8-11”.3.表示:问题1你能用文字来叙述等式的这个性质吗?在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.问题2等式一般可以用a=b来表示.等式的性质1怎样用式子的形式来表示?在学生观察图3.1-2时,必须注意图上两个方向的箭头所表示的含义.观察后再请一名学生用实验验证.然后让学生用两种语言表示等式的性质2.问题3你能再举几个运用等式性质的例子吗?如:用5元钱可以买一支钢笔,用2元钱可以买一本笔记本,那么用7元钱就可以买一支钢笔和一本笔记本,15元钱就可以买3支钢笔.相当于:“5元=买1支钢笔的钱;2元=买1本笔记本的钱.5元+2元=买1支钢笔的钱+买1本笔记本的钱.3×5元=3×买1支钢笔的钱.”问题4方程是含有未知数的等式,我们怎样运用上面等式的性质来解方程呢?我们来看一下教科书第82页例2中的第(1)、(2)题.通过分析,我们知道所谓“解方程”,就是要求出方程的解“x=?”因此我们需要把方程转化为“x=a(a为常数)”的形式.设问1:怎样才能把方程x+7=26转化为x=a的形式?学生回答,教师板书:解:两边减7,得:x+7-7=26-7,x=19.设问2:式子“-5x”表示什么?我们把其中的-5叫做这个式子的系数.你能运用等式的性质把方程-5x=20转化为x=a的形式吗?用同样的方法给出方程的解.小结:请你归纳一下解一元一次方程的依据和步骤.【归纳结论】由上面的问题我们可以看出,利用等式的性质解简单的一元一次方程的步骤一般分为两步:一是在方程两边同时加或减同一个数或式子,使一元一次方程左边是未知项,右边是常数;二是方程左右两边同时乘未知数的系数的倒数,使未知项系数化为1,从而求出方程的解.如:(1)x+a=b,解法:方程两边同时减去a,得x=b-a. (2)ax=b(a≠0),解法:方程两边同时除以a,得x=b/a.(3)ax+b=c(a≠0),解法:方程两边同时减去b,再同时除以a,得x=c ba.【教学说明】归纳结论过程中,教师可向学生阐述以下两点:(1)方程是含有未知数的等式,故可利用等式的性质求解,求解过程实质是等式变形为x=a的过程.(2)通过将所求结果代入方程的左右两边的方法,可以检验所求结果是否正确,这一点在下面的例题中我们会讲到.三、典例精析,掌握新知例1利用等式的性质,在括号内填上适当的数或式子,并说明等号成立的依据:【分析】根据等式的性质1或性质2,在方程两边同时加上或减去相同的数或式子;或同乘一个数,或除以同一个不为0的数,结果仍相等.解:(1)根据等式的性质1,等式两边都减去3,得x=1.(2)根据等式的性质2,等式两边都乘2,得x=6.(3)根据等式的性质1,等式两边都减去2a,得5a=-3.再根据等式的性质2,等式两边都除以5,得a=-3/5.(4)根据等式的性质1,等式两边都减去73y,得-2y=-4.再根据等式的性质2,等式两边都除以-2,得y=2.例2小涵的妈妈从商店买回一条裤子,小涵问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是36元.”你知道标价是多少元吗?要求学生尝试用列方程的方法进行解答.在学生基本完成的情况下,教师给出示范.解:设标价是x元,则售价就是80%x元,根据售价是36元可列方程:80%x=36,两边同除以80%,得x=45.答:这条裤子的标价是45元. 例3利用等式的性质解方程:(1)0.5-x=3.4(2)-13x-5=4【教学说明】先让学生对第(1)题进行尝试,然后教师进行引导:①要把方程0.5-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?②要把方程-x=2.9转化为x=a的形式,必须去掉x前面的“-”号,怎么去?然后给出解答:解:两边减0.5,得0.5-x-0.5=3.4-0.5化简,得-x=2.9,两边同乘-1,得:x=-2.9.教师提醒学生注意:(1)这个方程的解答中两次运用了等式的性质;(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化.你能用这种方法解第(2)题吗?在学生解答后再点评.教师向学生提问:①第(2)题能否先在方程的两边同乘“-3”?②比较这两种方法,你认为哪一种方法更好?为什么?允许学生在讨论后再回答.试一试教材第83页练习.在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5xm,根据题意,你能列出方程吗?解:设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5xm,根据题意,得80×3.5+1.5x=355.化简,得280+1.5x=355,两边减280,得280+1.5x-280=355-280,化简,得1.5x=75,两边同除以1.5,得x=50.答:用余下的布还可以做50套儿童服装.【教学说明】对于许多实际问题,我们可以通过设未知数,列方程,解方程,以求出问题的解,也就是把实际问题转化为数学问题.问题:我们如何才能判断求出的答案50是否正确?在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程80×3.5+1.5x=355的左边,得80×3.5+1.5×50=280+75=355.方程的左右两边相等,所以x=50是方程的解.试一试你能检验一下x=-27是不是方程-13x-5=4的解吗?四、运用新知,深化理解3.七年级(3)班有18名男生,占全班人数的45%,求七年级(3)班的学生人数.【教学说明】这些题目较简单,教师让学生口答上述题目,并给予评讲.五、师生互动,课堂小结让学生进行小结,主要从以下几个方面去归纳:1.等式的性质有哪几条?用字母怎样表示?字母代表什么?2.解方程的依据是什么?最终必须化为什么形式?3.在字母与数字的乘积中,数字因数又叫做这个式子的系数.1.布置作业::从教材习题3.1中选取.2.完成练习册中本课时的练习.本课时教学要重视学生思维的多角度培养,教师对教材中的实际问题要直观演示,指导学生观察图形,从实验中归纳结论,并用实验验证.对发现的结论用文字、数学语言分别表达出来.突出对等式性质的理解和应用,在解方程时,要求说明每一步变形的依据,解题后及时小结.扎实做到这些,可为后面教与学打下坚实基础.。