§1-2伯努利方程及其应用
例1.3 如图1—5所示,液槽内离开液面h处开一小孔。液体密度为ρ, 液面上方是空气,它被液槽盖封闭住,其绝对压强为p,在液槽侧面小 孔处的压强为大气压强p0。当p>>p0时,试证明小孔处的液流速度 为: v2 = 2( p − p0 ) / ρ
解:将整个流体当作一个流管,用 v1和v分别表示水面处和 2 孔口处的流速。由连续性方程知 v 2 且因为S1>>S2,故 v 2 >> v1 可以近似地取 v1 = 0
第一章 流体的运动
§1-2伯努利方程及其应用
大 学 物 理
主讲教师:杨宏伟
第一章 流体的运动
§1-2伯努利方程及其应用
一 、 伯努利方程 伯努利方程是由瑞士物理学家伯努利 (D.Bernoulli)提出来的,是理想流体 作稳定流动时的基本方程,对于确定流 体内部各处的压力和流速都有很大的实 际意义,在水利、造船、航空航天等部门 有着广泛的应用。
第一章 流体的运动
§1-2伯努利方程及其应用
例1.2水管里的水在压强P=4×105Pa的作用下流入房 间,水管内直径为2.0cm,管内水的流速为4m/s。引入 到5m高处二层楼浴室的水管,内直径为1.0cm,试求浴 室内水的流速和压强(已知水的密度ρ=1000kg/m3)。 解:由连续性原理知
2
S1v1 = S 2 v2
A
B
将整个管子作流管,由连续性方 程 S1v1 = S 2 v2 以及伯努利方程 (1-5) 2
C
D E
p + 0.5 ρv = 恒量
图1—6 空吸作用 图1—6 空吸作用
第一章 流体的运动 由于 S1 >> S 2