3-5群的自同构群.ppt
- 格式:ppt
- 大小:145.50 KB
- 文档页数:16
2~4阶群的自同构群的结构自同构群是一类拥有了像组合结构的群,它是指把有限环作为元素构成的一个集合,其中满足某种自同构关系。
在群论研究中被称为自同构群,它们在数学上具有重要的地位,在计算机科学和加密中发挥重要作用。
一般来说,所有的自同构群都可以分解成2~4阶的群,其中2阶的群就是交换群,3阶群就是由环构成的,4阶群则包括了更多的情形。
其中,2阶自同构群的结构比较简单,它仅仅由有限的交换元素来构成,并且满足一定的自同构关系。
它可以分解成一组有限的整数和一组有限的换位元素,而有限的整数可以用来表示交换元素之间的关系,换位元素可以表示最终的关系。
3阶自同构群结构比较复杂一些,它由三元组(a,b,c)构成,其中a,b,c表示三元素的标标识符,并且满足(a,b,c)=(b,c,a)的自同构关系。
3阶自同构群可以分解成一组有限的整数和一组有限的换位元素以及一组特殊的函数,有限的整数可以用来表示三元素之间的关系,换位元素可以表示最终的关系,而特殊的函数则可以表示该组中各元素之间分配的权重。
4阶自同构群则更加复杂,它由由4元组(a,b,c,d)构成,其中a,b,c,d分别表示4元组的标标识符,并且满足(a,b,c,d)=(b,c,d,a)的自同构关系。
此外,4阶自同构群还可以分解成由一组有限的整数和一组有限的换位元素以及一组特殊的函数组成,并且以上提到的有限整数和特殊函数可以用来表示4元素之间的关系。
最后,换位元素可以表示最终的关系。
自同构群的结构具有复杂的特征,是一类非常重要的群,且其在计算机科学和加密中发挥着重要的作用。
2~4阶的自同构群的结构可以分解成由一组有限的整数和一组有限的换位元素以及一组特殊的函数组成,具体的细节取决于该群的阶数。
第一章 抽象群基础§1.1 群【定义1.1】 G 是一个非空集合,G ={…,g ,…},“· ” 为定义在任意两个元素之间的二元代数运算(乘法运算),若G 及其运算满足以下四个条件: (1)封闭性:∀f, g ∈G , f ·g=h , 则h ∈G ; (2)结合律:∀f, g, h ∈G ,(f ·g )·h =f ·(g ·h ); (3)有单位元:∃e ∈ G , ∀f ∈ G , f ·e =e ·f =f;(4)有逆元素:∀f ∈G ,∃f -1 ∈G , 使f ·f -1= f -1·f = e; 则称G 为一个群,e 为群G 的单位元,f --1为f 的逆元。
·系1. e 是唯一的。
若e 、e ´ 皆为G 的单位元,则e ·e ´= e ´,e ·e ´= e ,故e ´= e 。
·系2. 逆元是唯一的。
若存在f 的两个逆元f ´=f",则f''f''e f''f)(f'f'')(f f'e f'f'=⋅=⋅⋅=⋅⋅=⋅=, 即''f f'= ·系3 e –1 = ee –1 = e -1·e = e , 即:e –1 = e 。
·系4 若群G 的运算还满足交换律,∀f ,g ∈G , 有f ·g=g ·f , 则称G 为交换群,或阿贝尔群。
群是我们定义的一种抽象结构,具有一般性,它象一个空筐子,可以装入各种具有相同抽象结构的实际对象。
通过研究抽象结构的一般性质,就可以掌握各种实际对象的性质。
例1.1 整数集{z }及其上的加法+单位元为0, 逆元z -1 = -z ,构成整数加法群。