固体与半导体物理(思考题和习题)
- 格式:ppt
- 大小:222.50 KB
- 文档页数:10
第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k-k1)2h2k213h2k2Ec= +,EV(k)=-3m0m06m0m0m0为电子惯性质量,k1=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2 2k2 2(k-k1)由+=03m0m03k14d2Ec2 22 28 22=+=>03m0m03m0dk得:k=所以:在k=价带:dEV6 2k=-=0得k=0dkm0d2EV6 2又因为=-<0,所以k=0处,EV取极大值2m0dk2k123=0.64eV 因此:Eg=EC(k1)-EV(0)=412m02=2dECdk23m0 8πa,a=0.314nm。
试求: 3k处,Ec取极小值4 (2)m*nC=3k=k14(3)m*nV 2=2dEVdk2=-k=01m06(4)准动量的定义:p= k所以:∆p=( k)3k=k14 3-( k)k=0= k1-0=7.95⨯10-25N/s42. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:f=qE=h(0-∆t1=-1.6⨯10∆k ∆k 得∆t= ∆t-qEπa)⨯10)=8.27⨯10-13s2-19=8.27⨯10-8s (0-∆t2=π-1.6⨯10-19⨯107第三章习题和答案100π 21. 计算能量在E=Ec到E=EC+ 之间单位体积中的量子态数。
*22mLn31*2V(2mng(E)=(E-EC)2解232πdZ=g(E)dEdZ 单位体积内的量子态数Z0=V22100π 100h Ec+Ec+32mnl8mnl1*2(2mn1V Z0=g(E)dE=⎰(E-EC)2dE23⎰VEC2π EC 23100h*2 =V(2mn2(E-E)Ec+8m*L2Cn32π2 3Ecπ =10003L32. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
半导体物理与器件习题目录半导体物理与器件习题 (1)一、第一章固体晶格结构 (2)二、第二章量子力学初步 (2)三、第三章固体量子理论初步 (2)四、第四章平衡半导体 (3)五、第五章载流子输运现象 (5)六、第六章半导体中的非平衡过剩载流子 (5)七、第七章pn结 (6)八、第八章pn结二极管 (6)九、第九章金属半导体和半导体异质结 (7)十、第十章双极晶体管 (7)十一、第十一章金属-氧化物-半导体场效应晶体管基础 (8)十二、第十二章MOSFET概念的深入 (9)十三、第十三章结型场效应晶体管 (9)一、第一章固体晶格结构1.如图是金刚石结构晶胞,若a 是其晶格常数,则其原子密度是。
2.所有晶体都有的一类缺陷是:原子的热振动,另外晶体中常的缺陷有点缺陷、线缺陷。
3.半导体的电阻率为10-3~109Ωcm。
4.什么是晶体?晶体主要分几类?5.什么是掺杂?常用的掺杂方法有哪些?答:为了改变导电性而向半导体材料中加入杂质的技术称为掺杂。
常用的掺杂方法有扩散和离子注入。
6.什么是替位杂质?什么是填隙杂质?7.什么是晶格?什么是原胞、晶胞?二、第二章量子力学初步1.量子力学的三个基本原理是三个基本原理能量量子化原理、波粒二相性原理、不确定原理。
2.什么是概率密度函数?3.描述原子中的电子的四个量子数是:、、、。
三、第三章固体量子理论初步1.能带的基本概念◼能带(energy band)包括允带和禁带。
◼允带(allowed band):允许电子能量存在的能量范围。
◼禁带(forbidden band):不允许电子存在的能量范围。
◼允带又分为空带、满带、导带、价带。
◼空带(empty band):不被电子占据的允带。
◼满带(filled band):允带中的能量状态(能级)均被电子占据。
导带:有电子能够参与导电的能带,但半导体材料价电子形成的高能级能带通常称为导带。
价带:由价电子形成的能带,但半导体材料价电子形成的低能级能带通常称为价带。
半导体物理实验复习思考题
一、四探针法测量半导体电阻率实验:
1. 半导体材料包括哪些重要的电学性能,与哪些因素密切相关?
2. 为什么要用四探针进行测量,如果只用两根探针,能否对半导体电阻率准确测量?
3. 什么叫薄层(方块)电阻,它有什么特性?
4. 分析直流四探针法测量半导体材料电阻率的基本原理,并推导电阻率测量公式。
5. 如何选择合适的测量电流?
6. 测量电阻率误差的来源有哪些,如何修正?
二、少数载流子寿命测量实验:
1.什么是多数载流子?什么是少数载流子?
2. 什么是非平衡载流子?什么叫做光注入?
3. 为什么要测量并且一般只测量少数载流子寿命?
4. 少数载流子寿命的物理意义。
5.分析示波器显示曲线的变化规律,如何利用其测量少子寿命?6.影响少子寿命的因素有哪些。
三、X射线衍射分析晶体结构实验:
1.X射线的波长范围是多少,它是如何产生的?
2.简述X射线在近代物理学发展史上的重要地位及意义。
3.X射线在晶体中产生衍射的条件?
4.X射线在晶体中产生的衍射方向和衍射强度分别取决于什么?
5.X射线衍射仪包括哪几个主要部分,各自基本工作原理是什么?
6.实验基本操作步骤如何,为什么实验中要首先打开并保证冷却水
运行?
7.为什么我们在使用X射线衍射仪进行晶体结构分析实验时最好使
用粉末样品?
8.如何根据被测样品的衍射图谱确定其物相?。
《半导体物理学》习题库完整第1章思考题和习题1. 300K时硅的晶格常数a=5.43?,求每个晶胞所含的完整原⼦数和原⼦密度为多少?2. 综述半导体材料的基本特性及Si、GaAs的晶格结构和特征。
3. 画出绝缘体、半导体、导体的简化能带图,并对它们的导电性能作出定性解释。
4. 以硅为例,简述半导体能带的形成过程。
5. 证明本征半导体的本征费⽶能级E i位于禁带中央。
6. 简述迁移率、扩散长度的物理意义。
7. 室温下硅的有效态密度Nc=2.8×1019cm-3,κT=0.026eV,禁带宽度Eg=1.12eV,如果忽略禁带宽度随温度的变化,求:(a)计算77K、300K、473K 3个温度下的本征载流⼦浓度。
(b) 300K本征硅电⼦和空⽳的迁移率分别为1450cm2/V·s和500cm2/V·s,计算本征硅的电阻率是多少?8. 某硅棒掺有浓度分别为1016/cm3和1018/cm3的磷,求室温下的载流⼦浓度及费⽶能级E FN的位置(分别从导带底和本征费⽶能级算起)。
9. 某硅棒掺有浓度分别为1015/cm3和1017/cm3的硼,求室温下的载流⼦浓度及费⽶能级E FP的位置(分别从价带顶和本征费⽶能级算起)。
10. 求室温下掺磷为1017/cm3的N+型硅的电阻率与电导率。
11. 掺有浓度为3×1016cm-3的硼原⼦的硅,室温下计算:(a)光注⼊△n=△p=3×1012cm-3的⾮平衡载流⼦,是否为⼩注⼊?为什么?(b)附加光电导率△σ为多少?(c)画出光注⼊下的准费⽶能级E’FN和E’FP(E i为参考)的位置⽰意图。
(d)画出平衡下的能带图,标出E C、E V、E FP、E i能级的位置,在此基础上再画出光注⼊时,E FP’和E FN’,并说明偏离E FP的程度是不同的。
12. 室温下施主杂质浓度N D=4×1015 cm-3的N型半导体,测得载流⼦迁移率µn=1050cm2/V·s,µp=400 cm2/V·s,κT/q=0.026V,求相应的扩散系数和扩散长度为多少?第2章思考题和习题1.简述PN结空间电荷区的形成过程和动态平衡过程。
半导体物理习题答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。
2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
4 简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(2)能带底和能带顶的有效质量。
6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同原子中内层电子和外层电子参与共有化运动有何不同7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此为什么10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
复习思考题与自测题第一章1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同,原子中内层电子和外层电子参与共有化运动有何不同。
答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。
当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子那么参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。
组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。
2.描述半导体中电子运动为什么要引入"有效质量"的概念,用电子的惯性质量描述能带中电子运动有何局限性。
答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。
4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1〔k〕随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。
5.简述有效质量与能带构造的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。
光电信息学院“固体电子学”思考题1.什么是布拉菲格子?基元仅包含一个原子,则形成的晶格为布拉菲格子2.布拉菲格子与晶体结构之间的关系.布拉菲格子是一种数学抽象,它和晶体的几何结构密切相关。
有了布拉菲格子,在格点上加上基元,就构成了晶体结构。
有了晶体结构,把所有的基元抽象为格点,就得到了布拉菲格子。
1.什么是复式格子?复式格子是怎么构成的?基元包含两个或两个以上的原子,则形成的晶格为复式格子。
复式格子是由布拉菲格子套构而成的。
2.原胞和晶胞是怎样选取的?它们各自有什么特点?以一格点为原点,取三个平移矢量,由这三个平移矢量构成的体积最小的周期性平行六面体单元称为原胞。
(原胞的选取不是唯一的,但体积是一样的;原胞是体积最小的周期性重复单元;原胞的格点必须是顶点,原胞只包含一个格点。
)同时考虑晶格周期性和对称性的重复单元称为晶胞。
晶胞的基矢一般选择在一些重要的对称轴上。
3.如何在复式格子中找到布拉菲格子?复式格子是如何选取原胞和晶胞的?布拉菲格子的基元只有一个原子,且原子是等价的。
找到布拉菲格子,我们需要找到周期性排列的等价原子,这些不同的原子构成复式格子。
先选取出布拉菲格子,在选取出原胞和晶胞4.金刚石结构是怎样构成的?虽然由单一C原子构成,但是该结构为复式格子每个基元包含两个C原子,这两个C原子都构成面心立方该结构是两个面心立方沿着体对角线方向位移1/4套构而成5.氯化钠、氯化铯的布拉菲格子是什么结构?钠离子和氯离子分别组成相同的面心立方,是两个面心立方沿基矢方向相互位移1/2套构而成铯离子和氯离子分别组成相同的简单立方,铯离子和氯离子分别组成相同的简单立方6.密堆积有几种密积结构?它们是布拉菲格子还是复式格子?立方密堆积,布拉菲格子六方密堆积,复式格子7. 8种独立的基本对称操作是什么?C1、C2、C3、C4、C6、σ、i、S48. 7大晶系是什么?9.怎样确定晶列指数和晶面指数?计算(过原点VS不过原点)10.晶面指数与晶面在三坐标轴上的截距之间的关系?待定晶面在三个晶轴上的截距的倒数之比就是晶面指数之比11.通过原点的晶面如何求出其晶面指数?做过原点的晶面的的平行面,使其不过原点,求该平面的晶面指数12.倒格子的定义?正倒格子之间的关系?倒格子是描述晶体结构周期性的另一种类型格子,它是在波矢空间的数学描述。
复习思考题与自测题第一章1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中层电子和外层电子参与共有化运动有何不同。
答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体运动的共有化电子,在晶体周期性势场中运动。
当原子互相靠近结成固体时,各个原子的层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。
组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而层电子共有化运动较弱,其行为与孤立原子的电子相似。
2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。
答:引进有效质量的意义在于它概括了半导体部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体部势场的作用。
惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。
4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。
5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。
6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。
半导体物理习题答案半导体物理是固体物理的一个重要分支,它研究的是半导体材料的物理性质及其在电子器件中的应用。
以下是一些常见的半导体物理习题及其答案。
习题一:半导体的能带结构问题:简述半导体的能带结构,并解释价带、导带和禁带的概念。
答案:半导体的能带结构由价带和导带组成,两者之间存在一个能量间隔,称为禁带。
价带是半导体中电子能量最低的能带,当电子处于价带时,它们是被束缚在原子周围的。
导带是电子能量最高的能带,电子在导带中可以自由移动。
禁带是价带顶部和导带底部之间的能量区间,在这个区间内不存在允许电子存在的能级。
半导体的导电性能介于导体和绝缘体之间,主要因为其禁带宽度较小,电子容易从价带激发到导带。
习题二:PN结的形成与特性问题:解释PN结的形成过程,并描述其正向和反向偏置特性。
答案:PN结是由P型半导体和N型半导体接触形成的结构。
P型半导体中存在空穴,而N型半导体中存在自由电子。
当P型和N型半导体接触时,由于扩散作用,P型中的空穴会向N型扩散,而N型中的电子会向P型扩散。
这种扩散导致在接触区域形成一个耗尽层,其中电子和空穴复合,留下固定电荷,形成内建电场。
正向偏置时,外加电压使内建电场减弱,允许更多的电子和空穴通过PN结,从而增加电流。
反向偏置时,外加电压增强了内建电场,阻碍了电子和空穴的流动,导致电流非常小。
习题三:霍尔效应问题:描述霍尔效应的基本原理,并解释霍尔电压的产生。
答案:霍尔效应是指在垂直于电流方向的磁场作用下,载流子受到洛伦兹力的作用,导致电荷在样品一侧积累,从而在垂直于电流和磁场方向上产生一个横向电压差,即霍尔电压。
霍尔效应的发现为研究材料的载流子类型和浓度提供了一种有效的方法。
霍尔电压的大小与电流、磁场强度以及材料的载流子浓度有关。
习题四:半导体的掺杂问题:解释半导体掺杂的目的和方法,并举例说明。
答案:半导体掺杂的目的是为了改变半导体的导电性能。
通过在纯净的半导体中掺入微量的杂质原子,可以增加或减少半导体中的载流子数量。
第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(1)能带的宽度;(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
4 简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(1)能带宽度;(2)能带底和能带顶的有效质量。
6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同?原子中内层电子和外层电子参与共有化运动有何不同?7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此?为什么?10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
1、为什么内壳层电子能带窄,外层电子能带宽答:内层电子处于低能态,外层电子处于高能态,所以外层电子的共有化运动能力强,因此能带宽。
2、为什么点阵间隔越小,能带越宽点阵间隔越小,电子共有化运动能力越强,能带也就越宽。
3、简述半导体的导电机构导带中的电子和价带中的空穴都参与导电。
4、什么是本征半导体、n型半导体、p型半导体答:纯净晶体结构的半导体称为本征半导体;自由电子浓度远大于空穴浓度的杂质半导体称为n型半导体;空穴浓度远大于自由电子浓度的杂质半导体称为p型半导体。
5、什么是空穴电子和空穴的异同之处是什么(1)在电子脱离价键的束缚而成为自由电子后,价键中所留下的空位叫空穴。
(2)相同点:在真实空间的位置不确定;运动速度一样;数量一致。
不同点:有效质量互为相反数;能量符号相反;电子带负电,空穴带正电。
6、为什么发光器件多半采用直接带隙半导体来制作答:直接带隙半导体中载流子的寿命很短,同时,电子和空穴只要一相遇就会发生复合,这种直接复合可以把能量几乎全部以光的形式放出,因此发光效率高。
7、半导体的五大基本特性(1)负电阻温度效应:温度升高,电阻减小。
(2)光电导效应:由辐射引起的被照射材料的电导率改变的现象。
(3)整流效应:加正向电压时,导通;加反向电压时,不导通。
(4)光生伏特效应:半导体和金属接触时,在光照射下产生电动势。
(5)霍尔效应:通有电流的导体在磁场中受力的作用,在垂直于电流和磁场的方向产生电动势的现象。
1、简述实际半导体中杂质与缺陷来源。
①原材料纯度不够;②制造过程中引入;③人为控制掺杂。
2、什么是点缺陷、线缺陷、面缺陷(1)点缺陷:三维尺寸都很小,不超过几个原子直径的缺陷;(2)线缺陷:三维空间中在二维方向上尺寸较小,在另一维方向上尺寸较大的缺陷;(3)面缺陷:二维尺寸很大而第三维尺寸很小的缺陷。
3、点缺陷类型有哪些答:①空位;②基质原子的填隙;③杂质原子的填隙与替位。
4、简述肖特基缺陷和弗伦克尔缺陷的异同之处。
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。
解322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C 22C L E m h E E E m V dE E E m V dE E g V d dEE g d E E m V E g c nc C n l m h E C n l m E C n n c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)(2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
半导体物理思考题1、为什么内壳层电子能带窄,外层电子能带宽答:内层电子处于低能态,外层电子处于高能态,所以外层电子的共有化运动能力强,因此能带宽。
2、为什么点阵间隔越小,能带越宽点阵间隔越小,电子共有化运动能力越强,能带也就越宽。
3、简述半导体的导电机构导带中的电子和价带中的空穴都参与导电。
4、什么是本征半导体、n型半导体、p型半导体答:纯净晶体结构的半导体称为本征半导体;自由电子浓度远大于空穴浓度的杂质半导体称为n型半导体;空穴浓度远大于自由电子浓度的杂质半导体称为p型半导体。
5、什么是空穴电子和空穴的异同之处是什么(1)在电子脱离价键的束缚而成为自由电子后,价键中所留下的空位叫空穴。
(2)相同点:在真实空间的位置不确定;运动速度一样;数量一致。
不同点:有效质量互为相反数;能量符号相反;电子带负电,空穴带正电。
6、为什么发光器件多半采用直接带隙半导体来制作答:直接带隙半导体中载流子的寿命很短,同时,电子和空穴只要一相遇就会发生复合,这种直接复合可以把能量几乎全部以光的形式放出,因此发光效率高。
7、半导体的五大基本特性(1)负电阻温度效应:温度升高,电阻减小。
(2)光电导效应:由辐射引起的被照射材料的电导率改变的现象。
(3)整流效应:加正向电压时,导通;加反向电压时,不导通。
(4)光生伏特效应:半导体和金属接触时,在光照射下产生电动势。
(5)霍尔效应:通有电流的导体在磁场中受力的作用,在垂直于电流和磁场的方向产生电动势的现象。
1、简述实际半导体中杂质与缺陷来源。
①原材料纯度不够;②制造过程中引入;③人为控制掺杂。
2、什么是点缺陷、线缺陷、面缺陷(1)点缺陷:三维尺寸都很小,不超过几个原子直径的缺陷;(2)线缺陷:三维空间中在二维方向上尺寸较小,在另一维方向上尺寸较大的缺陷;(3)面缺陷:二维尺寸很大而第三维尺寸很小的缺陷。
3、点缺陷类型有哪些答:①空位;②基质原子的填隙;③杂质原子的填隙与替位。
半导体物理课后习题解答The saying "the more diligent, the more luckier you are" really should be my charm in2006.半导体物理习题解答1-1.P 32设晶格常数为a 的一维晶格,导带极小值附近能量E c k 和价带极大值附近能量E v k 分别为:E c k=0223m k h +022)1(m k k h -和E v k= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =;试求: ①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化; 解 ①禁带宽度Eg根据dk k dEc )(=0232m kh +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k ,由题中E C 式可得:E min =E C K|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V k|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h=112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯= ②导带底电子有效质量m n0202022382322m h m h m h dkE d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’2226m h dk E d V -=,∴0222'61/m dk E d h m Vn -== ④准动量的改变量h △k =h k min -k max = ah k h 83431=毕1-2.P 33晶格常数为的一维晶格,当外加102V/m,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间; 解 设电场强度为E,∵F =hdtdk=q E 取绝对值 ∴dt =qE h dk∴t=⎰tdt 0=⎰a qE h 210dk =aqE h 21 代入数据得: t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯s当E =102 V/m 时,t =×10-8s ;E =107V/m 时,t =×10-13s; 毕3-7.P 81①在室温下,锗的有效状态密度Nc =×1019cm -3,Nv =×1018cm -3,试求锗的载流子有效质量m n 和m p ;计算77k 时的Nc 和Nv;已知300k 时,Eg =;77k 时Eg =;求这两个温度时锗的本征载流子浓度;②77k,锗的电子浓度为1017cm -3,假定浓度为零,而Ec -E D =,求锗中施主浓度N D 为多少解 ①室温下,T=300k27℃,k 0=×10-23J/K,h=×10-34J·S , 对于锗:Nc =×1019cm -3,Nv=×1018cm -3: ﹟求300k 时的Nc 和Nv : 根据3-18式:Kg T k Nc h m h T k m Nc n n 312332192340322*3230*100968.53001038.114.32)21005.1()10625.6(2)2()2(2---⨯=⨯⨯⨯⨯⨯⨯=⋅=⇒⋅=ππ根据3-23式:Kg T k Nv h m h T k m Nv p p 312332182340322*3230*1039173.33001038.114.32)2107.5()10625.6(2)2()2(2---⨯=⨯⨯⨯⨯⨯⨯=⋅=⇒⋅=ππ﹟求77k 时的Nc 和Nv : 同理:﹟求300k 时的n i : 求77k 时的n i :72319181902110094.1)771038.12106.176.0exp()107.51005.1()2exp()(---⨯=⨯⨯⨯⨯⨯-⨯⨯⨯=-=T k Eg NcNv n i ②77k 时,由3-46式得到:Ec -E D ==××10-19;T =77k ;k 0=×10-23;n 0=1017;Nc =×1019cm -3;;==-16192231917200106.610365.12)]771038.12106.101.0ex p(10[2)]2ex p([⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯-=-Nc T k E Ec n N D D 毕3-8.P 82利用题7所给的Nc 和Nv 数值及Eg =,求温度为300k 和500k 时,含施主浓度N D =5×1015cm -3,受主浓度N A =2×109cm -3的锗中电子及空穴浓度为多少 解1 T =300k 时,对于锗:N D =5×1015cm -3,N A =2×109cm -3:3130211096.1)2exp()(-⨯=-=cm Tk EgNcNv n i ;159150105102105⨯≈⨯-⨯=-=A D N N n ;i n n >>0;1015213020107.7105)1096.1(⨯≈⨯⨯==n n p i ; 2T =300k 时:eV T T Eg Eg 58132.023550050010774.47437.0)0()500(242≈+⨯⨯-=+⋅-=-βα;查图3-7P 61可得:16102.2⨯≈i n ,属于过渡区,162122010464.22]4)[()(⨯=+-+-=iA D A D n N N N N n ;1602010964.1p ⨯==n n i ;此题中,也可以用另外的方法得到n i :)2exp()(500300)(500300)(0212323300'2323300'Tk EgNcNv n Nv N Nc N i k vk c-=⨯=⨯=;;求得n i 毕3-11.P 82若锗中杂质电离能△E D =,施主杂质浓度分别为N D =1014cm -3及1017cm -3,计算199%电离,290%电离,350%电离时温度各为多少 解未电离杂质占的百分比为:DD D D N NcD T kE T k E Nc N D 2_ln ex p 2_00=∆⇒∆=; 求得:116106.11038.101.019230=⨯⨯⨯=∆--T k E D ; ∴)_10ln()2102_ln(2_ln 11623152315T D N N T D N Nc D T D D D =⨯⨯⨯==(1) N D =1014cm -3,99%电离,即D_=1-99%= 即:3.2ln 23116-=T T 将N D =1017cm -3,D_=代入得:即:2.9ln 23116-=T T (2) 90%时,D_=即:T T ln 23116= N D =1017cm -3得:10ln 3ln 23116-=T T即:9.6ln 23116-=T T ;(3) 50%电离不能再用上式 ∵2DD D N n n ==+即:)exp(21)exp(21100Tk E E N T k E E N F D DF D D --+=-+ ∴)ex p(4)ex p(00Tk E E T k E E FD F D --=- 即:2ln 0T kE E DF -= 取对数后得:整理得下式:Nc N T k E D D 2ln 2ln 0=-∆-∴ NcNT k E D D ln 0=∆- 即:DD N NcT k E ln 0=∆ 当N D =1014cm -3时,得3ln 23116+=T T当N D =1017cm -3时9.3ln 23116-=T T此对数方程可用图解法或迭代法解出; 毕3-14.P 82计算含有施主杂质浓度N D =9×1015cm -3及受主杂质浓度为×1016cm -3的硅在300k 时的电子和空穴浓度以及费米能级的位置;解对于硅材料:N D =9×1015cm -3;N A =×1016cm -3;T =300k 时 n i =×1010cm -3:3150102-⨯=-=cm N N p D A ;∵D A N N p -=0且)(ex p Nv 00TK E E p FV -⋅= ∴)ex p(0Tk E E Nv N N F V DA -=-∴eV Ev eV Ev Nv N N T k Ev E D A F 224.0)(101.1102.0ln 026.0ln 19160-=⨯⨯-=--= 毕3-18.P 82掺磷的n 型硅,已知磷的电离能为,求室温下杂质一般电离时费米能级的位置和磷的浓度;解n 型硅,△E D =,依题意得: ∴D FD DN Tk E E N 5.0)exp(210=--+∴21)ex p(2)ex p(2100=--⇒=--+T k E E T k E E F D F D ∴2ln 2ln 21ln000T k E E E E T k T k E E F C C D F D =-+-⇒=-=- ∵044.0=-=∆D C D E E E∴eV T k E E T k E E C F C F 062.0044.02ln 044.02ln 00=--=-⇒--=毕3-19.P 82求室温下掺锑的n 型硅,使E F =E C +E D /2时的锑的浓度;已知锑的电离能为; 解由2DC F E E E +=可知,E F >E D ,∵EF 标志电子的填充水平,故ED 上几乎全被电子占据,又∵在室温下,故此n 型Si 应为高掺杂,而且已经简并了; ∵eV E E E D C D 039.0=-=∆ 即200<-<Tk E E FC ;故此n 型Si 应为弱简并情况; ∴)exp(21)exp(21000T k E N T k E E N n n DDD F D D ∆+=-+==+∴)(106.6)026.00195.0()]026.00195.0exp(21[108.22)026.00195.0()]026.0039.0exp()026.00195.0exp(21[2)()]exp()exp(21[2)()]exp(21[2319211921021000210-⨯≈-⨯+⨯⨯=-⨯-+=-⨯∆-+=-⨯-+=cm F F NcT k E E F T k ET k E E NcT k E E F T k E E NcN C F D c F C F DF D ππππ其中4.0)75.0(21=-F毕3-20.P 82制造晶体管一般是在高杂质浓度的n 型衬底上外延一层n 型的外延层,再在外延层中扩散硼、磷而成;①设n 型硅单晶衬底是掺锑的,锑的电离能为,300k 时的E F 位于导带底下面处,计算锑的浓度和导带中电子浓度;解 ①根据第19题讨论,此时Ti 为高掺杂,未完全电离:T k E E F C 02052.0026.00=<=-<,即此时为弱简并∵)exp(2100Tk E E N n n DF DD -+=≈+其中3.0)1(21=-F毕4-1.P 113300K 时,Ge 的本征电阻率为47Ω·cm,如电子和空穴迁移率分别为3900cm 2/V ·S 和1900cm 2/V ·S,试求本征Ge 的载流子浓度;解T=300K,ρ=47Ω·cm,μn =3900cm 2/V ·S,μp =1900 cm 2/V ·S313191029.2)19003900(10602.1471)(1)(1--⨯=+⨯⨯=+=⇒+=cm q n q n p n i p n i μμρμμρ毕4-2.P 113试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1350cm 2/V ·S 和500cm 2/V ·S;当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率;比本征Si 的电导率增大了多少倍解T=300K,,μn =1350cm 2/V ·S,μp =500 cm 2/V ·S 掺入As 浓度为N D =×1022×10-6=×1016cm -3杂质全部电离,2i D n N >>,查P 89页,图4-14可查此时μn =900cm 2/V ·S毕4-13.P 114掺有×1016 cm -3硼原子和9×1015 cm -3磷原子的Si 样品,试计算室温时多数载流子和少数载流子浓度及样品的电阻率; 解N A =×1016 cm -3,N D =9×1015 cm -3 可查图4-15得到7=ρΩ·cm根据316cm 102-⨯=+D A N N ,查图4-14得ρ,然后计算可得;毕4-15.P 114施主浓度分别为1013和1017cm -3的两个Si 样品,设杂质全部电离,分别计算:①室温时的电导率;解n 1=1013 cm -3,T =300K,n 2=1017cm -3时,查图可得cm n ⋅Ω=800μ 毕5-5.P 144n 型硅中,掺杂浓度N D =1016cm -3,光注入的非平衡载流子浓度Δn =Δp =1014cm -3;计算无光照和有光照时的电导率; 解n-Si,N D =1016cm -3,Δn =Δp =1014cm -3,查表4-14得到:400,1200=≈p n μμ: 无光照:)/(92.1120010602.1101916cm S q N nq n D n ≈⨯⨯⨯===-μμσΔn =Δp<<N D ,为小注入: 有光照: 毕5-7.P 144掺施主杂质的N D =1015cm -3n 型硅,由于光的照射产生了非平衡载流子Δn =Δp =1014cm -3;试计算这种情况下准费米能级的位置,并和原来的费米能级做比较; 解n-Si,N D =1015cm -3,Δn =Δp =1014cm -3, 光照后的半导体处于非平衡状态: 室温下,Eg Si =; 比较:由于光照的影响,非平衡多子的准费米能级nF E 与原来的费米能级F E 相比较偏离不多,而非平衡勺子的费米能级p F E 与原来的费米能级F E 相比较偏离很大;毕5-16.P 145一块电阻率为3Ω·cm 的n 型硅样品,空穴寿命s p μτ5=,再其平面形的表面处有稳定的空穴注入,过剩空穴浓度313010)(-=∆cm p ,计算从这个表面扩散进入半导体内部的空穴电流密度,以及在离表面多远处过剩空穴浓度等于1012cm -3 解 cm ⋅Ω=3ρ;s p μτ5=,313010)(-=∆cm p : 由cm ⋅Ω=3ρ查图4-15可得:3151075.1-⨯≈cm N D , 又查图4-14可得:S V cm p ⋅≈/5002μ 由爱因斯坦关系式可得:S cm S cm q T k D p p /5.12/500401220=⋅==μ 所求)exp()()()(0pp p p p D xp D D q x p Lp Dp q Jp ττ-∆=∆=扩 而cm D Lp p p 36109057.7cm 1055.12-⨯≈⨯⨯==-τ 毕。
复习思考题与自测题第一章1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。
答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。
当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。
组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。
2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。
答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。
4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。
5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。
固体与半导体习题答案固体物理是研究固体物质的物理性质及其与物质结构的关系的学科。
在固体物理中,半导体是一类特殊的材料,它们在电子设备中扮演着极其重要的角色。
半导体的导电性介于导体和绝缘体之间,可以通过掺杂、温度变化等手段来调节其导电性。
习题1:解释什么是半导体,以及它们与绝缘体和导体的区别。
半导体是一类材料,其导电性介于导体和绝缘体之间。
在室温下,半导体的电阻率比绝缘体小,但比金属导体大。
半导体的导电性可以通过改变其化学组成或物理条件(如温度、光照等)来调节。
与绝缘体相比,半导体允许一定量的电荷通过,而导体则允许大量电荷自由流动。
习题2:解释PN结的工作原理。
PN结是由P型半导体和N型半导体组成的结构。
P型半导体含有多余的空穴,而N型半导体含有多余的自由电子。
当P型和N型半导体接触时,它们之间的界面形成一个耗尽区,其中自由电子和空穴复合,导致耗尽区的电荷减少。
这个耗尽区阻止了更多的电子和空穴从各自的半导体区域移动到对方区域,从而形成了一个内建电场。
当外加电压时,这个电场可以被增强或削弱,从而控制电流的流动。
习题3:解释肖特基势垒(SB)和欧姆接触。
肖特基势垒是一种金属与半导体之间的接触,它表现出整流特性,即允许电流单向流动。
当金属与N型半导体接触时,金属的费米能级通常高于半导体的费米能级,导致电子从半导体流向金属,形成势垒。
这种势垒阻碍了电子的反向流动,使得电流只能单向流动。
欧姆接触则是一种金属与半导体之间的接触,它不表现出整流特性,即允许电流双向流动。
在欧姆接触中,金属与半导体的费米能级相互对齐,使得电子可以自由地在金属和半导体之间流动。
习题4:解释载流子浓度对半导体导电性的影响。
在半导体中,导电性主要由载流子(电子和空穴)的浓度决定。
载流子的浓度越高,半导体的导电性越好。
通过掺杂,可以增加半导体中的载流子浓度。
例如,向硅中掺入磷(P)可以增加自由电子的浓度,从而提高硅的导电性,形成N型半导体。