实数第二课时2.doc
- 格式:doc
- 大小:112.04 KB
- 文档页数:3
1.了解平方根的概念、开平方的概念,进一步明确平方与开方互为逆运算.2.会求一个数的平方根,明确算术平方根与平方根的区别与联系。
1。
了解平方根、开平方的概念,会利用互逆运算关系求某些非负数的算术平上节课我们学习了算术平方根的概念、性质若一个正数x的平方等于a,即x2=a。
则x叫a的算术平方a根,记作x=,而且a也是非负数,比如正数22=4,则2叫4的算术平方根,4叫2的平方,但是(—2)2=4,则—2叫4的什么根呢?下面我们就来讨论这个问题.(1)9的算术平方根是3,也就是说,3的平方是9,还有其他的数,它的平方也是9吗?(2)平方等于4/25的数有几个?平方等于0.64的数呢?一般地,如果一个数x的平方等于a,即x2=a,那么这个x就叫a的平方根(square root),也叫二次方根,3和-3的平方都等于9,由定义可知3和—3都是9的平方根,即9的平方根有两个3和—3,9的算术平方根只有一个是3.由平方根和算术平方根的定义,大家能否找出它们有什么相同和不同之处呢?【归纳结论】联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有。
(3)0的平方根、算术平方根都是0。
区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根"。
(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个。
(3)表示法不同:正数a的平方根表示为±,正数a的算术平方根表示为。
(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个。
什么叫开平方呢?我们共学了几种运算?这几种运算之间有怎样的联系?2。
平方根的性质请大家思考下面的问题:(1)一个正数有几个平方根?(2)0有几个平方根?(3)负数呢?ﻬ作业布置1.习题2.4第1、2、3、4题.2.完成本课时练习部分.板书ﻬa a。
11.2 实数三维教学目标知识与技能:1、了解有理数的相反数、绝对值等概念、运算法则、运算律在实数范围内仍然适用。
2、能对实数进行大小比较和四则混合运算。
过程与方法:1、有理数中的相反数、倒数和绝对值等概念与运算法则和运算律在实数范围内仍成立,让学生体会到这是一种知识的迁移.2、体会用取近似值、平方法进行实数大小的比较和运算的经验.情感态度与价值观:认识到数的扩充、无理数与实数概念的引入、知识的迁移是客观实际的需要,也是数学自身发展的需要。
教学重点:实数的性质、实数的大小比较及运算教学难点:实数的大小比较课堂导入1、无理数与实数的概念?实数分类的方法?2、我们以前学过的运算法则、运算律、大小比较的方法等在有理数的范围适用,那么在实数的范围内适用吗?教学过程一、复习回顾(1)用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律。
(2)用字母表示有理数的加法交换律和结合律。
(3)平方差公式?完全平方公式?(4)有理数的相反数是什么?不为0的数的倒数是什么?有理数的绝对值等于什么?二、探究归纳=_____1、填空32与____互为相反数,5与_____互为倒数,332、概括从有理数扩充到实数后,正数总可以开方.在实数范围内,任意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
任意一个实数有且仅有一个立方根。
在实数范围内,有关有理数的相反数、倒数和绝对值等概念、大小比较、运算法则及运算律仍然适用。
三、举例应用例1试估计3+2与π的大小关系。
解用计算器求得3+2≈3.14626437, 而 π≈3.141592654, 因此 3+2>π。
例2 计算:2612π--(精确到0。
01) 解 247.1414.1167.0261-=-≈- 于是247.1261≈- 32.0324.0247.1571.12612π≈=-≈-- 四、课堂练习1、比较下列各对数的大小:(1)332与(2)53533++π与 2、计算:(1)()()2323+-; (2)218-. 3、借助计算器计算下列各题:(1)211-; (2)22111 1-;(3)222111 111-; (4)222 2111 111 11- 。
6.3 实数第2课时实数与数轴的关系及实数的运算基础训练知识点1 实数与数轴上的点的关系1.和数轴上的点一一对应的数是( )A.整数B.有理数C.无理数D.实数2.若实数a,b在数轴上的位置如图所示,则下列判断错误的是( )A.a<0B.ab<0C.a<bD.a,b互为倒数3.实数a,b在数轴上对应的点的位置如图所示,计算|a-b|的结果为( )A.a+bB.a-bC.b-aD.-a-b4.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是错误!未找到引用源。
和-1,则点C所对应的实数是( )A.1+错误!未找到引用源。
B.2+错误!未找到引用源。
C.2错误!未找到引用源。
-1D.2错误!未找到引用源。
+15.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动1周,点A 到达点A'的位置,则点A'表示的数是( )A.π-1B.-π-1C.-π+1D.π-1或-π-1知识点2 实数的大小比较6.下列四个数中,最大的一个数是( )A.2B.错误!未找到引用源。
C.0D.-27.(2016·泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是( )A.pB.qC.mD.n8.若a,b为实数,下列说法中正确的是( )A.若a>b,则a2>b2B.若a>|b|,则a2>b2C.若|a|>b,则a2>b2D.若a>0,a>b,则a2>b2知识点3 实数的运算9.有一个数值转换器,原理如图所示.当输入的x为-512时,输出的y是( )A.-2B.-错误!未找到引用源。
C.-3错误!未找到引用源。
D.-3错误!未找到引用源。
10.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是( )A.a·b>0B.a+b<0C.|a|<|b|D.a-b>011.实数a,b在数轴上对应的点的位置如图,则必有( )A.错误!未找到引用源。
师航教育一对一个性化辅导讲义第2讲 实数【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.重难点;数是中学数学重要的基础知识,中考中多以选择题、填空题的形式出现,实数的运算主要是由二次根式、三角函数、幂等组成的混合算式的计算,常以计算或化简题型出现.另外,命题者也会利用分析归纳总结规律等题型考查考生发现问题、解决问题的能力第2讲实数考点一 实数的分类 有理数和无理数统称为实数. 1.实数的分类按定义分: 按与0的大小关系分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数 实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2)无理数分成三类:①开方开不尽的数,如5,32等;②有特殊意义的数,如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式. (4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应. 3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。
我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(3)任何非负数的算术平方根是非负数,即0a ≥ (0a ≥).非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算:(1)运算法则、运算律有理数的运算法则与运算律对实数仍然适用.值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)运算顺序在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行. 5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数 大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小; 法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法. 考点二 平方根、算术平方根、立方根 1、平方根、立方根类型项目平方根 立方根被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==2.算术平方根(1)如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根,a 的算术平方根记作a .零的算术平方根是零,即0=0.(2)算术平方根都是非负数,即a ≥0(a ≥0). (3)(a )2=a (a ≥0),a 2=|a |.(4)ab =a ·b (a ≥0,b ≥0);a b =ab(a ≥0,b >0).【名师提醒:平方根等于本身的数有 个,算术平方根等于本身的数有 ,立方根等于本身的数有 。
第二章实数7二次根式第2课时二次根式的运算教学目标1.掌握二次根式的乘、除法运算法则,并能够熟练应用乘、除法法则进行计算.2.会用二次根式的四则运算法则进行简单运算.3.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算,重要的是培养这种类比学习的能力.教学重难点重点:掌握二次根式的乘、除法运算法则,并能够熟练应用;难点:会用二次根式的四则运算法则进行简单运算.教学过程导入新课1.满足什么条件的根式是最简二次根式?试化简下列二次根式:√8,√18,√80,√0.5, √18,√20.(2√2 ,3√2 ,4√5 ,√22,√24,2√5)2.上述化简后的二次根式有什么特点?你会怎么对它们进行分类?几个二次根式化简后被开方数相同.最简根式分别为√2 ,√5两类,即√8 ,√18 ,√0.5 ,√18为一组;√80 ,√20为一组.探究新知活动1:二次根式的乘除运算1.填空(1)√4×√9=6,√4×9= 6 ;√16×√25=20,√16×25=20;√4√9=23, √49=23;√16√25=45, √1625=45.(2)用计算器计算:√6×√7≈6.481,√6×7≈6.481 ;√6√7≈0.925 8, √67≈0.925 8.参考上面的结果,用“>”“<”或“=”填空.√4×√9 = √4×9;√16×√25=√16×25; √6×√7= √6×7;√4√9=√49; √16√25=√1625; √6√7= √67.观察上面的式子得上节课的规律:√ab=√a·√b(a≥0,b≥0);√ab =√a√b(a≥0,b>0).反过来也成立:√a ·√b =√ab (a ≥0,b ≥0);√a √b =√a b (a ≥0,b >0). 【例1】计算:(1)√6×√23; (2)√6×√3√2; (3)√2√5. 【解】(1)√6×√23 =√6×23=√4=2;(2)√6×√3√2=√6×3√2=√6×32=√9=3; (3)√2√5=√25=√2×55×5=√105. 判断下列各式是否正确,不正确的请予以改正:(1)√(−4)×(−9)=√−4×√−9 ;(2)√41225×√25=4×√1225×√25=4√1225×25=4√12=8√3.解:(1)错. √(−4)×(−9)=√36=6;(2)错. √41225×√25=√41225×25=√11225×25 =√112 =4√7.做一做:(1)3a 2·2a 3= 6a 5 ,(2)(a +b )(a -b )= a 2−b 2 ,(3)(a ±b)2=222a ab b ±+, (4)(554−772) ×18= 554×18-772×18=112-. 【例2】计算:(1)3√2×2√3; (2)(√5+1)2;(3)(√13+3)(√13−3);(4)(√12−√13)×√3; (5)√8+√18√2. 【解】(1)原式=(3×2)×(√2×√3)=6√6;(2)原式=(√5)2+2×√5×1+1=5+2√5+1=6+2√5;(3)原式=(√13)2−32=13-9=4; (4)原式=√12×√3−√13×√3=√12×3−√13×3=√36−√1=5;(5)原式=√8√2+√18√2=√82+√182=√4+√9=2+3=5.活动2:二次根式的加减运算1.(1)3x 2+2x 2= 5x 2 ;(2)x 2+2x 2+4y = 3x 2+4y .2.类比合并同类项的方法,想想如何计算√80−√45? 解:√80−√45=4√5−3√5=√5.3. √3+√5能不能再进行计算?为什么?答:不能,因为它们都是最简二次根式,且被开方数不相同,所以不能合并.【例3】计算:(1)√48+√3 ; (2)√5−√15 ; (3)(√43+√3)×√6.【解】(1)原式=4√3+√3=(4+1)√3=5√3;(2)原式=√5−√55=(1-15)√5=45√5; (3)原式=√43×√6+√3×√6=√8+√18=2√2+3√2=5√2.二次根式的加减法法则:一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.注意:1.加减法的运算步骤:一化简,二判断,三合并.2.合并的前提:只有被开方数相同的最简二次根式才能进行合并.课堂练习1.下列运算错误的是( ) A.2+3=5 B.2·3=6C.6÷2=3D.2(2=2.下列各式中,与√3是同类二次根式的是( )A. √2B. √5C. √8D. √123.估计√32×√12+√2·√5的结果在( ) A.6至7之间 B.7至8之间C.8至9之间D.9至10之间4. √8与最简二次根式√m +1能合并,则m =________.5.若最简二次根式√3m −2n 2n+1与√3可以合并,求√mn 的值.参考答案1.A2.D3.B4.15.解:由题意得2n +1=2且3m -2n =3,解得n = 12,m = 43,即√mn =√12×43 =√23 =√63. 课堂小结1.二次根式的乘除运算法则√a ·√b =√ab (a ≥0,b ≥0);√a√b =√ab (a ≥0,b >0). 2.二次根式的加减法法则二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.布置作业习题2.10第1,2题板书设计7 二次根式第2课时 二次根式的运算1.二次根式的乘除运算法则:√a ·√b =√ab (a ≥0,b ≥0);√a √b=√a b (a ≥0,b >0). 2.二次根式的加减法法则:一化简,二判断,三合并.。
初二数学《实数》
实数的概念:有理数和无理数,统称为实数,即实数包括有理数和无理数。
实数的分类:
有理数与无理数的区别:.有理数是有限小数或无限循环小数。
而无理数是无限不循环小数。
所有的有理数都能写成分数的形式,整数可以看成分母是1的分数,而无理数不能写成分数的形式。
初中阶段所学的无理数主要包含以下几种:
1、特殊意义的数,如圆周率π及含有π的一些数。
2、开方开不尽的数的方根。
3、特殊结构的无限不循环小数,如2.010010001…
无理数必须同时满足“无限”和“不循环”这两个条件,不要误以为除不尽的数也是无理数,例如22/7,它除不尽,但它是循环小数,所以它不是无理数。
比较两个实数的大小的常用方法:
1、利用数轴,在数轴上表示的数,右边的数总比左边的数大。
2、用估算的方法,求出无理数的近似值,或利用计算器计算出无理数的近似值,再比较两数的大小。
除以上方法,还有平方法、倒数法、比商法等。
要去掉绝对值符号,必须考虑绝对值内的数或式的符号
对于实数的运算:
1、要熟练的把有理数的运算律和运算法则准确的运用到实数预算中。
2、涉及无理数的计算,会根据问题的要求,取其近似值再计算,注意取各无理数的近似值时,要比最后结果要求的精确度多保留一位。
求无理数整数部分的方法:要确定无理数根号m的整数部分,先要找到根号m在哪两个连续整数之间,找出m在哪两个连续的完全平方数之间,再求这两个完全平方数的算术平方根,根据最小的算术平方根就是根号m的整数部分。
而小数部分则可以表示为根号m减去整数部分的形式。
11.2实数
第 2 课时
知识与技能目标
1.了解有理数的相反数和绝对值等概念、运算法则以及混合运算顺序和运算律在实数范围内仍然适
用.
2.能利用运算法则进行简单的四则运算.
过程与方法目标
体会有理数的相反数和绝对值等概念、运算法则以及运算律在实数范围内仍然适用.
情感与态度目标
通过学习消除对无理数的陌生感,对实数形成初步的较完整地认识.
教学过程
一、复习旧知,导入新知
1.复习提问
(1)用字母来表示有理数的乘法交换律、乘法结合律和乘法分配律.
(2)用字母表示有理数的加法交换律和结合律.
(3)有理数 a 的相反数是什么 ?不为 0 的数 a 的倒数是什么 ?有理数 a 的绝对值等于什么 ?
(4)有理数的混合运算顺序是怎样规定的?
2.新知提问
我们数学王国里面又有了一个新成员--- 无理数,那么有关有理数的相反数、倒数和绝对值等概念、
大小比较,运算法则及运算律对于无理数(实数)还适用吗?
二、新知认识
(一)相关概念
因为无理数同有理数一样都可以对应到数轴上一个唯一点来表示这个数,因此,无理数同有理数一样
有相反数、倒数和绝对值等概念,意义也一样,只是形式不同而已. 也就是说在实数范围内,有关有理数
的相反数、倒数和绝对值等概念仍然适用.
1.相反数:实数 a 的相反数是- a, 0 的相反数是 0,具体地,若 a 与 b 互为相反数,则 a+ b= 0;反之,若a+ b=0,则 a 与 b 互为相反数 .
举例:求2, 3 2 的相反数.
2.绝对值:一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0 的绝对值是0.
a a 0 ,
实数 a 的绝对值可表示为 a 就是说实数 a 的绝对值一定是一个非负数,即a ≥0.
a a0 .
举例:求2, 3 2 的绝对值.
另外 ,若x= a(a≥ 0),则 x=± a.
举例:x = 5 ,求x
3.倒数:乘积为 1 的两个实数互为倒数,即若
互为倒数 .这里应特别注意的是0 没有倒数 .
a 与
b 互为倒数,则ab= 1;反之,若ab= 1,则 a 与b
举例:求 5 的倒数.
(二)大小比较、运算及运算律
因为无理数同有理数一样有相反数、倒数和绝对值等概念,意义也一样,只是形式不同而已
在实数范围内(有无理数参加),有关有理数的大小比较,运算法则及混合运算顺序和运算律仍然适用
三、例题讲解
例 1.计算:π-| 2 3- 3 2|( 结果精确到0.01)
分析:对于实数的运算,通常可以取它们的近似值来进行. 提问:用什么手段取它们的近似值例 2.计算 : . 同样的
. ?
2 ( ( 15)2
3 216) 2
解 :原式 = 2 [15 ( 6)] 2
= 2 21 2
=( 22) 21
=0-21
=-21
例3 比较大小: 4 3和 5 2.
分析: 4 3约等于 6.8 , 5 2约等于 7,所以 4 3小于 5 2.
四、课堂练习
P11 页练习 2、 3
让三位同学板演,教师根据学生的具体解答情况作出正确判断,并分析发生错误的原因.
五、小结
由学生完成如下小结:
1.在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.
2.实数的运算法则 a + b= b+ a (a + b) +c= a+ (b + c)
a× b= b× a (a × b) × c= a× (b × c) (a +b) × c=ac + bc
3、实数的混合运算顺序同有理数的混合运算顺序一样.
六、作业
课堂作业 :
P11 页习题 11.2
家庭作业 :
导学与测评P3-5 11.2 实数与数轴 .
七、板书设计:
11.2.2实数与数轴
复习 :大小比较例题
有关概念和运算
相反数
全品中考网
全品中考网绝对值练习
倒数。