自己做的四相八拍步进电机调速
- 格式:doc
- 大小:182.45 KB
- 文档页数:12
步进电机转速调节的方法
工程师在依据负载,力矩等选好步进电机和驱动器的型号后,在详细应用中,还涉及到步进电机的转速这一参数的确定和设置。
建议通过调整输入驱动器的脉冲频率以及驱动器的细分参数来达到调整步进电机转速的作用。
其实就是掌握单位时间内步进电机的步数。
常规调整步进电机转速的方法分为以下几种:
一、换向器电机调速
优点:①具有沟通同步电机结构简洁和直流电机良好的调速性能; ②低速时用电源电压、高速时用步进电机反电势自然换流,运行牢靠;
③无附加转差损耗,效率高,适用于高速大容量同步电机的启动和调速。
缺点:过载力量较低,原有电机的容量不能充分发挥。
二、定子调压调速
优点:①线路简洁,装置体积小,价格廉价; ②使用、修理便利。
缺点:①调速过程中增加转差损耗,此损耗使转子发热,效率较低; ②调速范围比较小; ③要求采纳高转差电机,比如特别设计的力矩电机,所以特性较软,一般适用于55kW以下的异步电机。
三、转子串电阻调速
优点:①技术要求较低,易于把握; ②设备费用低; ③无电磁谐波干扰。
缺点:①串铸铁电阻只能进行有级调速。
若用液体电阻进行无级调速,则维护、保养要求较高; ②调速过程中附加的转差功率全部转化为所串电阻发热形式的损耗,效率低。
③调速范围不大。
四、电磁转差离合器调速
优点:①结构简洁,掌握装置容量小,价值廉价; ②运行牢靠,修理简单; ③无谐波干扰。
缺点:①速度损失大,由于电磁转差离合器本身转差较大,所以输出轴的最高转速仅为电机同步转速的80%~90%;
②调速过程中转差功率全部转化成热能形式的损耗,效率低。
一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下: 1、具有较硬的机械特性,稳定性良好; 2、无转差损耗,效率高; 3、接线简单、控制方便、价格低; 4、有级调速,级差较大,不能获得平滑调速; 5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
其特点: 1、效率高,调速过程中没有附加损耗; 2、应用范围广,可用于笼型异步电动机; 3、调速范围大,特性硬,精度高; 4、技术复杂,造价高,维护检修困难。
5、本方法适用于要求精度高、调速性能较好场合。
三、串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。
大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。
根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为: 1、可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高; 2、装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上; 3、调速装置故障时可以切换至全速运行,避免停产; 4、晶闸管串级调速功率因数偏低,谐波影响较大。
5、本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。
四、绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。
串入的电阻越大,电动机的转速越低。
四相八拍步进电机控制电路
步进电机在各种自动控制领域中有着广泛的应用,它通过精确的位置控制和简单的控制电路设计,实现了高效的运行。
在步进电机中,四相八拍步进电机是一种常见的类型,它具有结构简单、控制方便等特点,因此得到了广泛采用。
步进电机的控制原理基于控制电路对电机内部各个线圈的通断控制,从而实现单步运动。
四相八拍步进电机由四个线圈组成,按相间夹角为90度的顺序连接,每相均可单独控制。
常见的步进电机控制电路包括单片机控制、逻辑门控制等。
在设计四相八拍步进电机控制电路时,首先需要确定电机驱动方式。
常见的方式包括全步进驱动和半步进驱动。
全步进驱动中,电机每步转动一个完整的步进角度;而在半步进驱动中,电机每步转动半个步进角度。
选择不同的驱动方式可以实现不同的转动精度和速度要求。
控制电路中常用的元器件包括晶体管、电阻、电容等。
通过合理的连接和控制,可以使步进电机按照预先设定的步进序列运行。
在具体设计电路时,需要根据电机的参数和工作要求,选择合适的元器件和控制方式,并进行电路调试和优化。
为了确保步进电机的稳定运行,还需要注意电源稳定性和线圩的连接质量。
稳定的电源可以提供电机正常工作所需的能量,而良好的线圩连接可以减小电机运行时的噪音和振动,延长电机使用寿命。
总的来说,四相八拍步进电机控制电路是实现步进电机精准运动的关键,通过合理的设计和调试,可以有效地实现对电机位置的控制。
在实际应用中,可以根据具体要求进行电路的定制设计,以满足不同场景下步进电机的控制需求。
1。
步进电机应用中速度设置2013-1-30 11:29:00 来源: [关闭][打印]设置步进驱动器的细分数,通常细分数越高,控制分辨率越高。
但细分数太高则影响 到最大进给速度。
一般来说,对于模具机用户可考虑脉冲当量为 0.001mm/P(此时最 大进给速度为 9600mm/min)或者 0.0005mm/P(此时最大进给速度为 4800mm/min); 对于精度要求不高的用户,脉冲当量可设置的大一些,如 0.002mm/P(此时最大进给 速度为 19200mm/min)或 0.005mm/P(此时最大进给速度为 48000mm/min)。
对于两 相步进电机,脉冲当量计算方法如下:脉冲当量=丝杠螺距÷细分数÷200。
起跳速度:该参数对应步进电机的起跳频率。
所谓起跳频率是步进电机不经过加速, 能够直接启动工作的最高频率。
合理地选取该参数能够提高加工效率,并且能避开步 进电机运动特性不好的低速段;但是如果该参数选取大了,就会造成闷车,所以一定 要留有余量。
在电机的出厂参数中,一般包含起跳频率参数。
但是在机床装配好后, 该值可能发生变化,一般要下降,特别是在做带负载运动时。
所以,该设定参数最好 是在参考电机出厂参数后,再实际测量决定。
单轴加速度:用以描述单个进给轴的加减速能力,单位是毫米/秒平方。
这个指标由 机床的物理特性决定,如运动部分的质量、进给电机的扭矩、阻力、切削负载等。
这 个值越大,在运动过程中花在加减速过程中的时间越小,效率越高。
通常,对于步进 电机,该值在 100 ~ 500 之间,对于伺服电机系统,可以设置在 400 ~ 1200 之间。
在设置过程中,开始设置小一点,运行一段时间,重复做各种典型运动,注意观察, 如果没有异常情况,然后逐步增加。
如果发现异常情况,则降低该值,并留 50%~100% 的保险余量。
弯道加速度:用以描述多个进给轴联动时的加减速能力,单位是毫米/秒平方。
步进电机的调速方法和优点
步进电机的调速方法和优点可以根据具体的应用需求来选择调速方法,以下是常用的步进电机调速方法和其优点:
1. 电流控制法:通过调节步进电机的驱动电流大小来改变步进电机的转速。
优点是控制简单,成本低,适用于对转速精度要求不高的应用。
2. 脉冲频率控制法:通过改变输入给步进电机的脉冲频率来调节转速。
优点是转速可调范围广,转速精度高,适用于对转速要求较高的应用。
3. 引导参考比法:通过与编码器等传感器进行闭环控制,将电机的实际位置反馈给控制器,从而实现转速的精确控制。
优点是转速稳定性高,精度极高,适用于要求极高的精确控制和定位应用。
步进电机的优点包括以下几点:
1. 精度高:步进电机精确的转动位置能够提供精确的定位和控制。
2. 高扭矩:步进电机在不同转速下可以输出较高的扭矩,适用于要求较高的力矩输出的应用。
3. 停止时无震动:步进电机在停止时不会产生震动,保证了控制系统的稳定性。
4. 自启动:步进电机在停止情况下可以自动启动,节省了启动装置的成本和复杂性。
5. 无需编码器:步进电机可以通过开环控制进行位置和速度控制,无需使用编码器等传感器,简化了控制系统的设计和成本。
6. 响应速度快:步进电机可以快速响应控制信号,实现高速的加速和减速,适用于需要快速响应的应用。
写出四相八拍步进电机的控制模型步进电机是一种常见的电动机,通过控制电流方向改变磁场来驱动转子运动。
四相八拍步进电机是其中一种类型,它包含四个相,每相有两个步进角度,总共有八拍。
在控制步进电机时需要了解其控制模型,以便准确控制其转动角度和速度。
步进电机的工作原理步进电机的运动是通过将电流施加到电机的不同相上,使得产生的磁场相互作用而形成驱动力,从而使转子运转。
对于四相八拍步进电机来说,控制每个相的电流能够实现准确的步进角度,从而控制电机的转动。
控制模型控制四相八拍步进电机的关键在于确定每个步进角度的电流控制。
一种常用的控制模型是利用微控制器或控制器来控制电机的电流输出。
通过适当的算法,可以实现精确的步进角度控制,从而控制电机的转动。
步进角度控制步进电机的每个步进角度由控制电流的波形决定。
在四相八拍步进电机中,可以通过改变每相的电流顺序和大小来控制电机的步进角度。
例如,按照ABCD的顺序控制每相电流,就可以实现电机的顺时针或逆时针转动,从而控制步进角度。
控制算法控制四相八拍步进电机的算法种类繁多,常见的有正弦曲线控制、脉冲信号控制等。
这些算法可以根据电机的具体应用需求进行选择,以实现最佳的电机控制效果。
通过合理选择和调整算法参数,可以实现步进电机的平稳转动和精确控制。
应用领域四相八拍步进电机广泛应用于打印机、CNC机床、自动化设备等领域。
在这些领域中,步进电机的精确控制和可靠性是非常重要的,只有准确地控制电机的步进角度,才能实现设备的高效运行和稳定性。
结语四相八拍步进电机的控制模型是实现电机精确控制的关键。
通过了解步进电机的工作原理、控制模型以及相应的控制算法,可以实现对电机转动角度和速度的精确定位和控制。
在实际应用中,需要根据具体需求选择合适的控制方法,以确保步进电机的稳定运行和精准控制。
步进电机四相八拍怎么驱动步进电机是一种常见的电机类型,其特点是可以通过控制每一个步进角度来实现准确的位置控制。
步进电机按照其驱动方式可以分为几种,其中四相八拍驱动方式是比较常见的一种。
在四相八拍驱动方式中,步进电机的每个相位都有两个状态,通电和断电。
通过控制这八个状态的组合,可以精确地控制步进电机的运动。
下面将介绍一下四相八拍驱动方式的原理和具体操作方法。
首先,步进电机有四个线圈,分别称为A、B、C、D相。
在四相八拍驱动方式中,需要两个控制器来控制电机的运动,一个控制器用来控制A相和C相的通断,另一个控制器用来控制B相和D相的通断。
这样就可以实现步进电机的顺时针和逆时针旋转。
具体来说,当控制器1给出A相通电、C相断电的指令时,步进电机会向前走一步;当控制器1给出A相断电、C相通电的指令时,步进电机会向后走一步。
同理,通过控制器2给出B相和D相的通断指令,也可以实现步进电机的正反转。
为了控制步进电机按照设定的路径运动,需要编写相应的控制程序。
这个程序会根据步进电机的特性和要求,确定每一步的控制信号顺序和时序,以实现准确的位置控制。
编写这样的程序需要考虑到步进电机的速度、加速度、负载情况等因素,保证步进电机能够按照预期的路径精确运动。
在实际应用中,四相八拍驱动方式可以广泛用于需要精确定位和控制的场合,例如打印机、数控机床、机器人等领域。
通过准确控制步进电机的旋转角度,可以实现复杂的动作和路径规划,提高生产效率和质量。
总的来说,四相八拍驱动方式是一种常见且有效的步进电机驱动方式,通过合理的控制可以实现精准的位置控制。
在工业自动化和机械控制领域有着广泛的应用,对于提高生产效率和产品质量都起到了积极的作用。
1。
步进电机的速度调节⽅法摘要:提出了步进电机的⼏种速度调节⽅法。
脉冲频率的调节采⽤软件延时或硬件定时。
升降频采⽤直线升降法、指数曲线升降法或抛物线升降法。
给出了脉冲频率调节的实⽤程序,通过对步进电机矩频特性曲线的分析,得出了步进电机的升频表格,并提供了⼀个完整的软件升降频流程图。
⼏种调速⽅法应⽤在多种数控机床上,提⾼了步进电机的定位精度,改善了电机转动的平稳性,加速了电机的升降过程。
0 引⾔步进电机是⼀种数字电机,在经济型数控机床及⾃动化设备中应⽤⼴泛。
控制步进电机的转动需要3个要素:⽅向、转⾓和转速。
对于含有硬件的驱动电源,⽅向取决于控制器送出的⽅向电平的⾼或低。
转⾓取决于控制器送出的步进脉冲的个数。
⽽转速则取决于控制器发出的步进脉冲之间的时间间隔。
在步进电机的控制中,⽅向和转⾓控制简单,⽽转速控制则⽐较复杂。
步进电机⼯作时,失步或过冲直接影响其定位精度。
在设计系统的时候,除了应正确选择步进电机和驱动电源之外,还必须对步进电机控制脉冲的频率进⾏调节。
由于步进电机的转速正⽐于控制脉冲的频率,所以调节步进电机脉冲频率,实质上就是调节步进电机速度。
本⽂将具体讨论步进电机的速度调节问题,并结合实例给出软件实现的⽅法。
1 步进脉冲的调频⽅法对步进电机控制的⼀个中⼼问题就是速度调节。
即产⽣⼀系列频率可调的步进脉冲序列,送到驱动电源,控制电机绕组的轮流通电,实现电机的转动。
脉冲序列的产⽣⽤微处理器实现,有软件延时和硬件定时两种⽅法。
(1)软件延时:通过调⽤标准的延时⼦程序来实现。
假定控制器基于AT89S52单⽚机,晶振频率为12 MHz,那么可以编制⼀个标准的延时⼦程序如下:该⼦程序的⼊⼝为(0E)(0D)两个字节,若需要20000 us的延时,则给(0E)(0D)两个字节赋值4E20H,即执⾏下⾯程序:MOV 0EH,#4EH ;20 000的⼗六进制码为4E20。
MOV 0DH.#20HCALL DELAY ;调⽤标准延时⼦程序DELAY。
1 引言在工业控制系统里步进电动机是主要的控制元件之一。
步进电机具有快速启动停止,精确定位和能够使用数字信号进行控制,能够实现脉冲-角度转换的特点,因此得到广泛的应用。
在使用步进电机的控制系统里,脉冲分配器产生周期的控制脉冲序列,步进电机驱动器每接收一个脉冲就控制步进电机沿给定方向步进一步。
本实验旨在通过控制AT89S52芯片,实现对四相步进电机的转动控制。
具体功能主要是控制电机正转、反转、加速与减速。
具体工作过程是:给试验箱上电后,拨动启动开关,步进电机按照预先设置的转速和转动方式转动。
调整正反转按钮,步进电机实现正反转切换;拨动加速开关,步进电机转速加快,速度达到最大值,不再加速;拨动减速开关时,电机减速转动,速度减到最小速度,停止减速。
2 四相步进机2.I 步进电机步进电机是一种将电脉冲转化为角位移的执行机构。
电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。
2.2 步进电机的控制1.换相顺序控制:通电换相这一过程称为脉冲分配。
例如:混合式步进电机的工作方式,其各相通电顺序为A-B-C-D,通电控制脉冲必须严格按照这一顺序分别控制A,B,C,D相的通断。
2.控制步进电机的转向控制:如果给定工作方式正序换相通电,步进电机正转,如果按反序通电换相,则电机就反转。
3.控制步进电机的速度控制:如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。
两个脉冲的间隔越短,步进电机就转得越快。
2.3 步进电机的工作过程图2.1步进电机设计图开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。
当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。
四相八拍步进电机控制步进电机是一种常见的电机类型,广泛应用于各种领域中,其中四相八拍步进电机是其一种常见类型,其控制简单且精准。
在控制四相八拍步进电机时,需要考虑到步进电机的特性以及控制方法,以确保电机能够按照预期的步距和速度进行运转。
步进电机工作原理步进电机是一种电磁式电机,通过电流在驱动器中的控制,使电机旋转固定的步距。
四相八拍步进电机中,有四组线圈,每组线圈都可以独立控制,通过不同相位的脉冲信号来驱动。
当电流依次施加到不同的线圈上时,电机便能实现一步距的转动,从而完成旋转运动。
步进电机控制方法控制四相八拍步进电机主要有两种方法:单步进控制和微步进控制。
1.单步进控制:在单步进控制中,每次施加一个脉冲信号,使步进电机转动一个步距。
这种控制方法简单直接,适用于一些简单的应用场景,如需要电机做简单定位的场合。
2.微步进控制:微步进控制是一种更为精细的控制方法,通过在每个步距之间施加一定比例的电流,使电机实现更加平滑的运动。
这种控制方法可以提高步进电机的精度和稳定性,适用于对运动要求较高的场合。
步进电机控制流程控制四相八拍步进电机的基本流程如下:1.初始化:设置步进电机的参数,包括步距大小、速度、加减速度等。
2.发送控制信号:通过控制器向步进电机的驱动器发送相应的脉冲信号,控制电机转动。
3.监测电机状态:实时监测电机的位置和运动状态,确保电机按照预期进行运转。
4.控制结束:根据需要停止电机运动或者改变电机的运动方向。
1应用领域和优势四相八拍步进电机广泛应用于打印机、数控机床、纺织机械、医疗设备等领域。
由于其控制简单、结构紧凑、精度高等优点,步进电机在这些领域中得到了广泛的应用。
综上所述,四相八拍步进电机作为一种常见的电机类型,其控制方法简单且灵活,通过合理的控制可以实现精确的运动控制。
在实际应用中,需要根据具体情况选择合适的控制方法,并结合具体的控制流程来实现对步进电机的有效控制,从而满足不同应用场景对电机精度和稳定性的要求。