第十二章第二节二重积分的应用共17页
- 格式:ppt
- 大小:1.00 MB
- 文档页数:9
二重积分的应用§ 二重积分的应用定积分应用的元素法也可推广到二重积分,使用该方法需满足以下条件:1、所要计算的某个量U 对于闭区域D 具有可加性(即:当闭区域D 分成许多小闭区域σd 时, 所求量U 相应地分成许多部分量U ?,且∑?=U U )。
2、在D 内任取一个直径充分小的小闭区域σd 时, 相应的部分量U ?可近似地表示为σd y x f ),(, 其中σd y x ∈),(, 称σd y x f ),(为所求量U ?的元素, 并记作dU 。
(注: σd y x f ),(的选择标准为: σd y x f U ),(-?是σd 直径趋于零时较σd 更高阶的无穷小量)3、所求量U 可表示成积分形式U f x y d D=??(,)σ一、曲面的面积设曲面S 由方程z f x y =(,)给出,D xy 为曲面S 在xoy 面上的投影区域,函数f x y (,)在D xy 上具有连续偏导数f x y x (,)和f x y y (,),现计算曲面的面积A 。
在闭区域xy D 上任取一直径很小的闭区域σd (它的面积也记作σd ),在σd 内取一点),(y x P ,对应着曲面S 上一点)),(,,(y x f y x M ,曲面S 在点M 处的切平面设为T 。
以小区域d σ的边界为准线作母线平行于z 轴的柱面, 该柱面在曲面S 上截下一小片曲面,在切平面T 上截下一小片平面,由于d σ的直径很小,那一小片平面面积近似地等于那一小片曲面面积。
曲面S 在点M 处的法线向量( 指向朝上的那个 )为ρn f x y f x y x y =--{(,),(,),}1它与z 轴正向所成夹角γ的方向余弦为cos (,)(,)γ=++1122f x y f x y x y而dA d =σγcos所以dA f x y f x y d x y =++?122(,)(,)σ这就是曲面S 的面积元素, 故σd y x f y x f A xyD y x ??++=),(),(122故AzxzydxdyD xy=+?+122【例1】求球面x y z a 2222++=含在柱面x y ax22+=(a>0) 内部的面积。
目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)前言 (1)1.二重积分的概念 (1)1.1二重积分的定义 (1)1.2可积条件 (2)1.3可积类 (2)1.4二重积分的性质 (2)2.二重积分的计算方法 (3)2.1直角坐标系下的二重积分的计算 (3)2.2二重积分的变量变换 (4)2.2.1普通情况下的变换 (4)2.2.2极坐标计算二重积分 (4)3.广义二重积分 (6)4.二重积分的应用 (6)4.1体积 (7)4.2曲面的面积 (8)4.3其它 (8)参考文献 (9)二重积分的计算与应用学生姓名:学号:数学与信息科学学院数学与应用数学专业指导教师:职称:摘要:研究了二重积分的几何意义,概念,性质以及在直角坐标系及极坐标下的计算方法,并给出了计算公式及相关例题,最后总结了二重积分的计算方法.关键词:二重积分;直角坐标系;极坐标;曲顶柱体The calculation and application of double integral Abstract : This paper mainly studies the geometric significance of double integral, the concept, nature and calculation method under the rectangular coordinate system and polar coordinate calculation method.Key Words: Double integral; The rectangular coordinate system; The polar coordinate; Curved top cylinder前言我们已经很熟悉定积分的一些性质及计算方法.同样,二重积分在实际中应用广泛,且有直观的几何解释,所不同的是现在讨论的对象为定义在平面区域上的二元函数.这类问题在物理学与工程技术中也常遇到,如求非均匀平面的质量、质心、转动惯量等.二重积分的计算的基本途径是将其转化成二次积分计算,计算二重积分时选择积分顺序,交换积分次序以及转换坐标系都是至关重要的问题.本文对二重积分的计算方法进行了全面的概括和总结,并对各种计算方法的选择进行了认真地研究,为准确的计算二重积分提供有效的帮助.1.二重积分的概念1.1[]2二重积分的定义设(,)f x y是定义在可求面积的有界闭区域D上的函数.J是一个确定的数,若对任给的某个正数ε,总存在某个正数δ,是对于D的任何分割T,当它的细度||T||时,属于T 的所有积分和都有1(,)||ni i i i f J ξσσε=∆-<∑则成(,)f x y 在D 上可积,数J 称为(,)f x y 的二重积分,记为(,)σDJ f x y d =⎰⎰.1.2[]1可积条件二重积分的可积条件与定积分类似(1)必要条件:函数(,)f x y 在D 上可积,则(,)f x y 在D 上必有界. (2)充要条件:①函数(,)f x y 在D 上可积s S =⇔(其中S ,s 分别为在上的上积分和下积分). ②函数(,)f x y 在D 上可积⇔对0>∀ε,存在分割T ,使得()().ε<-T s T S③函数(,)f x y 在D 上可积⇔对0>∀ε,存在分割T ,使得.1εσω<∑=∆ni i i1.3[]1可积类(1)有界闭区域D 上的连续函数必可积.(2)若(,)f x y 在有界闭区域D 上有界,且仅在D 内有限条光滑曲线上不连续,则(,)f x y 在D 上可积.1.4[]2二重积分的性质性质4.1(线性性) (,)σ(,)σDDkf x y d k f x y d =⎰⎰⎰⎰.性质4.2(线性性)[](,)(,)σ=(,)σ(,)σDDDf x yg x y d f x y d g x y d ±±⎰⎰⎰⎰⎰⎰.性质4.3(分段可加性)1212(,)σ=(,)σ+(,)σD D D D f x y d f x y d f x y d +⎰⎰⎰⎰⎰⎰.性质4.4(保不等式性) 设(,),(,)(,)x y D f x y g x y ∀∈<, 则 (,)σ(,)σDDf x y dg x y d <⎰⎰⎰⎰.性质4.5 设(,)m f x y M ≤≤,则(,)σDm f x y d M σσ≤≤⎰⎰其中σ表示D 的面积.性质4.6 (二重积分的中值定理)设函数(,)f x y 在闭区域D 上连续,D S 是D 的面积,则∃(ζ,η)∈D 使得(,)Df x y ⎰⎰σd =(,)f ξηDS.其中中值定理的几何意义:以D 为底,z=(,)f x y ((,)f x y ≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于(,)f x y 在区域D 某点的函数值(,)f ξη.2.二重积分的计算方法定理1 设在矩形区域[][],,D a b c d =⨯上可积,且对每个[],x a b ∈积分存在,则累次积分(,)b d acdx f x y dy ⎰⎰也存在,且(,)σ=(,)b d acDf x y d dx f x y dy ⎰⎰⎰⎰.另外,同理(,)σ=(,)db caDf x y d dy f x y dx ⎰⎰⎰⎰.2.1[]4直角坐标系下的二重积分的计算此方法的关键就是化二重积分为累次积分,对于一般区域,通常可以分为以下两种区域进行计算:①X 型区域:平面点集12{(,)|()(),},D x y y x y y x a x b =≤≤≤≤ 则化二重积分为累次积分21()()(,)σ(,)bx a x Dy f x y d dx f x y dy y =⎰⎰⎰⎰. ②Y 型区域:平面点集{12(,)|()(),}D x y x y x x y c y d =≤≤≤≤则化二重积分为累次积分21()()(,)σ=(,)dy c y Dx f x y d dy f x y dx x ⎰⎰⎰⎰. 例1 设D 是由直线0,1x y ==及x y =围成的区域,试计算22()y DI x e d σ-=⎰⎰.解 利用Y 型区域积分:231123001()3yy y I dy x e dx y e dy --==⎰⎰⎰.由分部积分法得 1163I e=-. 例2 计算二重积分Dd σ⎰⎰,其中D 为由直线2,2y x x y ==及3x y +=所围的三角形区域.解 利用X 型区域,则相应的221()2(01),()3(12),2x y x x x y x x x y =≤≤=-<≤=所以 1223012212x x x x DD D d d d dx dy dx dy σσσ-=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰1201(2)(3)22x xx dx x dx =-+--⎰⎰ =32. 2.2[]5 二重积分的变量变换定理2 设(,)f x y 在有界闭区域D 上可积,变换T: (,),(,)x u v y u v ==将uv 平面由按段光滑闭曲线所围成的闭区域∆一对一的映成xy 平面上的闭区域D ,函数(,),(,)x u v y u v 在∆内分别具有一阶连续偏导数且它们的行列式 (,)0(,)(,)x y J u v u v ∂=≠∈∆∂, 则 (,)((,),(,))|(,)|D f x y dxdy f x u v y u v J u v dudv ∆=⎰⎰⎰⎰. 2.2.1普通情况下的变换例3 求抛物线22,y mx y nx ==和直线,y x y x αβ==所围成的区域D 的面积S (0,0m n αβ<<<<).解 D 的面积DS dxdy =⎰⎰为了简化积分区域,做变换2,,u ux y v v==则[][],,m n αβ∆=⨯.由于4(,)(,)(,)x y uJ u v u v v ∂==∈∆∂,所以 22334433()()6n m Du dv n m S dxdy dudv u du v v βαβααβ∆--====⎰⎰⎰⎰⎰⎰. 2.2.2极坐标计算二重积分当积分区域是圆域或圆域的一部分时,或者背积函数的形式为22()f x y +时,采用极坐标变换T :cos ,sin (0,02)x r y r r θθθπ==≤<+∞≤≤, 则 (,)(,)(,)x y J r r u v θ∂==∂.定理3 设(,)f x y 满足定理1的条件,且在极坐标变换下xy 平面上有界闭区域D 与r θ平面上区域∆对应,则成立(,)(cos ,sin )Df x y dxdy f r r rdrd θθθ∆=⎰⎰⎰⎰.二重积分在极坐标下化为累次积分有以情况:1.θ型区域:若原点o D ∈,且xy 平面上射线θ=常数与D 的边界至多交与两点,则必可表示为12()(),r r r θθαθβ≤≤≤≤, 于是有 2()1()(,)(cos ,sin )r r Df x y dxdy d f r r rdr βθαθθθθ=⎰⎰⎰⎰.R 型区域:若平面上的圆r =常数与D 的边界至多交与两点,则∆必可表示为1212()(),r r r r r θθθ≤≤≤≤,于是有 2211()()(,)(cos ,sin )r r Dr f x y dxdy rdr f r r d r θθθθθ=⎰⎰⎰⎰.2.若原点为D 的内点,D 的边界的极坐标方程为()r r θ=,则∆必可表示成为0(),02r r θθπ≤≤≤≤,于是有 2()0(,)(cos ,sin )r Df x y dxdy d f r r rdr πθθθθ=⎰⎰⎰⎰.3.若原点O 在D 的边界上,则∆为0(),r r θαθβ≤≤≤≤, 于是有 ()0(,)(cos ,sin )r Df x y dxdy d f r r rdr βθαθθθ=⎰⎰⎰⎰.例4 计算I=D其中D 为圆域.122≤+y x解 由于原点为D 的内点故有210Dd πθ=⎰⎰[].212010202πθθππ=--=⎰⎰d d r例5 求球体2222x y z R ++≤被圆柱体22x y Rx +=所割下部分的体积(称为维维安尼体(Viviani )).解 由所求立体的对称性,只要求出第一卦限的部分体积后乘以4即可.在第一卦限内的体积是一个曲顶柱体,其底为xy 平面内由0y ≥和22x y Rx +=所确定的区域,曲顶的方程为z =所以4DV σ=.其中D={}22(,)|0,x y y x y Rx ≥+≤,用极坐标变换后有cos33322004424(1sin )()3323R V d R d R ππθπθθθ==-=-⎰⎰⎰.3[]4.广义二重积分若在无界区域D 上(),0,≥y x f 则()σd y x f D⎰⎰,收敛⇔在D 的任何有界子区域上f 可积,且积分值有上界.例6 证明反常积分σd e Dy x⎰⎰+-)(22收敛,其中[)[);,0,0+∞⨯+∞=D 并由此计算概率积分.02dx e x ⎰+∞-证明 设(),,)(22y xe y xf +-= 则显然()y x f ,在[)[)+∞⨯+∞=,0,0D 上非负.设,0,0,:222≥≥≤+y x R y x D R 则).1(4r 2222020)(R Rr Dy x e e d d e--+--==⎰⎰⎰⎰πθσπ显然对D的任何有限子集'D ,只要R 充分大,总可使得,'R D D ⊂ 于是有.4'22'22)()(πσσ≤≤⎰⎰⎰⎰+-+-d e d e Dy xDy x即广义积分σd e Dy x⎰⎰+-)(22收敛.记,2dx e I x ⎰+∞-=则.))(()(022222dxdy e dy e dx e I Dy xy x ⎰⎰⎰⎰+-+∞-+∞-== 其中[)[),,0,0:+∞⨯+∞D 做极坐标代换,0,20,sin ,cos +∞<≤≤≤⎩⎨⎧==r r y r x πθθθ 则,4r 02022πθπ==⎰⎰∞+-dr e d I r .202π==⎰∞+-dx e I x 4.二重积分的应用二重积分在几何、物理等许多学科中有着广泛的应用,这里重点介绍它在几何方面的应用. 4.1体积根据二重积分的几何意义,⎰⎰Dd y x f σ),(表示以),(y x f 为曲顶,以),(y x f 在xOy坐标平面的投影区域D 为底的曲顶柱体的体积.因此,利用二重积分可以计算空间曲面所围立体的体积. 例7[]6 求椭球面1222222=++cz b y a x 所围之椭球的体积.解 由于椭球体在空间直角坐标系八个卦限上的体积是对称的.令D 表示椭球面在xOy 坐标面第一象限的投影区域,则D ,0,0,1),(2222⎭⎬⎫⎩⎨⎧≥≥≤+=y x b y a x y x体积.),(8⎰⎰=Ddxdy y x z V 作广义极坐标变换θθsin ,cos br y ar x ==,则此变换的雅可比行列式abr J =,与D 相对应的积分区域{},20,10),(*πθθ≤≤≤≤=r r D 此时,1),(2r c y x z z -==从而 abrdr r c d drd J br ar z V D ⎰⎰⎰⎰-==2*1218)sin ,cos (8πθθθθ.34128102abc dr r r abc ππ⎰=-⋅= 例8[]6 求球面+2x 2224a z y =+与圆柱面)0(222>=+a ax y x 所围立体的体积.图1解 由对称性(图1(a )给出的是第一卦限部分).44222⎰⎰--=Ddxdy y x a V其中D 为半圆周22x ax y -=及x 轴所围成的闭区域(图1(b )).在极坐标系中,与闭区域D 相应的区域*D {},20,cos 20),(πθθθ≤≤≤≤=a r r 于是⎰⎰⎰⎰-=-=Da rdr r a d rdrd r a V 20cos 2022224444πθθθ=.)322(332)sin 1(33220333⎰-=-ππθθa d a4.2曲面的面积设曲面S 的方程为),,(y x f z = 它在xOy 面上的投影区域为,xy D 求曲面S 的面积.A若函数),(y x f z =在域xy D 上有一阶连续偏导数,可以证明,曲面S 的面积.),(),(122dxdy y x f y x f A xyD y x ⎰⎰'+'+=(1)例9 计算抛物面22y x z +=在平面1=z 下方的面积.解 1=z 下方的抛物面在xOy 面的投影区域xy D {}.1),(22≤+=y x y x又,2x z x =',2y z y =' 221y x z z '+'+=,44122y x ++ 代入公式(1)并用极坐标计算,可得抛物面的面积 ⎰⎰⎰⎰+=++=xyxyD D rdrd r dxdy y x A *22241441θ=).155(6)41(201212-=+⎰⎰πθπrdr r d如果曲面方程为),(z y g x =或),(z x h y =,则可以把曲面投影到yOz 或xOz 平面上,其投影区域记为yz D 或xz D ,类似地有.),(),(122dydz z y g z y g A yzD zy ⎰⎰'+'+= 或.),(),(122dxdz x z h x z h A xzD z x⎰⎰'+'+= 4.3其它例10[]4 平均利润 某公司销售商品Ⅰx 个单位,商品Ⅱy 个单位的利润),(y x P .5000)100()200(22+----=y x现已知一周内商品Ⅰ的销售数量在150~200个单位之间变化,一周内商品Ⅱ的销售数量在80~100个单位之间变化.求销售这两种商品一周的平均利润.解 由于y x ,的变化范围{},10080,200150),(≤≤≤≤=y x y x D 所以D 的面积.10002050=⨯=σ 由二重积分的中值定理,该公司销售这两种商品一周的平均利润为[]σσσd y x d y x P DD⎰⎰⎰⎰+----=5000)100()200(10001),(122 []dy y x dx 5000)100()200(100012210080200150+----=⎰⎰ dx y y y x 100803220015050003)100()200(10001⎥⎦⎤⎢⎣⎡+----=⎰ 20015020015023292000)200(2030001⎰⎥⎦⎤⎢⎣⎡+--=x x dx 4033300012100000≈=(元). 参考文献:[1] 赵树原,胡显佑,陆启良.微积分学习与考试指导[M] .北京:中国人民大学出版社, 1999. [2] 华东师范大学数学系.数学分析(第三版)[M]. 北京:高等教育出版社,2004. [3] 刘玉琏,傅沛仁等.数学分析讲义(第四版)[M]. 北京:高等教育出版社,2003. [4] 周应编著. 数学分析习题及解答[M]. 武汉:武汉大学出版社,2001. [5] 胡适耕,张显文编著. 数学分析原理与方法[M].北京:科学出版社,2008. [6] 吴良森等编著. 数学分析习题精解[M].北京:科学出版社,2002.。
第二节 二重积分的计算方法教学目的:利用直角坐标系把二重积分化为二次积分 教学重难点:将积分区域用不等式组表示 教 法:讲授 课 时:4仅仅依靠二重积分的定义及其性质,不可能对一般的二重积分进行计算。
本节介绍一种二重积分的计算方法,这种方法是把二重积分化为两次单积分(即两次定积分)来计算。
一、利用直角坐标系计算二重积分我们首先来考虑直角坐标系下面积元素σd 的表达形式。
在二重积分的定义中对区域D 的分割是任意的,极限∑=→∆ni i i i f 10),(lim σηξλ都存在,那么对于区域进行特殊分割该极限也应该存在。
因此,在直角坐标系下,我们用平行于x 轴和y 轴的两族直线把区域D 分割成许多小区域(图10—4)。
除靠区域D 边界曲线的一些小区域外,其余的都是小矩形区域。
当这些小区域的直径的最大者λ→0时,这些靠区域D 边界的不规则的小区域的面积之和趋于0。
因此,第i 个小矩形区域i σ∆的面积k j i y x ∆⋅∆=∆σ。
因此,直角坐标系下面积元素dxdy d =σ。
于是二重积分的直角坐标形式为⎰⎰⎰⎰=DDdxdy y x f d y x f ),(),(σ。
由二重积分的几何意义知道,如果0),(≥y x f ,⎰⎰Dd y x f σ),(的值等于一个以D 为底、以曲面),(y x f z =为顶的曲顶柱体的体积。
下面我们用定积分的微元法来推导二重积分的计算公式。
若积分区域D 可用不等式组表示为⎩⎨⎧≤≤≤≤)()(21x y x b x a ϕϕ 如图10—5,选x 为积分变量,x ∈[a ,b],任取小区间[x ,dx x +]⊂ [a ,b]。
在x 轴上分别过点x 、dx x +作垂直于x 轴的平面,设)(x A 表示过点x 垂直x 轴的平面与曲顶柱体相交的截面的面积,则小薄片的体积近似等于以)(x A 为底、dx 为高的柱体的体积,即体积元素 dx x A dV )(=该截面是一个以区间)](),([21x x ϕϕ为底边、以曲线),(y x f z =(x 固定)为曲边的曲边梯形,因此⎰=)()(21),()(x x dy y x f x A ϕϕ所以⎰⎰⎰=ba Ddx x A d y x f )(),(σ=dx dy y x f x x ba ]),([)()(21⎰⎰ϕϕ,即dx dy y x f d y x f x x b a D]),([),()()(21⎰⎰⎰⎰=ϕϕσ。
第二节二重积分的计算二重积分是微积分中的重要内容之一,用于计算在二维区域上的函数的平均值、面积、质心等物理量。
本文将介绍二重积分的计算方法,并以具体的例子说明。
在介绍二重积分的计算方法之前,我们先来回顾一下一重积分。
一重积分是对一维区间上的函数进行求和的过程。
对于一维区间[a,b]上的函数f(x),可以将区间[a,b]分成无数个小区间,然后计算每个小区间上的函数值与区间长度的乘积,并将所有结果相加。
数学表示为:∫f(x)dx = lim(n->∞) Σ f(xi)Δx其中lim(n->∞)表示极限,Σ表示求和,xi表示区间的随机点,Δx表示区间的长度。
而二重积分是对二维区域上的函数进行求和的过程。
对于二维区域D 上的函数f(x,y),可以将区域D分成无数个小区域,然后计算每个小区域上的函数值与小区域面积的乘积,并将所有结果相加。
数学表示为:∬f(x,y)dxdy = lim(m,n->∞) Σ Σ f(xi,yj)ΔxΔy其中lim(m,n->∞)表示极限,Σ表示求和,xi和yj表示区域的随机点,Δx和Δy分别表示小区域在x轴和y轴方向上的长度。
二重积分的计算方法有两种:直角坐标系下的二重积分和极坐标系下的二重积分。
首先介绍直角坐标系下的二重积分的计算方法。
在直角坐标系下,二重积分的计算可以通过将区域D投影到x轴和y轴上得到:∬f(x,y)dxdy = ∫[a,b]∫[c,d]f(x,y)dxdy其中[a,b]是区域D在x轴上的投影区间,[c,d]是区域D在y轴上的投影区间。
接下来我们以具体的例子说明直角坐标系下的二重积分的计算方法。
考虑函数f(x,y)=x^2+y^2在区域D:0≤x≤1,0≤y≤2上的二重积分的计算。
首先我们将其投影到x轴和y轴上,得到[a,b]=[0,1]和[c,d]=[0,2]。
然后我们可以计算二重积分:∬f(x,y)dxdy = ∫[0,1]∫[0,2](x^2 + y^2)dxdy内层积分∫(x^2 + y^2)dx的结果为(x^3/3 + xy^2),[0,1] = (1/3 + y^2/3),将其带入到外层积分∫(1/3 + y^2/3)dy中,得到:∫[0,2](1/3 + y^2/3)dy = (y/3 + y^3/9),[0,2] = (2/3 + 8/9)- (0/3 + 0/9) = 2/3 + 8/9 = 26/9所以,函数f(x,y)=x^2+y^2在区域D:0≤x≤1,0≤y≤2上的二重积分的结果为26/9接下来我们介绍极坐标系下的二重积分的计算方法。