误差及数据处理(二章).
- 格式:ppt
- 大小:1.14 MB
- 文档页数:15
第二章误差及分析数据的统计处理§2-1 定量分析中的误差定量分析的任务是准确测定试样中组分的含量。
但是,即使是技术很熟练的分析工作者,用最完善的分析方法和最精密的仪器,对同一样品进行多次测定,其结果也不会完全一样。
这说明客观上存在着难以避免的误差。
因此,我们在进行定量测量时,不仅要得到被测组分的含量,而且还应对分析结果作出评价,判断其准确性(可靠程度),找出产生误差的原因,并采取有效的措施,减少误差。
一、误差的表示:从理论上说,样品中某一组分的含量必有一个客观存在的真实数据,称之为“真值”。
测定值(x)与真实值(T)之差称为误差(绝对误差)。
误差 E = X - T误差的大小反映了测定值与真实值之间的符合程度,也即测定结果的准确度。
测定值> 真实值误差为正测定值< 真实值误差为负分析结果的准确度也常用相对误差表示。
相对误差E r = E / T×100%= (X-T) / T×100%用相对误差表示测定结果的准确度更为确切。
二、误差的分类根据误差的性质与产生原因,可将误差分为:系统误差、随机误差和过失误差三类。
(一)系统误差系统误差也称可定误差、可测误差或恒定误差。
系统误差是由某种固定原因引起的误差。
1、产生的原因(1)方法误差:是由于某一分析方法本身不够完善而造成的。
如滴定分析中所选用的指示剂的变色点与化学计量点不相符;又如分析中干扰离子的影响未消除等,都系统的影响测定结果偏高或偏低。
(2)仪器误差:是由于所用仪器本身不准确而造成的。
如滴定管刻度不准(1ml刻度内只有9个分度值),天平两臂不等长等。
(3)试剂误差:是由于实验时所使用的试剂或蒸馏水不纯造成的。
例如配制标准溶液所用试剂的纯度要求在99.9%;再如:测定水的硬度时,若所用的蒸馏水含Ca2+、Mg2+等离子,将使测定结果系统偏高。
(4)操作误差:是由于操作人员一些主观上的原因而造成的。
比如,某些指示剂的颜色由黄色变到橙色即应停止滴定,而有的人由于视觉原因总是滴到偏红色才停止,从而造成误差。
第二章 误差和分析数据处理(课后习题答案)1. 解:①砝码受腐蚀:系统误差(仪器误差);更换砝码。
②天平的两臂不等长:系统误差(仪器误差);校正仪器。
③容量瓶与移液管未经校准:系统误差(仪器误差);校正仪器。
④在重量分析中,试样的非被测组分被共沉淀:系统误差(方法误差);修正方法,严格沉淀条件。
⑤试剂含被测组分:系统误差(试剂误差);做空白实验。
⑥试样在称量过程中吸潮:系统误差;严格按操作规程操作;控制环境湿度。
⑦化学计量点不在指示剂的变色范围内:系统误差(方法误差);另选指示剂。
⑧读取滴定管读数时,最后一位数字估计不准:偶然误差;严格按操作规程操作,增加测定次数。
⑨在分光光度法测定中,波长指示器所示波长与实际波长不符:系统误差(仪器误差);校正仪器。
⑩在HPLC 测定中,待测组分峰与相邻杂质峰部分重叠:系统误差(方法误差);改进分析方法。
2. 答:表示样本精密度的统计量有:偏差、平均偏差、相对平均偏差、标准偏差、相对标准偏差。
因为标准偏差能突出较大偏差的影响,因此标准偏差能更好地表示一组数据的离散程度。
3. 答:定量分析结果是通过一系列测量取得数据,再按一定公式计算出来。
每一步测量步骤中所引入的误差都会或多或少地影响分析结果的准确度,即个别测量步骤中的误差将传递到最终结果中,这种每一步骤的测量误差对分析结果的影响,称为误差传递。
大误差的出现一般有两种情况:一种是由于系统误差引起的、另一种是偶然误差引起的。
对于系统误差我们应该通过适当的方法进行改正。
而偶然误差的分布符合统计学规律,即大误差出现的概率小、小误差出现的概率大;绝对值相等的正负误差出现的概率相同。
如果大误差出现的概率变大,那么这种大误差很难用统计学方法进行处理,在进行数据处理时,就会传递到结果中去,从而降低结果的准确性。
4. 答:实验数据是我们进行测定得到的第一手材料,它们能够反映我们进行测定的准确性,但是由于“过失”的存在,有些数据不能正确反映实验的准确性,并且在实验中一些大偶然误差得到的数据也会影响我们对数据的评价及对总体平均值估计,因此在进行数据统计处理之前先进行可疑数据的取舍,舍弃异常值,确保余下的数据来源于同一总体,在进行统计检验。
一、判断题1、测定的精密度高,则准确度一定高。
(×)2、用标准偏差表示测定结果的精密度比算术平均偏差更合理。
(√)3、测得某溶液pH=6.21,其有效数字是三位。
(×)4、测得某溶液体积为1.0L,也可记为1000mL。
(×)5、所有的误差都能校正。
(×)6、为提高包含区间的包含概率,可适当提高包含区间的宽度。
(√)7、误差为正值表示测得值比真值低。
(×)8、若测量只进行一次,则无法考察测得值的精密度。
(√)9、评价进行多次平行测量结果时,正确度和准确度含义相同。
(×)10、定量检测中,精密度和精确度含义相同。
(×)11、可通过回收试验回收率的高低判断有无系统误差存在。
(√)12、某测得值的总误差是系统误差与随机误差之和。
(√)13、随着测量次数增加,随机误差变小。
(×)14、定量检测报告中仅需给出平行测定值的平均值即可。
(×)15、分析结果的准确度由系统误差决定,而与随机误差无关。
(×)16、测定结果的准确度仅取决于测量过程中的系统误差的大小。
(×)17、准确度反映的是分析方法或测定系统的系统误差的大小。
(×)18、精密度反映的是分析方法或测定系统随机误差的大小。
(√)19、两组数据的平均偏差相同,它们的标准偏差不一定相同。
(√)20、在定量分析中精密度高,准确度不一定高。
(√)21、进行无限多次测量,总体均值就是真值。
(×)22、系统误差分布符合正态分布规律。
(×)23、有效数字中不应该包含可疑数字。
(×)24、离群值的取舍可采用F检验。
(×)25、置信度越高,则相应的置信区间越宽。
(√)26、t检验可用于判断测定值与标准值之间有无显著性差异。
(√)27、采用F检验可以判断两组测定结果的均值有无显著性差异。
(×)28、采用F检验可以判断两组测定结果的精密度有无显著性差异。
第二章误差和分析数据的处理第一节误差及其产生的原因定量分析的任务是准确测定试样中各组分的含量,因此必须使分析结果具有一定的准确度。
不准确的分析结果将会导致生产上的损失、资源上的浪费和科学上的错误结论。
在定量分析中,由于受到分析方法、测量仪器、所用试剂和分析人员主观条件等方面的限制,故使测定的结果不可能和真实含量完全一致;即使是分析技术非常熟练的分析人员,用最完善的分析方法、最精密的仪器和最纯的试剂,在同一时间,同样条件下,对同一试样进行多次测定,其结果也不会完全一样。
这说明客观存在着难于避免的误差。
因此,人们在进行定量分析时,不仅要得到被测组分的含量,而且必须对分析结果进行评价,判断分析结果的准确性(可靠程度),检查产生误差的原因,采取减小误差的有效措施,从而不断提高分析结果的准确程度。
分析结果与真实结果之间的差值称为误差。
分析结果大于真实结果,误差为正;分析结果小于真实结果,误差为负。
一、误差的分类根据误差的性质与产生的原因,可将误差区分为系统误差和偶然误差两类。
(一)系统误差系统误差(systematic error)也叫可定误差(determination error),它是由某种确定的原因引起的,一般有固定的方向(正或负)和大小,重复测定可重复出现。
根据系统误差的来源,可区分为方法误差、仪器误差、试剂误差及操作误差等四种。
(1)方法误差:由于分析方法本身的缺陷或不够完善所引起的误差。
例如,在质量分析法中,由于沉淀的溶解或非被测组分的共沉淀;在滴定分析法中,由于滴定反应进行不完全,干扰离子的影响,测定终点和化学计量点不符合等,都会产生这种误差。
(2)仪器误差:由于所用仪器本身不够准确或未经校正所引起的误差。
例如,天平两臂不等长,砝码、滴定管刻度不够准确等,会使测定结果产生误差。
(3)试剂误差:由于试剂不纯和蒸馏水中含有杂质引入的误差。
(4)操作误差:由于操作人员的习惯与偏向而引起的误差。
例如,读取滴定管的读数时偏高或偏低,对某种颜色的变化辨别不够敏锐等所造成的误差。
1、随机误差产生的原因(装环人)2、随机误差具有统计规律性对称性:绝对值相等的正误差和负误差出现的次数相等。
单峰性:绝对值小的误差比绝对值大的误差出现的次数多有界性:在一定的测量条件下,随机误差的绝对值不会超过一定界限。
抵偿性:随着测量次数的增加,随机误差的算术平均值趋向于零。
3、算术平均值非X=X1+X2+...+XiVi(残余误差)=Xi-非X4、标准差(1)单次测量的标准差(δi)标准差=根号下(δi平方和/n)标准差的估计值=根号下(Vi平方和/n-1)(贝塞尔公式)评定单次测量不可靠的参数或然误差p=2/3标准差的估计值平均误差θ=4/5标准差的估计值(2)算术平均值的标准差标准差非x=标准差/根号下n或然误差R=2/3算术平均值标准差非x平均误差T=4/5标准差非x5、极差法Wn=Xmax-Xmino=Wn/dn6、最大误差法真值可代替o=|δi|/Kn真值未知o=|Vi|/Kn'7、权的确定方法:按测量的次数确定权8、单位权化的实质是使任何一个量值乘以自身权数的平方根,得到新的量值权数为1。
9、系统误差产生的原因(装环方人)10、系统误差的特征(服从某一确定规律变化的误差)不变的系统误差线性变化的系统误差周期性变化的系统误差复杂规律变化的系统误差11、系统误差的发现方法实验对比法残余误差观察法残余误差校核法不同公式计算标准差比较法计算数据比较法秩和检验法t检验法12、系统误差的减小和消除(1)从产生误差的根源上消除系统误差(2)用修正方法消除系统误差(3)不变系统误差消除法(代替法抵消法交换法)(4)线性系统误差消除法(对称法)(5)周期性系统误差消除法(半周期法)13、粗大误差产生的原因测量人员的主观原因客观外界条件的原因14、防止与消除粗大误差的方法(1)设法从测量结果中发现和鉴别而加以剔除(2)加强测量者的工作责任心和以严格的科学态度对待测量工作(3)保证测量条件的稳定(4)采用不等精度测量方法(5)互相之间进行校核的方法15、判别粗大误差的准则3o准则(莱以特准则)罗曼诺夫斯基准则格罗布斯准则狄克松准则计算题测量某电路电流共5次,测得数据(单位位mA)为168.41 168.54 168.59 168.40 168.50 试求算术平均值及标准差或然误差和平均误差。
Analytical chemistryErrors and data treatment(2)二、有效数字及运算法则2非测量所得的自然数测量次数、样品份数 计算中的倍数反应中的化学计量关系 各类常数测量所得的数字测量值数据计算的结果3数字位数应与分析方法的准确度及仪器测量的精度相适应4有效数字: 分析工作中实际能测得的数字1. 有效数字(significant figure)☐在记录测量数据时,只保留一位可疑数(欠准数)☐只有数据的末尾数欠准,误差是末位数的±1个单位☐有效数字位数反映了测量和结果的准确程度,决不能随意增加或减少5m ◇分析天平(称至0.1mg):12.8228g (6),0.2348g (4) , 0.0600g (3)◇千分之一天平(称至0.001g): 0.235g (3)◇1%天平(称至0.01g): 4.03g (3), 0.23g (2)◇台秤(称至0.1g): 4.0g (2), 0.2g (1)V ☆滴定管(量至0.01mL):26.32mL (4), 3.97mL (3)☆容量瓶:100.0mL (4),250.0mL (4)☆移液管:25.00mL (4);☆量筒(量至1mL或0.1mL):25mL (2), 4.0mL (2)重量分析和滴定分析允许的误差一般在±0.2%之内,各测量数据应保留四位有效数字,注意计算结果的有效数字位数6☐数字1~9均为有效数字☐数字前0不是有效数字,其他数字之间的0计入有效数字: 0.0304(3)☐数字后的0,在小数中,计入有效数字位数:0.03400(4)☐数字后的0,在整数中,含义不清楚时, 最好用指数形式表示: 1000 (1.0×103, 1.00×103, 1.000 ×103)☐很小的数字,也可以用指数形式表示,但有效数字位数需保持不变:0.000018 → 1.8 ×10-5☐变换单位时,有效数字位数需保持不变:0.0038g→3.8mg ☐数据的第一位数≥8的,可多计一位有效数字,如9.35×104(4), 95.2%(4), 8.65(4)☐对数的有效数字位数按小数部分数字的位数计,其整数部分的数字只代表原值的幂次,如pH=10.28(2), 则[H +]=5.2×10-11有效数字位数72. 有效数字运算中的修约规则尾数≤4时舍; 尾数≥6时入尾数=5时, 若后面无数,或后面数为0, 舍5成双;若5后面还有不是0的任何数皆入四舍六入五成双例下列值修约为四位有效数字0.3247 40.3247 6 0.3247 50.3248 50.3248 500.3248 510.32470.32480.32480.32480.32480.32498禁止分次修约0.57490.570.5750.58×9运算时可多保留一位有效数字进行5.3527+2.3+0.054+3.355.35+2.3+0.05+3.35=11.0511.010标准限度值0.03%测定值0.033%修约标准偏差对标准偏差的修约,应使准确度降低统计检验时,标准偏差可多保留1-2位数参与运算表示标准偏差和RSD时,一般取两位有效数字与标准限度值比较时不修约×不合格0.03%0.2130.2211加减法:结果的绝对误差应不小于各项中绝对误差最大的数。
第二章误差及数据处理§1 误差概述一、误差的来源1.测定值分析过程是通过测定被测物的某些物理量,并依此计算欲测组分的含量来完成定量任务的,所有这些实际测定的数值及依此计算得到的数值均为测定值。
2.真实值 true value真实值是被测物质中某一欲测组分含量客观存在的数值。
在实验中,由于应用的仪器,分析方法,样品处理,分析人员的观察能力以及测定程序都不十全十美,所以测定得到的数据均为测定值,而并非真实值。
真实值是客观存在的,但在实际中却难以测得。
真值一般分为:<1>理论真值:三角形内角和等于1800。
<2>约定真值:统一单位(m.k g,.s)和导出单位、辅助单位。
1)时, <3>相对真值:高一级的标准器的误差为低一级标准器的误差的51(31~20则认为前者为后者的相对真值。
思考:滴定管与量筒、天平与台称3.误差的来源真值是不可测的,测定值与真实值之差称为误差。
在定量分析中,误差主要来源于以下六个方面:<1> 分析方法由于任何一种分析方法都仅是在一定程度上反映欲测体系的真实性。
因此,对于一个样品来说,采用不同的分析方法常常得到不同的分析结果。
实验中,当我们采用不同手段对同一样品进行同一项目测定时,经常得到不同的结果,说明分析方法和操作均会引起误差。
例如:在酸碱滴定中,选用不同的指示剂会得到不同的结果,这是因为每一种指示剂都有着特定的pH变化范围,反应的变色点与酸、碱的化学计量点有或多或少的差距。
另外在样品处理过程中,由于浸取、消化、沉淀、萃取、交换等操作过程,不能全部回收欲测物质或引入其他杂质,对测定结果也会引入误差。
<2> 仪器设备由于仪器设备的结构,所用的仪表及标准量器等引起的误差称为仪器设备误差。
如:天平两臂不等、仪表指示有误差、砝码锈蚀、容量瓶刻度不准等。
<3> 试剂误差试剂中常含有一定的杂质或由贮存不当给定量分析引入不易发现的误差。