高频同步整流BUCK变换器的设计与仿真本科毕业设计(论文)
- 格式:doc
- 大小:1.65 MB
- 文档页数:47
Buck 变换器的建模与仿真(一)Buck 变换器的性能指标带有反馈控制回路Buck 变换器的电路图如图(1-1)所示,我们假定其工作在CCM 方式。
其基本电路参数为: 输入电压g V =2030V 输出电压V =12V 输出纹波125mV (1%)电压跌落250mV (最大,2003out I mA A =) 开关频率s f =100kHz 最大输出电流4A输入电流最大纹波0.4A(峰峰值)图(1-1)带有反馈控制回路的直流斩波电路(二)Buck 变换器参数的选择 1. 滤波电感0L 的选择 由diu Ldt=得 6.max 0.max ()(3012)410180H 0.14in out on out V V T dt L u di I μδ--⨯-⨯⨯====⨯⨯这里我们取0L 为180H μ 最大负载时的峰值电流为.max .max 40.054 4.22peak out out I I I A δ=+=+⨯=2. 滤波电容0C 的选择 由dui cdt=得 其向量形式为I j cU ω=I jcUω=所以需要穿越频率的带宽为2outc out outI f C V π∆=∆如果假定穿越频率为10kHz250892.8out c out V mZ m I ∆===Ω∆ 原则上为了留有设计裕量,电阻的阻抗按13计算阻抗选取 根据上面计算结果,我们可以在Rubycon 公司的ZL 系列,16V 中选取以下规格:C=330F μ,760C rms I mA =@105A C =︒ ,72ESR low R m =Ω@20A T C =︒ ,220ESR low R m =Ω@10A T C =-︒电容ESR 的阻抗应小于输出电容在穿越频率处的阻抗11482 6.2810330c out m f C k π==Ω⨯⨯86c Z m ≤==Ω设计余量不足,我们重新选ZL 系列中C=1000F μ,同样的过程,我们可以得出满足条件。
目录1 Buck变换器技术........................................................................................................................... - 1 -1.1 Buck变换器基本工作原理............................................................................................... - 1 -1.2 Buck变换器工作模态分析............................................................................................... - 2 -1。
3 Buck变化器外特性........................................................................................................ - 3 -2 Buck变换器参数设计.................................................................................................................. - 5 -2.1 Buck变换器性能指标....................................................................................................... - 5 -2。
2 Buck变换器主电路设计................................................................................................ - 5 -2.2。
编号:( )字 号本科生毕业设计(论文)题目:二〇一一年六月隔爆兼本安BUCK 变换器设计 电气工程自动化08-3班毕业论文题目:隔爆兼本安BUCK变换器的设计毕业论文专题题目:毕业论文主要内容和要求:1.了解本质安全理论及意义2.掌握BUCK电路的工作原理3.控制芯片的选择及使用4.本质安全变换器的设计5.本质安全变换器输出保护电路6.转换器的仿真7.完成与毕业设计内容相关的英文翻译(近三年的文献),不少于3000汉字院长签字:指导教师签字:摘要开关电源具有高效率、体积小、性能可靠、电路简单,等优点,BUCK变换器是开关电源一种基本拓扑结构,输出电压总是低于它的输入电压,在现代科学研究和工业生产中得到了越来越广泛的应用。
工作在含有爆炸性混合物环境的电子设备必须满足防爆的要求,本质安全型是最佳的防爆形式,本质安全变换器是本质安全电源的核心,因此研究本质安全开关变换器是研究本质安全开关电源的基础。
本文首先介绍了本质安全电路理论、背景及发展史和电路放电的三种形式,并对BUCK 变换器的原理及滤波电感的连续、断续及临界三种状态进行分析说明。
本文采用PWM电压型控制芯片UC3573进行控制,它可以使开关电源的元器件数量大幅地减少,提高开关电源的性能,使电路简单等优点,并对UC3573芯片的原理和各个管脚的功能做了详细的介绍。
对本质安全BUCK变换器的保护原理进行分析,并给出输入、输出过压保护电路和输出过流、短路保护电路及原理分析。
最后进行仿真和试验研究,给出了相关实验波形并进行了分析,结果验证了设计的可行性。
关键词:开关电源;本质安全;BUCK变换器;UC3573AbstractSwitching power supply with high efficiency, small size, reliable performance, simple circuit, etc., BUCK converter is a basic topology switching power supply, the output voltage is always lower than its input voltage, in modern scientific research and industrial production is more and more widely used.Work environment in the presence of an explosive mixture of electronic equipment must meet the requirements of explosion-proof, intrinsically safe is the best form of proof, intrinsically safe intrinsically safe power supply converter is the core, the study of intrinsically safe switching converter is intrinsically safe switch power base.This paper introduces intrinsically is safe circuit theory, history and background and three forms of discharge circuit, and the BUCK converter and the filter inductance principle of continuous, intermittent, and that the critical analysis of three states. In this paper, the control chip is UC3573 PWM voltage control, switching power supply which can reduce substantially the number of components is to improve the performance of switching power supply, so that the advantages of simple circuit, and the UC3573 chip principle and function of each pin is detailed. BUCK converter on the nature of the protection of the safety analysis of the principle, and give input, output over-voltage protection circuit and output over-current, short circuit protection circuit and principle.Finally, simulation and experimental is researched, experimental waveforms are given and analyzed, the results verify the feasibility of the design.Keywords: switching power supply; intrinsically safe; BUCK converter; UC3573目录1 绪论 (1)1.1研究的意义 (1)1.2本质安全理论产生的背景 (1)1.3本质安全标准及相关理论发展简介 (1)1.4本质安全开关电源发展与现状 (2)1.5本质安全电路基本原理及电气放电形式 (3)1.5.1本质安全电路基本原理 (3)1.5.2电气放电形式 (3)1.6本质安全防爆开关电源的特点 (4)1.7本质安全开关变换器的组成及原理 (5)2 降压型(BUCK)电路 (7)2.1 BUCK型开关电源原理 (7)2.2降压式变换电路(Buck电路) (7)2.2.1开关器件导通和关断时,电路的动态工作过程分析 (8)2.2.2电感电流连续模式下的工作过程分析 (10)2.2.3电感电流断续模式下的工作过程分析。
目录摘要 (1)Abstract (2)1 绪论 (3)1.1电力电子技术的概述 (3)1.2开关电源的研究现状和发展趋势 (3)1.3 Buck斩波电路的研究意义 (5)1.4 论文的主要研究容 (6)2 Buck斩波电路的原理 (7)2.1 Buck变换器的连续导电模式 (8)2.2 Buck变换器电感电流不连续的导电模式 (10)2.3 电感电流连续的临界条件 (11)2.4 纹波电压ΔU O及电容计算 (12)2.5参数的计算 (12)3 Buck斩波电路的建模 (14)3.1开关电路的建模 (14)3.1.1理想开关模型 (14)3.1.2状态空间平均模型 (15)3.1.3小信号模型 (17)3.2系统的传递函数 (18)3.2.1降压斩波电路的传递函数 (18)3.2.2 PWM比较器的比较函数 (20)3.2.3调节器的传递函数 (21)4 控制电路的设计 (22)4.1电压模式控制电路的设计 (22)4.1.1电压调节器的结构形式 (22)4.1.2电压调节器的参数 (23)4. 2 控制电路结构 (24)5 Buck斩波电路的控制仿真研究 (25)5.1 Matlab简介 (25)5.2 Buck斩波电路主电路的仿真 (25)5.3 Buck斩波电路的PID控制算法的仿真 (27)6全文总结及展望 (30)参考文献 (31)附录1:主电路仿真模型 (32)附录2:主电路仿真波形图 (33)附录3:PID仿真图 (34)致 (35)摘要随着电子产品与人们工作和生活的关系日益密切,便携式和待机时间长的电子产品越来越受到人们的青睐,它们对电源的要求也越来越高。
DC-DC开关电源芯片是一种正在快速发展的功率集成电路,具有集度高,综合性能好等特点,具有很好的市场前景和研究价值。
论文在研究开关电源技术发展现状和前景的基础上,设计一种Buck型DC-DC 开关电源的设计。
首先对主电路的工作原理和系统构成进行了研究和分析,包括工作过程中各个元器件的工作状态和工作特点。
【毕业设计】基于Buck结构的DCDC转换器建模与仿真目录摘要 (1)Abstract (2)1 绪论 (3)1.1电力电子技术的概述 (3)1.2开关电源的研究现状和发展趋势 (4)1.3 Buck斩波电路的研究意义 (6)1.4 论文的主要研究内容 (6)2 Buck斩波电路的原理 (8)2.1 Buck变换器的连续导电模式 (9)2.2 Buck变换器电感电流不连续的导电模式 (12)2.3 电感电流连续的临界条件 (13)2.4 纹波电压ΔU O及电容计算142.5参数的计算 (14)3 Buck斩波电路的建模 (17)3.1开关电路的建模 (17)3.1.1理想开关模型 (17)3.1.2状态空间平均模型 (19)3.1.3小信号模型 (20)3.2系统的传递函数 (22)3.2.1降压斩波电路的传递函数 (22)3.2.2 PWM比较器的比较函数 (24)3.2.3调节器的传递函数 (25)4 控制电路的设计 (27)4.1电压模式控制电路的设计 (27)4.1.1电压调节器的结构形式 (27)4.1.2电压调节器的参数 (28)4. 2 控制电路结构 (29)5 Buck斩波电路的控制仿真研究 (30)5.1 Matlab简介 (30)5.2 Buck斩波电路主电路的仿真 (30)5.3 Buck斩波电路的PID控制算法的仿真 (32)6全文总结及展望 (35)参考文献 (36)附录1:主电路仿真模型 (37)附录2:主电路仿真波形图 (39)附录3:PID仿真图 (40)致谢 (41)摘要随着电子产品与人们工作和生活的关系日益密切,便携式和待机时间长的电子产品越来越受到人们的青睐,它们对电源的要求也越来越高。
DC-DC开关电源芯片是一种正在快速发展的功率集成电路,具有集度高,综合性能好等特点,具有很好的市场前景和研究价值。
论文在研究开关电源技术发展现状和前景的基础上,设计一种Buck型DC-DC开关电源的设计。
基于MATLAB/SIMULINK的buck变换器的设计与分析摘要:本实验分析了buckDC/DC变换器的工作原理,对其进行状态空间平均法建模。
并应用Matlab进行仿真实验和控制系统性能的优化。
1.1b uck电路的开关过程分析buck电路的基本拓扑电路如图1所示。
Buck交换器有电感电流连续(CCM)和电感电流断续(DCM)两种工作模式,下面仅对CCM模式进行分析和仿真。
在CCM模式下电路工作过程分VT导通和关断两个阶段。
VT导通时为电感L储能阶段,此时电源向电感及负载提供能量,VT关断时电感L释放能量供负载工作。
在CCM模式下,buck电路的工作情况如图2所示,图2(a)为VT导通时的拓扑电路,图2(b)为VT关断时的拓扑电路。
1.2buck变换器基于状态空间平均法的建模对buck变换器列写状态方程VT导通状态下:电路方程为状态方程为VT关断状态下:电路方程为状态方程为根据状态空间平均法,可以得到buck变换器的状态空间平均模型。
其基本思想是根据开关处于通态和断态时各自的状态方程及所占的时间比例,将两个不同时间段的方程按各自的时间比例加权平均,即可得到一个开关周期内,系统近似的平均状态方程。
因此设占空比为D,D*VT导通状态下的电路方程+(1-D)*VT断开状态下的电路方程得:由此得平均状态方程:因此应用现代控制理论得出buck电路的数学模型式中:状态变量X1为buck变换器输出电压,即电容两端电压;X2为电感电流;D为占空比。
1.3 buck变换器的MATLAB/SIMULINK仿真分析(1) 仿真程序(2) 进行参数的设定设定输入电压u=100V,R=0.5欧姆,D=40%,L=0.01H,C=0.1F电感L越小,电容C越大,震荡周期越小。
下图为不同的电感值和电容值对应的阶跃响应曲线改变L=0.001改变C=0.75占空比D影响输出电压的稳定值的大小,D越大稳定值越大。
改变D=0.5(3)利用配置零极点法设计控制器,优化系统性能1.极点配置法当系统参数为u=100V,R=0.5欧姆,D=40%,L=0.01H,C=0.1F时,对系统进行极点配置法优化。
Buck变换器仿真设计报告1设计要求输入电压:30-60VDC(额定48V)输出性能:–V out 24VDC–V out(p-p) <25mV–Iout 2A–I out =0.1A时,电感电流临界连续。
其他性能:–开关频率200kHz2变换器设计2.1电路组成2.2 主电路参数设计(1) 占空比8.03024min max ===in out V V D 4.06024max min ===in out V V D 5.04824===innom out nomV V D (2) 滤波电感0.1A 时电感电流临界连续。
H T I U L U T I L L CCM L L μμ3605)4.01(2.024max )min(=⨯-⨯--=∆∆=→=∆∆(3) 滤波电容取mV V p p out 5.12)(=-。
Ω==∆∆=125.02.025.0I V ESR F C ESR C f f 66610520125.010651065---⨯=⨯=⇒⨯=∙ 取F C f μ560=。
(4) 负载 对于阻性负载有o L oU R I =。
由于I out =0.1A 时,电感电流临界连续。
在额定电压、额定占空比下I out =2A ,可求得额定12L R =Ω,断续时负载值240L R =Ω。
2.3 闭环反馈设计(1) 确定开环传递函数11030102.0)10701(481)1()(6662+⨯+⨯⨯+=++∙+=---s s s s R L s C L C sESR V s G Lf f f f in(2) 增加检测及调制环节125.2)(=s H 2=M V)(965)()()(1)()(s G s G s H s G V s G s T c M c ==(3) 选择补偿环节)1)((1)(2221112C sR C C sR C sR s G c +++= KK lag 1tan tan 9011--+-=θ 1221C R f z π= 2221C R f p π=(4) 确定补偿环节参数① 截止频率取1/5fs ,即fc=40kHz 。
Buck变换器毕业论文基于ARM的Buck变换器制作摘要电子技术近年来发展迅猛,直流开关电源广泛应用于个人计算机、电信通信、电力系统、航空航天和生物医疗等领域,对开关电源的性能、功率密度、工作效率和可靠性都提出了更高的要求。
BUCK变换器在电池供电的计算机,消费类产品等需多电源供电的电子系统中有着广泛的应用,小型化成为必然的要求。
本文对Buck变换器的整体电路和硬件电路进行了讨论。
首先,对Buck变换器的背景,发展状况进行阐述。
其次,对Buck变换器的硬件设计进行了介绍,STM32处理器的简介和内部主要结构介绍,还有对变换器中的主要电路进行介绍,功率及驱动电路、电源电路、保护电路、软开关电路及控制、电流传感器的电路原理。
再次,对整体电路进行一些简单的描述。
最后,在附录中,本文还将给出一些必要的系统设计资料,供参考之用。
关键词:Buck变换器,ST,M32处理器,硬件电路,整体电路Based on the arm of the changes made a buckAbstractElectronic technology development in recent years,the dc power supply has the wide application in personal computers and telecom communications,the electrical system,air space and biological and medical fields,switching power supplies of power,performance, efficiency and reliability have made a higher demands.Buck change in the battery power of computer,and many consumer products have the power supply of electronic systems are widely used,advocate small-size become inevitable.To buck this transformation of the electrical circuits and hardware circuit discussed.First,buck to change the background and development in the paper.Secondly,the buck from the hardware design,stm32processors,and internal structure,and to introduce major changes in the main circuits to introduce,power and driven circuit,power supply circuits,the protection circuit and the electrical and control,the principle of the circuit.current sensors.Thirdly,the circuit to make some brief description.Finally,in the annex,this will also give some necessary system design,data for reference only.Key words:Buck changes,hardware circuit stm32processor,the circuit目录1绪论 (1)1.1课题背景介绍 (1)1.2课题研究状况 (1)1.3课题研究方法 (2)2STM32处理器 (3)2.1STM32处理器介绍 (3)2.2高级控制定时器(TIM1) (4)2.2.1简介 (4)2.2.2主要特性 (4)2.3通用定时器(TIMx) (5)2.3.1概述 (5)2.3.2主要特性 (5)2.3.3功能描述 (6)2.4模拟/数字转换(ADC) (7)2.4.1介绍 (7)2.4.2主要特征 (7)2.4.3引脚描述 (8)2.4.4功能描述 (9)3系统硬件设计 (11)3.1Buck电路的开关过程分析 (11)3.2功率及驱动电路设计 (12)3.2.1IR2110简介 (12)3.2.2IR2110内部结构和特点 (12)3.3电源电路及保护电路设计 (13)3.3.1电源电路设计 (14)3.3.2保护电路设计 (14)3.4软开关电路及控制电路设计 (18)3.5电流传感器的电路设计 (21)3.5.1电流传感器的介绍 (21)3.5.2工作原理 (21)3.5.3模拟霍尔传感器SS495介绍 (22)结论 (25)致谢 (26)参考文献 (27)附录Buck变换器硬件电路图 (28)1绪论1.1课题背景介绍开关电源技术的发展、应用领域的扩大,别是近几年便携式电子产品的飞速发展,使高效率、高可靠性、高精度、高功率密度成为开关电源的发展方向,对集成电路设计提出了挑战。
BUCK变换器的研究与设计1总体分析与解决方案1.1问题的提出与简述电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。
开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。
伴随着人们对开关电源的进一步升级,低电压,大电流和高效率的开关电源成为研究趋势。
电子设备的小型化和低成本化使电源向轻,薄,小和高效率方向发展。
开关电源因其体积小,重量轻和效率高的优点而在各种电子信息设备中得到广泛的应用。
直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器(DC/DC Converter)。
直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流—交流—直流的情况,直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路。
利用不同的基本斩波电路进行组合,可构成复合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等,利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。
其中IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。
IGBT是MOSFET与GTR的复合器件。
它既有MOSFET易驱动的特点,输入阻抗高,又具有功率晶体管电压、电流容量大等优点。
其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。
所以用IGBT作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点,因此发展很快。
直流降压斩波电路主要分为三个部分,分别为主电路模块,控制电路模块,驱动电路模块,除了上述主要模块之外,还必须考虑电路中电力电子器件的保护,以及控制电路与主电路的电气隔离。
课程名称:电力电子技术题目:BUCK变换器设计一.设计目的1)通过对Buck变换器电路的设计,掌握降压电路的工作原理,提高学生运用科学理论知识能力、工程实践能力2)通过系统建模和仿真,掌握和运用MATLAB/SIMULINK工具分析系统的基本方法。
二、二、设计内容:1.电路功能介绍1)电路由主电路与控制电路组成:主电路主要环节:整流电路及保护电路;控制电路主要环节:触发电路、电压电流检测单元、驱动电路、检测与故障保护电路。
2)主电路电力电子开关器件采用晶闸管、IGBT或MOSFET。
3)系统具有完善的保护2. 系统总体方案确定3. 主电路设计与分析1)确定主电路方案2)主电路元器件的计算及选型4. 控制电路设计与分析1)功能单元电路设计2)触发电路设计3)控制电路参数确定5.仿真实验根据所设计的系统,利用仿真软件MATLAB建立模型并对系统进行仿真,分析系统所得到的波形。
6、动手实践在仿真所设计的系统的基础上,利用PROTEL软件绘出原理图,设计PCB印刷电路板,最后在电力电子实验室完成系统电路调试,分析所得到的结果。
三、设计要求:1.设计思路清晰,给出整体设计框图;2.单元电路设计,给出具体设计思路和电路;3.分析单元电路与总电路工作原理,给出仿真与实验结果波形;4.绘制总电路图;5.写出设计报告。
主要设计条件1.设计依据主要参数设直流电源电压为,输出电压,最大输出2710%E V =±15R U V =功率为,最小功率为。
晶体管导通饱和电阻为120W 10W ,保证整个工作范围内电感电流连续,输出纹波电压0.2sat R =Ω。
利用仿真软件搭建系统模型;在电力电子实验室100o U mV∆=对系统进行实验验证。
2. 可提供实验与仿真条件说明书格式1.课程设计封面;2.任务书;3.说明书目录;4.设计总体思路,基本原理和框图(总电路图);5.单元电路设计(各单元电路图);6.故障分析与电路改进、实验及仿真等。
编号XXXX大学毕业设计题目高频同步整流BUCK变换器的设计与仿真毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:XX大学本科毕业设计(论文)诚信承诺书本人郑重声明:所呈交的毕业设计(论文)(题目:)是本人在导师的指导下独立进行研究所取得的成果。
尽本人所知,除了毕业设计(论文)中特别加以标注引用的内容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写的成果作品。
作者签名:年月日(学号):高频同步整流BUCK变换器的设计与仿真摘要便携式电子产品的广泛应用,推动了开关电源技术的迅速发展。
因为开关电源具有体积小、重量轻以及功率密度和输出效率高等诸多优点,己经逐渐取代了传统的线性电源,随之成为电源芯片中的主流产品。
随着开关电源技术应用领域的扩大,对开关电源的要求也日益提高,高效率、高可靠性以及高功率密度成为趋势,这就对开关电源芯片设计提出了新的挑战。
本文首先概述了现有开关电源设计技术及其发展趋势,接着介绍了BUCK变换器的电路结构、工作原理及控制原理。
最后进行了芯片系统的仿真研究,其中首先介绍了所选芯片的性能特点及其经典电路图,然后利用LTSPICE进行了仿真验证。
Buck电路就是降压斩波电路,是基本的DC-DC电路之一。
用于直流到直流的降压变换。
随着电力电子技术在生活中的应用,Buck变换器在一些如计算机、精密仪器等高性能的 DC-DC 直流变换器中经常使用。
单个Buck变换器在进行大电流输出时,器件应力的增加,会产生效率和热量等方面的诸多问题。
此外,为了提高动态响应,需要去耦电容和大量的输出滤波电路,这样便会进一步增加系统的成本和体积。
因此,在低电压大电流的场合进行设计时,一般不会采用单个的Buck变换器。
熟悉了Buck变换器的工作原理,了解了交错并联技术的基本原理及其优点,并分析了两相交错并联 Buck 电路的工作过程,通过具体的实例说明了 Buck 变换器的设计过程,使用MATLAB仿真软件对设计的电路进行仿真印证,通过对单个Buck变换器与交错并联Buck变换器的仿真结果的比较,得出交错并联技术可以减小输出电流纹波和增大纹波频率,降低滤波电容和磁性元件的要求,提高变换器的功率密度。
关键词: Buck变换器,交错并联,MATLAB第一章概述 (3)第二章 Buck电路 (4)2.1 Buck电路原理图 (4)2.2 Buck电路工作原理 (4)2.3 Buck电路在应用中的局限 (5)第三章交错并联 (6)3.1 交错并联简介 (6)3.2 交错并联的优点 (6)3.3 多相交错并联的Buck变换器连接方式 (6)第四章基于大功率交错并联的Buck变换器设计及仿真 (8)4.1 MATLAB简介 (8)4.2 设计意义及目的 (8)4.3 方案设计及仿真结果比较 (8)4.3.1 单个Buck变换器设计及仿真 (9)4.3.2 两相交错并联Buck变换器设计及仿真 (9)4.3.3 反馈控制PWM波两相交错并联Buck变换器设计及仿真 (10)4.4 仿真过程中出现的问题及解决办法 (11)第五章结语 (12)第一章概述Buck 电路,也称Buck变换器,是最基本的拓扑结构之一。
1 概述直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。
其中,直接直流变流电路又叫斩波电路,它包括降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)、升降压斩波电路(Buck/Boost)、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路共六种基本斩波电路。
Buck/Boost升降压斩波电路同时具有Buck斩波电路和Boost斩波电路的特点,能对直流电直接进行降压或者升压变换,应用广泛。
本文将对Buck/Boost升降压斩波电路进行详细的分析。
RVDRVDRVD2 主电路拓扑和控制方式Buck/Boost 主电路的构成Buck/Boost 变换器的主电路与Buck 或Boost 变换器所用元器件相同,也由开关管、二极管、电感、电容等构成,如图1所示。
与Buck 和Boost 不同的是电感L 在中间,不在输出端也不在输入端,且输出电压极性与输入电压极性相反。
开关管也采用PWM 控制方式。
Buck/Boost 变换器也由电感电流连续和断续两种工作方式,但在实际应用中,往往要求电流不断续,即电流连续,当电路中电感值足够大时,就能使得电路工作在电流连续的状态下。
因此为了分析方便,现假设电感足够大,则在一个周期内电流连续。
图2-1 Buck/Boost 主电路结构图电流连续时有两个开关模态,即V 导通时的模态1,等效电路见图2(a );V 关断时的模态2,等效电路见图2(b )。
(a )V 导通(b)V关断,VD续流图2-2 Buck/Boost不同模态等效电路ttttt电感电流连续时的工作原理及基本关系电感电流连续工作时的工作主要波形见图2-3。
图2-3电感电流连续时的主要波形为了方便分析,假设电感、电容的值足够大,并且忽略电感的寄生电容。
电感电流连续工作时,Buck/Boost 变换器有V 导通和V 关断两种工作模态。
摘要当今消费市场中,便携式电子产品所占比重较大,这种产品要求电池体积小、重量轻、使用时间长。
高效、低压开关DC-DC转换器,通过提高电源转换效率及改进控制技术,达到了所需要求,因此被广泛应用于电子产品中。
直流—直流交变器(DC-DC Converter)的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。
直接直流变流电路为称斩波电路,他的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接电变为另一直流电。
这种情况下输入与输出之间不隔离。
间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称直-交-直电路。
本次课程设计主要采用直接直流变流电路,由直流稳压电路、BUCK斩波电路以及控制电路三个部分完成BUCK变换器的研究与设计。
课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目:BUCK变换器的研究与设计初始条件:输入电压:20~30V,输出电压:0-15V,输出负载电流:0.1~1A,工作频率:30KHz,采用降压斩波主电路。
要求完成的主要任务:1. 直流供电电源设计。
2. 降压斩波主电路设计(包括电路结构形式,全控型器件的选择)并讨论主电路的工作原理。
3.脉宽调制电路(如SG3525集成PWM控制器)及驱动电路设计。
4. 分析PWM控制原理及波形。
5.提供电路图纸至少一张。
课程设计说明书应严格按统一格式打印,资料齐全,坚决杜绝抄袭,雷同现象。
应画出单元电路图和整体电路原理图,给出系统参数计算过程,图纸、元器件符号及文字符号符合国家标准。
时间安排:2011.1.14~2011.1.15 收集资料,确定设计方案2011.1.16~2011.1.17 系统设计2011.1.18~2011.1.19 撰写课程设计论文及答辩指导教师签名:年月日引言 (4)第一章设计要求与方案 (2)1.1 设计要求 (2)1.2 方案确定 (3)第二章直流稳压电源设计 (3)2.1 设计要求 (3)2.2 直流稳压电源原理描述 (4)2.3 设计步骤及电路元件选择 (5)第三章Buck变换器设计 (5)3.1 Buck变换器基本工作原理 (9)3.2 Buck变换器工作模态分析 (9)3.3 Buck变换器参数设计 (11)第四章控制电路设计 (13)4.1控制电路原理 (13)4.2电路设计 (14)4.3 PWM控制原理与波形.................................................................. .. (15)第五章课程设计总结 (17)参考文献 (18)附图 (19)随着电力电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。
Sa b er 仿真作业Buck 变换器的设计与仿真1Buck变换器技术 ..................................................................... -2 -1.1Buck变换器基本工作原理 ....................................................... -2 -1.2Buck变换器工作模态分析....................................................... -2 -1.3Buck变化器外特性............................................................. -3 -2Buck 变换器参数设计................................................................. -5 -2.1Buck变换器性能指标 ........................................................... -5 -2.2Buck变换器主电路设计......................................................... -5 -2.2.1占空比 D .................................................................... - 5 -2.2.2滤波电感Lf .................................................................. - 5 -2.2.3滤波电容Cf .................................................................. - 6 -2.2.4 开关管Q的选取........................................................ -7 -2.2.5续流二极管D的选取..................................................... -7 -3Buck变换器开环仿真................................................................. -7 -3.1Buck变换器仿真参数及指标 ..................................................... -7 -3.2Buck变换器开环仿真结果及分析................................................. -8 -4Buck变换器闭环控制的参数设计....................................................... -9 -4.1闭环控制原理................................................................. -9 -4.2Buck变换器的闭环电路参数设计................................................. -10 -4.2.1Gvd(s)的传递函数分析 ................................................... -10 -4.2.2补偿环节Gc(s)的设计 ................................................... -12 -4.2.3补偿环节参数设计...................................................... -14 - 5Buck变换器闭环仿真............................................................... -18 -5.1Buck 变换器闭环仿真参数及指标................................................. -18 -5.2Buck变换器闭环仿真电路原理图................................................. -19 -5.3Buck变换器的闭环仿真结果与分析............................................... -19 -6总结............................................................................. -21 -1 Buck变换器技术1.1 Buck变换器基本工作原理Buck电路是由一个功率晶体管开关Q与负载串联构成的,其电路如图功率晶体管Q的导通与截止,当晶体管导通时,若忽略其饱和压降,输出电压管截止时,若忽略晶体管的漏电流,输出电压为0。
本科毕业设计(论文)摘要在很多需要DC-DC变换的系统,往往需要研制一种宽电压输入范围的DC/DC 变换器电源。
在充分考虑不同DC/DC变换器拓扑特点的基础上,本文选用了Buck-Boost作为系统的主电路拓扑。
本文介绍了Buck-Boost电路的工作原理,建立了理想Buck-Boost模型,对整个电路进行了主电路参数设计,并在此基础上进行了电压电流闭环参数设计的研究,实现了控制理论中零极点补偿法在电力电子中的应用,。
接着,本文在protel 中进行了原理图和PCB图的设计,在设计的硬件电路上进行了测试实验。
为了使系统能够在宽电压输入范围内稳定正常工作,本文实现了提出的闭环参数设计方法,指出了该方法的优点,并通过实验验证了该方法的正确性。
关键词:Buck-Boost;DC/DC变换器本科毕业设计(论文)毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。
据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。
对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。
作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。
有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。
学校可以公布论文(设计)的全部或部分内容。
保密的论文(设计)在解密后适用本规定。
作者签名:指导教师签名:日期:日期:本科毕业设计(论文)注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
毕业设计(论文)课题名称高频变压器的建模与仿真学生姓名学号系、专业电气工程系、0级电气工程及其自动化指导教师职称讲师2013 年5月15日摘要高频变压器是一种含有电力电子变换器且通过变压器实现磁耦合的变换装置,它通过电力电子变换技术和变压器实现电力系统中的电压变换和能量传递。
其区别于传统电力变压器突出的特点在于体积小、重量轻,可以实现对变压器原副方电压幅值和相位的灵活控制,可以满足未来电力系统的很多新的要求。
因此,对其拓扑结构和控制策略开展研究是很有必要的,具有十分重要的理论意义和应用价值。
本文首先介绍了高频变压器的几种典型实现方案,即AC/AC、AC/DC/AC 两种拓扑形式。
其中重点介绍了AC/DC/AC拓扑形式,并对其各组成部分的拓扑结构与控制策略进行了详细的分析。
对新型高频变压器的原边实施了SPWM 调制策略,并对这种方案进行了Matlab/sirnulink仿真研究,并对仿真结果进行了分析,验证了方案的正确性。
关键词:高频变压器;拓扑;建模仿真AbstractThe high一frequency Transformer is a convertible device which contains power Electronic converter and makes use of transformer realizing the magnetism coupling , it converts voltage and transfers energy by Power electronic technology and the high 一frequency transformer Its Prominent characteristic is smaller And lighter than the traditional transformer, a flexible control for the main and Subsidiary side voltage amplitude and Phase can be also achieved respectively, it can Satisfy many new requests of future Power system. Therefore, it is necessary that Study its topology structure and the control schemes.Firstly, some typical schemes of the high一frequency Transformer are Generalized in this paper, and the topology structure and control strategy of high一frequency Transformer Subassembly are analyzed in strategy has been Put in the main side of high一frequency Transformer, under the grid with non-ideal brought Out the feedforward and feedback compensation control, and carried out Matlab/Simulink emulation.Key words:High一Frequency Transformer (HFT);Topology;Modeling and simulation目录摘要 (Ⅰ)Abstract (Ⅱ)1 绪论 (1) (1) (3) (4)本文的主要工作 (5)2 高频变压器的拓扑结构及工作原理 (6)高频变压器的工作原理 (6)高频变压器的拓扑结构 (9)3 高频变压器的电路结构及控制方式 (12)高频变压器的基本结构 (12)输入级电路及控制方式 (12)隔离级电路及控制方式 (18)输出级电路及控制方式 (21)4 建模仿真及结果分析 (28)MATLAP/Simulink简介 (28)建模仿真及分析 (29)总结 (33)参考文献 (34)致谢 (37)1绪论我国电网建设己经颇具规模,但总体而言结构还是较为薄弱,加上装机容量不足,负荷高峰时段电力系统往往处于零备用运行,电网安全受到极大威胁。
重庆大学本科学生毕业设计(论文)Buck电路的软开关设计和仿真摘要在当今节能型社会中,如何提高电源的效率成为电源技术研究的重点。
早期的开关电源均采用硬开关技术,在开通或关断过程中伴随着较大的损耗,并且开关频率越高,开关损耗就越大。
而高频化是减小开关电源体积的重要途径,但是硬开关电源中高频化必然带来电源效率的降低,因此硬开关电源不能适应高频化的发展趋势。
这样采用软开关技术的电源应运而生,它是解决高频化和提高电源效率二者矛盾的有效手段。
本文对采用N沟道增强型MOSFET作开关器件的Buck电路进行了软开关的设计和仿真。
用到的方案是准谐振充放电模式,使MOSFET漏源极两端的电压能在栅极触发脉冲到来前变为零,使开关管能进行零电压开通。
这样就能有效地实现Buck电路的软开关,提高电路的效率。
最后利用Saber仿真软件,对设计的软开关控制策略进行了仿真验证,结果与预期相符合。
在得到此方案的顺利运行后,考虑到输出支路电感电流存在反向的问题,使得输出电流纹波较大,又运用叠加原理的思路,设计了另一方案,从而有效地避免了输出电流反向的问题。
关键词:降压变换器,软开关,Saber仿真ABSTRACTIn today's energy-saving type society, how to improve the efficiency of power supply becomes an important aspect of power technology research. In early power supply research times hard switching technology was adopted. The switching-on or switching-off process accompanied with great loss, and the higher switching the frequency is, the greater the switching loss is. The high operating frequency is an important way to reduce the volume, so the hard switching technology doesn't suit it. Then the soft switching technology appears. It is a good method to solve the high operating frequency and improving the efficiency problem.This article presents a soft switching method of the Buck converter which uses the N channel enhancement type MOSFET as the switch and the simulation. The design is quasi resonant charging and discharging mode which makes the D-S voltage become zero before the gate trigger pulse come, so the MOSFET can operate in a zero voltage turn-on mode. In this way, it can effectively realize the soft switching of Buck converter and improve the efficiency of the circuit. Finally I use the saber software to do the simulation and receive the expected result. After that, considering the reverse slip output inductor current problem which makes the output current ripple large, I present another method which can avoid the problem.Key words:Buck converter, soft switching, saber simulation目录摘要 (I)ABSTRACT.................................................. I I 1 绪论. (1)1.1 研究背景 (1)1.2 研究的目的及意义 (1)1.3 研究的主要内容 (2)2 Buck电路软开关电路设计及原理分析 (3)2.1 Buck电路软开关设计方案 (3)2.2 原理分析 (5)2.3 参数计算与设置 (9)3 Saber仿真验证 (10)3.1 Saber仿真软件的组成 (10)3.2 Saber仿真软件的特征 (10)3.3 Saber的分析功能 ................................................................................ 错误!未定义书签。
编号XXXX大学毕业设计题目高频同步整流BUCK变换器的设计与仿真毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日指导教师评阅书评阅教师评阅书教研室(或答辩小组)及教学系意见高频同步整流BUCK变换器的设计与仿真摘要便携式电子产品的广泛应用,推动了开关电源技术的迅速发展。
因为开关电源具有体积小、重量轻以及功率密度和输出效率高等诸多优点,己经逐渐取代了传统的线性电源,随之成为电源芯片中的主流产品。
随着开关电源技术应用领域的扩大,对开关电源的要求也日益提高,高效率、高可靠性以及高功率密度成为趋势,这就对开关电源芯片设计提出了新的挑战。
本文首先概述了现有开关电源设计技术及其发展趋势,接着介绍了BUCK变换器的电路结构、工作原理及控制原理。
最后进行了芯片系统的仿真研究,其中首先介绍了所选芯片的性能特点及其经典电路图,然后利用LTSPICE进行了仿真验证。
关键词:开关电源,BUCK变换器,同步整流,LTSPICE仿真The Design and Simulation of the High-Frequency Synchronous BUCK ConvertersAbstractThe widely use in portable electronic products promoted the rapid development of switching power supply technology. The switching power converters are increasingly replacing traditional linear power supply due to its small space, light weight, low power dissipation, high efficiency, adoption and broad applicability, etc. As the application field expanded, switching power converters have to become more efficient and more reliable with high power density to meet such a stringent requirement. The article introduces the status of switching power converters and its development trend, then shows the circuit of BUCK converters, and then analyzes its working principle and control theory. Finally, the simulation of the BUCK chip was carried out. This section firstly introduces the performance characteristics of the selected chip and its classic circuit, then shows the results of the simulation.Key Words:Switching power supply; BUCK converter; Synchronous rectification; Simulation based on LTSPICE目录摘要 (ⅰ)Abstract (ⅱ)第一章引言 (1)1.1 课题的背景和研究意义 (1)1.2 开关电源技术研究现状 (2)1.2.1 半导体功率器件 (2)1.2.2 软开关技术 (2)1.2.3 同步整流技术 (3)1.2.4 电压调节模块 (3)1.3 开关电源技术发展趋势 (4)1.3.1 高效率 (4)1.3.2 低压大电流 (4)1.3.3 智能化设计 (5)1.3.4 标准化工作 (5)1.4 论文结构和主要内容 (5)第二章同步整流BUCK变换器原理 (7)2.1 BUKC变换器主电路结构和工作原理 (7)2.2 BUKC变换器稳态分析 (8)2.2.1 连续导通模式(CCM) (8)2.2.2 不连续导通模式(DCM) (11)2.2.3 CCM和DCM的临界条件 (14)2.3 BUKC变换器控制原理 (15)2.3.1 脉冲宽度调节(PWM) (16)2.3.2 脉冲频率调节(PFM) (18)第三章降压型开关电源芯片的仿真研究 (20)3.1 LTC3854特点及典型应用电路 (20)3.2 仿真及结果分析 (21)第四章结语 (24)参考文献 (25)致谢 (26)第一章引言1.1 课题的背景和研究意义随着电子技术的快速发展,电子设备的种类越来越多,电子设备与人们的工作、生活的关系也日益密切。
任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。
传统的晶体管串联调整稳压电源是连续控制的线性稳压电源。
这种传统稳压技术比较成熟,并且已有大量集成化的线性稳压电源模块,具有稳定性能好、输出纹波电压小、可靠性高等优点。
但由于调整管静态损耗大,需要安装一个很大的散热器给它散热。
而且由于变压器工作在50 Hz的工频上,所以其重量较大。
又因为调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间需承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有45 %左右[1]。
受这些缺点的限制,线性稳压电源很难满足现代电子设备发展的要求。
20世纪50年代,美国宇航局以小型化、重量轻为目标,开发了开关电源。
经过近半个世纪的发展,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代线性稳压电源并得到了广泛应用[2],各种电池供电的电子产品如照相机、摄像机、录像机、个人数字助理、手机、手提电脑都需要DC/DC 变换器等开关电源芯片[3]。
20世纪80年代,计算机全面实现开关电源化,率先完成计算机的电源换代。
20世纪90年代,开关电源在电子、电气设备、家电领域得到了广泛的应用,开关电源技术进入快速发展时期[4]。
对于非隔离的DC/DC开关电源,按照电路功能划分,有降压式(BUCK)、升压式(BOOST),还有升降压式(BUCK-BOOST)等。
其中品种最多,发展最快的当属降压式(BUCK)。
开关电源技术于20世纪80年代引入我国,随着计算机、通讯、汽车等行业的迅速发展,我国开关电源市场不断增长,开关电源控制器芯片的研究已成为国内功率电子学领域中颇受关注的热点。
我国目前能源紧缺,而电源行业又是一个与能源消耗密切相关的行业,因此我们在设计DC/DC开关电源产品时,转换效率必须作为一个重要的指标加以考虑。
尤其是随着采用3.6 V锂离子电池作为电源的消费类电子产品市场不断扩大,且功能和性能变得更多和更高,对适用于这类产品的BUCK变换器的性能提出了更高的要求。
因此研究BUCK变换器的性能具有重要的理论和现实意义。
1.2开关电源技术研究现状1.2.1 半导体功率器件开关电源变换器最早出现在二十世纪五十年代,只有到了七十年代,随着现代功率半导体器件发展及其稳定性提高,开关电源变换器才得以广泛应用。
功率半导体器件仍然是电力电子技术发展的关键,电力电子技术的进步必须依靠不断推出的新型电力电子器件。
功率MOSFET管因快速性较好,驱动功率小,成本低,易适用于中小功率的场合而得到广泛应用[5][6]。
但是MOSFET只能应用于中小功率产品,为了降低通态电阻,美国IR公司采用提高单位面积内的原胞个数的方法。
如其开发的一种HEXFET场效应管,其沟槽(Trench)原胞密度已达每平方英寸1.12亿个的世界最高水平,通态电阻R可达3 mΩ。
功率MOSFET,500 V TO220封装的HEXFET自1996年以来,其通态电阻以每年50 %的速度下降。
IR公司还开发了一种低栅极电荷(Qg)的HEXFET,使开关速度更快,同时兼顾通态电阻和栅极电荷两者同时降低。
对于肖特基二极管的开发,最近利用Trench结构有望出现压降更小的肖特基二极管,称作TMBS沟槽MOS势垒肖特基,而有可能在极低电源电压应用中与同步整流的MOSFET竞争。
1.2.2 软开关技术脉宽调制(PWM)开关电源按硬开关模式工作,开关过程中,开关器件的电压和电流波形有交叠,因而引起较大的开关损耗。
PWM开关电源高频化可以缩小体积、重量,但频率越高,开关损耗就越大。
为此必须研究开关电压和电流波形不交叠的技术,即所谓的零电压开关(ZVS)和零电流开关(ZCS)技术,或称为软开关技术(相对于PWM 硬开关技术而言)[7]。
1994年2月,IEEE电力电子学会组织会议曾经指出,高功率密度DC-DC零电压开关变换器和开关器件性能、无源元件性能以及封装技术都有很大关系,并预测在不久的将来,在保证可靠性增加一倍的基础上,功率变换器成本将降低一半,功率密度可提高一倍。