平面解析几何经典题含答案
- 格式:docx
- 大小:21.01 KB
- 文档页数:6
平面解析几何一、直线的倾斜角与斜率 1、直线的倾斜角与斜率(1)倾斜角α的范围000180α≤<(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ⇔=。
特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。
(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。
二、直线的方程 1、直线方程的几种形式 名称方程的形式已知条件局限性点斜式为直线上一定点,k 为斜率不包括垂直于x 轴的直线斜截式 k 为斜率,b 是直线在y轴上的截距不包括垂直于x 轴的直线两点式是直线上两定点不包括垂直于x 轴和y 轴的直线截距式 a 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距不包括垂直于x 轴和y 轴或过原点的直线 一般式 A ,B ,C 为系数 无限制,可表示任何位置的直线三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
2.几种距离(1)两点间的距离平面上的两点间的距离公式(2)点到直线的距离 点到直线的距离;(3)两条平行线间的距离两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算 (二)直线的斜率及应用利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。
专题08 平面解析几何(解答题)1.【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB u u u r u u u r,求|AB |.2.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.3.【2019年高考全国Ⅲ卷理数】已知曲线C:y=22x,D为直线y=12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.4.【2019年高考北京卷理数】已知抛物线C:x2=−2py经过点(2,−1).(1)求抛物线C的方程及其准线方程;(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.5.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为5. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.6.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.7.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.8.【2017年高考全国III 卷理数】已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.9.【2017年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x yE a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.(注:椭圆22221(0)x y a b a b +=>>的准线方程:2a x c=±)10.【2017年高考浙江卷】如图,已知抛物线2x y =,点A 11()24,-,39()24,B ,抛物线上的点13(,)()22P x y x -<<.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求||||PA PQ ⋅的最大值.11.【2018年高考全国Ⅱ卷理数】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.12.【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=u u u u r u u u r ,QN QO μ=u u u r u u u r ,求证:11λμ+为定值.13.【2018年高考全国Ⅰ卷理数】设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.14.【2018年高考全国Ⅲ卷理数】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.15.【2018年高考江苏卷】如图,在平面直角坐标系xOy中,椭圆C过点1 (3,)2,焦点12(3,0),(3,0)F F,圆O的直径为12F F.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于,A B两点.若OAB△的面积为26,求直线l的方程.16.【2018年高考浙江卷】如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足P A,PB的中点均在C上.P MBAOyx(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+24y=1(x<0)上的动点,求△PAB面积的取值范围.17.【2018年高考天津卷理数】设椭圆22221x y a b+=(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为3A 的坐标为(,0)b ,且FB AB ⋅= (1)求椭圆的方程;(2)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点),求k 的值.18.【2017年高考全国I 理数】已知椭圆C :22221()0x y a ba b +=>>,四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.19.【2017年高考全国II 理数】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =u u u ru u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .20.【2017年高考北京卷理数】已知抛物线C :y 2=2px 过点P (1,1).过点(0,12)作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.21.【2017年高考天津卷理数】设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为6,求直线AP 的方程.22.【2017年高考山东卷理数】在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b +=>>的离心率为22,焦距为2.(1)求椭圆E 的方程;(2)如图,动直线13:l y k x =-交椭圆E 于A ,B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且1224k k =,M 是线段OC 延长线上一点,且|:||2:3MC AB =,M e 的半径为MC ,,OS OT 是M e 的两条切线,切点分别为,S T ,求SOT ∠的最大值,并求取得最大值时直线l 的斜率.。
解析几何经典例题及解析题目:已知三点A(1,2)、B(3,4)、C(4,5),判断是否共线。
解析:为了判断这三个点是否共线,我们可以算出它们的斜率是否相等。
斜率公式为k=(y2-y1)/(x2-x1)。
我们先算出AB、AC两条线段的斜率,如果它们相等,则这三个点共线。
k_AB=(4-2)/(3-1)=1k_AC=(5-2)/(4-1)=1因为k_AB=k_AC,所以这三个点共线。
2. 点到直线距离问题:题目:已知直线L:2x-y+1=0,点P(3,4)到直线L的距离是多少?解析:点P到直线L的距离可以通过求点P到直线L的垂线的长度来计算。
我们先求出直线L的斜率k,因为与L垂直的直线的斜率为-k的倒数。
直线L的一般式表示为Ax+By+C=0,所以斜率k=-A/B。
将直线L的一般式转化为斜截式y=kx+b的形式,可以得到直线L的斜率为k=2/1=2。
所以与L垂直的直线的斜率为-1/2。
接下来我们求出与L垂直的直线的截距b。
因为点P在这条直线上,所以直线的表达式可以写为y=-1/2x+b,将点P代入这个方程组中可得b=5。
因此与点P到直线L的垂线的方程为y=-1/2x+5,求出点P到这条直线的垂足Q的坐标为(2,3)。
所以点P到直线L的距离为PQ的长度,即√((3-2)+(4-3))=1.41。
3. 直线交点问题:题目:已知直线L1:2x-y+1=0,直线L2:x+y-3=0,求出它们的交点。
解析:求出两条直线的交点,可以将两条直线的方程联立起来解方程组。
将L1的方程改写成x=(y-1)/2的形式,将其代入L2的方程中,得到:((y-1)/2)+y-3=0,即y=2,代入L1的方程中可以得到x=1。
因此两条直线的交点为(1,2)。
【最新】高中数学《平面解析几何》专题解析一、选择题1.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =, 所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b = 所以双曲线的渐近线方程为23by x x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.2.已知双曲线2222:1(0,0)x y C a b a b-=>>)的左,右焦点分别为12,F F ,其右支上存在一点M ,使得210MF MF ⋅=u u u u r u u u r,直线:0l bx ay +=,若直线2//MF l 则双曲线C 的离心率为( ) A 2 B .2C 5D .5【答案】C 【解析】易得且1MF l ⊥,从而l 是线段1MF 的垂直平分线求出直线1MF 的方程与渐近线方程联立求出交点坐标,进而求得M 坐标,根据勾股定理即可求解离心率. 【详解】由120MF MF ⋅=u u u u v u u u u v 可得12MF MF ⊥易知直线:0l bx ay +=为双曲线的一条渐近线,可知l 的方程为by x a=-,且1MF l ⊥,从而l 是线段1MF 的垂直平分线,且直线1MF 的方程为()ay x c b=+设1MF ,与l 相交 于点(),N x y .由 ()a y x c b b y x a ⎧=+⎪⎪⎨⎪=-⎪⎩得2a x c aby c ⎧=-⎪⎪⎨⎪=⎪⎩即2,a ab N c c ⎛⎫-⎪⎝⎭,又()1,0F c -,由中点坐标公式,得222,.a ab M c c c ⎛⎫- ⎪⎝⎭由双曲线性质可得122MF MF a -=①,由12MF MF ⊥得222124MF MF c +=②,①②联立,可得2122MF MF b ⋅=所以点M 的纵坐标为2b c ,所以22b ab c c =即2b a =所以21 5.b e a ⎛⎫=+= ⎪⎝⎭故选:C 【点睛】本题考查双曲线性质的综合问题,考查数形结合思想,对于学生的数学运算和逻辑推理能力要求较高,属于一般性题目.3.设抛物线()2:20C y px p =>的焦点为F ,抛物线C 与圆22525:()416C x y +-='于,A B 两点,且5AB =C 的焦点的弦MN 的长为8,则弦MN 的中点到直线2x =-的距离为( )A .2B .5C .7D .9【答案】B 【解析】易得圆C '过原点,抛物线22y px =也过原点,联立圆和抛物线方程由AB 求得交点坐标,从而解出抛物线方程,根据抛物线定义即可求得弦MN 的中点到直线2x =-的距离. 【详解】圆:22525:,416C x y ⎛⎫+-= ⎪⎝⎭'即为2252x y y +=,可得圆经过原点.抛物线22y px =也过原点. 设()()0,0,,,0A B m n m >. 由5AB =可得225m n +=, 又2252m n n +=联立可解得2,1n m ==. 把()1,2B 代人22y px =,解得2p =,故抛物线方程为24y x =,焦点为()1,0F ,准线l 的方程为1x =-.如图,过,M N 分别作ME l ⊥于E ,NK l ⊥于K ,可得,MF ME NK NF ==,即有MN MF NF ME KN =+=+|. 设MN 的中点为0P ,则0P 到准线l 的距离11(|)422EM KNI MN +==, 则MN 的中点0P ,到直线2x =-的距离是415+=. 故选:B 【点睛】本题考查抛物线的几何性质,考查学生的分析问题,解决问题的能力,数形结合思想.属于一般性题目.4.已知O 为平面直角坐标系的原点,2F 为双曲线()222210,0x y a b a b-=>>的右焦点,E 为2OF 的中点,过双曲线左顶点A 作两渐近线的平行线分别与y 轴交于C ,D 两点,B 为双曲线的右顶点,若四边形ACBD 的内切圆经过点E ,则双曲线的离心率为( )A .2 BCD.3【答案】B 【解析】 【分析】由对称性可得四边形ACBD 为菱形,其内切圆圆心为坐标原点O ,求出圆心O 到BC 的距离d ,由四边形ACBD 的内切圆经过点E ,可得212d OF =,化简得出双曲线的离心率. 【详解】由已知可设()0A a -,,()0B a ,,AC b k a =, 有直线点斜式方程可得直线AC 方程为()by x a a=+,令0x =,可得()0C b ,, 由直线的截距式方程可得直线BC 方程为1x ya b+=,即0bx ay ab +-=, 由对称性可得四边形ACBD 为菱形,其内切圆圆心为坐标原点O ,设内切圆的半径为r , 圆心O 到BC的距离为abd r c===, 又∵四边形ACBD 的内切圆经过点E , ∴2122ab cOF r c ===, ∴22ab c =, ∴()22244aca c -=,同除以4a 得,42440e e -+=,∴()2220e -=,∴22e =,∴e =(舍),∴e =故选:B. 【点睛】本题考查求双曲线离心率的问题,通过对称的性质得出相关的等量关系,考查运算求解能力和推理论证能力,是中档题.5.在矩形ABCD 中,已知3AB =,4=AD ,E 是边BC 上的点,1EC =,EF CD ∥,将平面EFDC 绕EF 旋转90︒后记为平面α,直线AB 绕AE 旋转一周,则旋转过程中直线AB 与平面α相交形成的点的轨迹是( )A .圆B .双曲线C .椭圆D .抛物线【答案】D 【解析】 【分析】利用圆锥被平面截的轨迹特点求解 【详解】由题将平面EFDC 绕EF 旋转90︒后记为平面α,则平面α⊥平面ABEF ,,又直线AB 绕AE 旋转一周,则AB 直线轨迹为以AE 为轴的圆锥,且轴截面为等腰直角三角形,且面AEF 始终与面EFDC 垂直,即圆锥母线AF ⊥平面EFDC 则 则与平面α相交形成的点的轨迹是抛物线 故选:D【点睛】本题考查立体轨迹,考查圆锥的几何特征,考查空间想象能力,是难题6.过抛物线212x y =的焦点F 的直线交抛物线于点A 、B ,交抛物线的准线于点C ,若3AF FB =uu u r uu r,则BC =( )A .4B .3C .6D .8【答案】D 【解析】 【分析】作出图象,作BM CP ⊥,AN CP ⊥,BH AN ⊥,设BF x =,根据抛物线的性质可得BM BF HN x ===,3AN AF x ==,进而得到1sin 2ACN ∠=,则可求出x 的值,进而得到BC 的值. 【详解】作BM CP ⊥,AN CP ⊥,BH AN ⊥,如图,因为3AF FB =uu u r uu r,不妨设BF x =,所以33AF BF x ==,4AB x =,根据抛物线的定义可得BM BF HN x ===,3AN AF x ==,6FP p ==, 则32AH AN HN x x x =-=-=,所以1sin sin 2AH ABH ACN AB ∠=∠==,则212CF FP ==,2CB x =, 则312CF CB BF x =+==,所以4x =,则28BC x ==, 故选:D . 【点睛】本题考查抛物线的性质,涉及抛物线定义的应用,考查数形结合思想,属于中档题.7.已知椭圆1C :22113x y +=,双曲线2C :22221(,0)x y a b a b-=>,若以1C 的长轴为直径的圆与2C 的一条渐近线交于A 、B 两点,且椭圆1C 与该渐近线的两交点将线段AB 三等分,则2C 的离心率是( ) A 3B .3C 5D .5【答案】A 【解析】由已知得13OA =OA 的方程为()00,0y kx k x =>>,∴可设()00,A x kx ,进一步20113k x +=221313,11kA AB k k ⎛⎫∴++的一个三分点坐标为,该点在椭圆上,21+=,即()2211391k k+=+,解得22k=,从而有,222222bb aa==,解得cea===,故选A.【方法点睛】本题主要考查双曲线的渐近线及椭圆的离心率,属于难题. 求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系;离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c,从而求出e;②构造,a c的齐次式,求出e;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.8.已知椭圆22:195x yC+=左右焦点分别为12F F、,直线):2l y x=+与椭圆C交于A B、两点(A点在x轴上方),若满足11AF F Bλ=u u u v u u u v,则λ的值等于()A.B.3 C.2 D【答案】C【解析】由条件可知,直线l过椭圆的左焦点()12,0F-.由)222195y xx y⎧=+⎪⎨+=⎪⎩消去y整理得232108630x x++=,解得34x=-或218x=-.设1122(,),(,)A x yB x y,由A点在x轴上方可得12321,48x x=-=-.∵11AF F Bλ=u u u v u u u v,∴1122(2,)(2,)x y x yλ---=+,∴122(2)x xλ--=+.∴3212()(2)48λ---=-+,解得2λ=.选C9.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过2:2(0)C y px p =>的焦点,M 为C 上的一个动点,若点N 的坐标为()4,0,则MN 的最小值为( )A .BC .2D .【答案】A 【解析】 【分析】联立直线与抛物线方程利用弦长公式列方程,结合直线过抛物线的焦点,解方程可得2p =,再利用两点的距离公式,结合二次函数配方法即可得结果.【详解】由22224(42)02y x bx b p x b y px=+⎧⇒+-+=⎨=⎩, 121222,24b p b x x x x +=-=-,因为直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,125x =-,所以()22222512424b p b ⎡⎤-⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ (1) 又直线l 经过C 的焦点,则,22b pb p -=∴=- (2)由(1)(2)解得2p =,故抛物线方程为24y x =.设()20000,,4M x y y x ∴=.则()()()2222200000||444212MN x y x x x =-+=-+=-+,故当02x =时,min ||MN = 故选:A. 【点睛】本题主要考查直线与抛物线的位置关系,考查了弦长公式以及配方法的应用,意在考查综合应用所学知识解答问题的能力,属于中档题.10.设P 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点,延长1FP 至点Q ,使得2PQ PF =,则动点Q 的轨迹方程为( )A .22(x 2)y 28-+=B .22(x 2)y 7++=C .22(x 2)y 28++=D .22(x 2)y 7-+= 【答案】C【解析】 【分析】推导出12PF PF 2a +==2PQ PF =,从而11PFPQ FQ +==Q 的轨迹为圆,由此能求出动点Q 的轨迹方程. 【详解】P Q 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点, 延长1FP 至点Q ,使得2PQ PF =,12PF PF 2a ∴+==2PQ PF =,11PF PQ FQ ∴+==, Q ∴的轨迹是以()1F 2,0-为圆心,为半径的圆, ∴动点Q 的轨迹方程为22(x 2)y 28++=.故选:C . 【点睛】本题考查动点的轨迹方程的求法,考查椭圆的定义、圆的标准方程等基础知识,考查运算求解能力,是中档题.11.已知椭圆22198x y +=的一个焦点为F ,直线220,220x y x y -+=--=与椭圆分别相交于点A 、B 、C 、D 四点,则AF BF CF DF +++=( )A .12B .6+C .8D .6【答案】A 【解析】 【分析】画出图像,根据对称性得到()()224AF BF CF DF AF AF DF DF a +++=+++=,得到答案. 【详解】画出图像,如图所示:直线220,220x y x y -+=--=平行,根据对称性知:()()22412AF BF CF DF AF AF DF DF a +++=+++==. 故选:A .【点睛】本题考查了椭圆的性质,意在考查学生对于椭圆知识的灵活运用.12.已知抛物线22(0)y px p =>交双曲线22221(0,0)x y a b a b-=>>的渐近线于A ,B 两点(异于坐标原点O 5AOB ∆的面积为32,则抛物线的焦点为( ) A .(2,0) B .(4,0)C .(6,0)D .(8,0)【答案】B 【解析】 【分析】由题意可得2ba=,设点A 位于第一象限,且(),A m n ,结合图形的对称性列出方程组确定p 的值即可确定焦点坐标. 【详解】2222222215c a b b e a a a +===+=,∴2b a =, 设点A 位于第一象限,且(),A m n ,结合图形的对称性可得:22322nm mn n pm ⎧=⎪⎪=⎨⎪=⎪⎩,解得:8p =,∴抛物线的焦点为()4,0,故选B . 【点睛】本题主要考查圆锥曲线的对称性,双曲线的渐近线,抛物线焦点坐标的求解等知识,意在考查学生的转化能力和计算求解能力.13.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225*********n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.14.已知双曲线2219x y m-=的一个焦点在直线x +y =5上,则双曲线的渐近线方程为( )A .34y x =? B .43y x =± C.3y x =± D.4y x =±【答案】B【解析】根据题意,双曲线的方程为2219x y m-=,则其焦点在x 轴上, 直线5x y +=与x 轴交点的坐标为()5,0,则双曲线的焦点坐标为()5,0,则有925m +=,解可得,16m =, 则双曲线的方程为:221916x y -=, 其渐近线方程为:43y x =±, 故选B.15.已知12F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,P 为双曲线上一点,2PF 与x 轴垂直,1230PF F ∠=︒,且焦距为 )A .y =B .y =C .2y x =±D .3y x =±【答案】B【解析】【分析】先求出c 的值,再求出点P 的坐标,可得22b PF a =,再由已知求得1PF ,然后根据双曲线的定义可得b a的值,则答案可求. 【详解】解:由题意,2c =解得c =,∵()2,0F c ,设(),P c y , ∴22221x y a b-=,解得2b y a =±, ∴22b PF a=, ∵1230PF F ∠=︒, ∴21222b PF PF a==,由双曲线定义可得:2122bPFPF aa-==,则222a b=,即2ba=.∴双曲线的渐近线方程为2y x=±.故选:B.【点睛】本题考查双曲线渐近线方程的求解,难度一般.求解双曲线的渐近线方程,可通过找到,,a b c中任意两个量的倍数关系进行求解.16.已知抛物线22(0)y px p=>的焦点为F,过点F作互相垂直的两直线AB,CD与抛物线分别相交于A,B以及C,D,若111AF BF+=,则四边形ACBD的面积的最小值为()A.18B.30C.32D.36【答案】C【解析】【分析】【详解】由抛物线性质可知:112AF BF p+=,又111AF BF+=,∴2p=,即24y x=设直线AB的斜率为k(k≠0),则直线CD的斜率为1k-.直线AB的方程为y=k(x﹣1),联立214y k xy x=⎧⎨=⎩(﹣),消去y得k2x2﹣(2k2+4)x+k2=0,从而242A Bx xk+=+,A Bx x=1由弦长公式得|AB|=244k +, 以1k-换k 得|CD|=4+4k 2, 故所求面积为()22221141AB CD 4448222k k k k ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭≥32(当k 2=1时取等号),即面积的最小值为32.故选C17.已知1F ,2F 分别为双曲线C :22221(0,0)x y a b a b-=>>的左,右焦点,点P 是C 右支上一点,若120PF PF ⋅=u u u v u u u u v ,且124cos 5PF F ∠=,则C 的离心率为( ) A .257B .4C .5D .57 【答案】C【解析】【分析】在12PF F △中,求出1PF ,2PF ,然后利用双曲线的定义列式求解.【详解】 在12PF F △中,因为120PF PF ⋅=u u u r u u u u r ,所以1290F PF ∠=o , 1121248cos 255c PF F F PF F c =⋅∠=⋅=,2121236sin 255c PF F F PF F c =⋅∠=⋅=, 则由双曲线的定义可得128622555c c c a PF PF =-=-= 所以离心率5c e a==,故选C. 【点睛】 本题考查双曲线的定义和离心率,解题的关键是求出1PF ,2PF ,属于一般题.18.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC .2aD .22a 【答案】D【解析】【分析】 设H ,I 分别为1CC 、11C D 边上的中点,由面面平行的性质可得F 落在线段HI 上,再求HI 的长度即可.【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,则ABEG 四点共面,且平面1//A BGE 平面1B HI ,又1//B F Q 面1A BE ,F ∴落在线段HI 上,Q 正方体1111ABCD A B C D -中的棱长为a ,1122HI CD a ∴==, 即F 在侧面11CDD C 上的轨迹的长度是22a . 故选D .【点睛】本题考查了面面平行的性质及动点的轨迹问题,属中档题.19.若函数1()ln (0,0)a a f x x a b b b+=-->>的图象在x =1处的切线与圆x 2+y 2=1相切,则a +b 的最大值是( )A .4B .2C .2D .【答案】D【解析】 ()1ln (0,0)a a f x x a b b b+=-->>, 所以()'a f x bx =-,则f ′(1)=-a b 为切线的斜率, 切点为(1,-1a b+), 所以切线方程为y +1a b +=-a b(x -1), 整理得ax +by +1=0. 因为切线与圆相切,所以22a b +=1,即a 2+b 2=1.由基本不等式得a 2+b 2=1≥2ab ,所以(a +b )2=a 2+b 2+2ab =1+2ab ≤2,所以a +b ≤,即a +b 的最大值为. 故选D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.20.已知抛物线24x y =的焦点为F ,准线为l ,抛物线的对称轴与准线交于点Q ,P 为抛物线上的动点,PF m PQ =,当m 最小时,点P 恰好在以,F Q 为焦点的椭圆上,则椭圆的离心率为( )A .322-B .22-C 32D 21【答案】D【解析】 由已知,(01)(01)F Q ,,,-,过点P 作PM 垂直于准线,则PM PF =.记PQM α∠=,则sin PFPMm PQ PQ α===,当α最小时,m 有最小值,此时直线PQ与抛物线相切于点P .设2004x P x ⎛⎫ ⎪⎝⎭,,可得(21)P ,±,所以222PQ PF ,==,则2PF PQ a +=,∴21a =,1c =,∴21c e a==,故选D .。
高考数学平面解析几何专项训练(100题-含答案)1.在平面直角坐标系xOy 中,已知点12(1,0),(1,0)F F -,点M 满足12MF MF +=记点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)点T 在直线2x =上,过T 的两条直线分别交C 于,A B 两点和,P Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)2212x y +=(2)0【解析】【分析】(1)根据122MF MF +=,利用椭圆的定义求解;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立,利用参数的几何意义求解.(1)解:因为122MF MF +=,所以点M 的轨迹是以12(1,0),(1,0)F F -为焦点的椭圆,则21,1a c b ===,所以椭圆的方程是2212x y +=;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立()()2222cos 2sin 4cos 4sin 420t m t m θθθθ+++++=,由参数的几何意义知:12,TA t TB t ==,则22122224242cos 2sin 2cos m m t t θθθ++⋅=-=-+-,设直线PQ 的参数方程为:()2cos ,sin x y m λαλλα=+⎧⎨=+⎩为参数,则12,TP TQ λλ==,则22122224242cos 2sin 2cos m m λλααα++⋅=-=-+-,由题意得:222242422cos 2cos m m θα++-=---,即22cos cos θα=,因为αθ≠,所以cos cos θα=-,因为0,0θπαπ<<<<,所以θαπ+=,所以直线AB 的斜率tan θ与直线PQ 的斜率tan α之和为0.2.设n S 是数列{}n a 的前n 项和,13a =,点(),N n S n n n *⎛⎫∈ ⎪⎝⎭在斜率为1的直线上.(1)求数列{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)21n a n =+(2)152522n n n T ++=-【解析】【分析】(1)根据斜率公式可得出()222n S n n n =+≥,可知13S =满足()222n S n n n =+≥,可得出22n S n n =+,再利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式;(2)求得1212n n n c ++=,利用错位相减法可求得n T .(1)解:由13a =,点,n S n n ⎛⎫ ⎪⎝⎭在斜率为1的直线上,知1111n S S n n -=-,即()222n S n n n =+≥.当1n =时,113S a ==也符合上式,故22n S n n =+.当2n ≥时,()()221212121n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦;13a =也满足上式,故21n a n =+.(2)解:112122n n n n a n c +++==.则2341357212222n n n T ++=++++ ,所以,3412135212122222n n n n n T ++-+=++++ ,上式-下式得1232211113111213214212422224212n n n n n n n T -++⎛⎫- ⎪++⎛⎫⎝⎭=++++-=+- ⎝⎭- 252542n n ++=-,因此,152522n n n T ++=-.3.椭圆2222:1(0)x y C a b a b +=>>的离心率为3,且过点(3,1).(1)求椭圆C 的方程;(2)A ,B ,P 三点在椭圆C 上,O 为原点,设直线,OA OB 的斜率分别是12,k k ,且1213k k ⋅=-,若OP OA OB λμ=+,证明:221λμ+=.【答案】(1)221124x y +=(2)证明见解析【解析】【分析】(1)由条件可得c a22911a b +=,222c b a +=,解出即可;(2)设()()()112200,,,,,A x y B x y P x y ,由条件可得012012x x x y y y λμλμ=+⎧⎨=+⎩,12123x x y y =-,然后将01212x x x y y y λμλμ=+⎧⎨=+⎩代入椭圆方程可得2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后可得答案.(1)因为ca=22911a b +=,222c b a +=所以可解得2a b ⎧=⎪⎨=⎪⎩所以椭圆C 的方程221124x y +=.(2)设()()()112200,,,,,A x y B x y P x yOP OA OB λμ=+ ,012012x x x y y y λμλμ=+⎧∴⎨=+⎩()()222212120011124124x x y y x y λμλμ+++=∴+= 即2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222112211124124x y x y +=+= ,,即22121221124x x y y λμλμ⎛⎫+++= ⎪⎝⎭又1212121133y y k k x x ⋅=-∴=- ,即12123x x y y =-,221λμ∴+=4.已知椭圆()2222:10x y C a b a b+=>>,A 、B 分别为椭圆C 的右顶点、上顶点,F 为椭圆C的右焦点,椭圆C 的离心率为12,ABF 的面积为32.(1)求椭圆C 的标准方程;(2)点P 为椭圆C 上的动点(不是顶点),点P 与点M ,N 分别关于原点、y 轴对称,连接MN 与x 轴交于点E ,并延长PE 交椭圆C 于点Q ,则直线MP 的斜率与直线MQ 的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)22143x y +=(2)是定值,定值为32-【解析】【分析】(1)根据椭圆的离心率可得到a,b,c 的关系,再结合ABF 的面积可得到()a c b -=,由此解得a,b ,可得答案.(2)设直线方程,并联立椭圆方程,得到根与系数的关系式,结合直线MP 的斜率与直线MQ 的斜率之积,代入化简可得答案.(1)由题意得12c a =,则2a c =,b =.ABF 的面积为()1322a cb -=,则()a c b -将2a c =,b =代入上式,得1c =,则2a =,b =,故椭圆C 的标准方程为22143x y +=.(2)由题意可知直线PQ 的斜率一定存在,设直线PQ 的方程为y kx m =+,设()11,P x y ,()22,Q x y ,则()11,M x y --,()11,N x y -,()1,0E x -,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,得()2223484120k x kmx m +++-=,∴122834kmx x k +=-+,∴()12122286223434km m y y k x x m k m k k ⎛⎫+=++=-+= ⎪++⎝⎭,∴21212263348434MQmy y k k km x x kk ++===-+-+,112PEPQ y k k k x ===,∵11112222MP PE y yk k k x x ====,∴33242MP MQ k k k k ⋅=-⨯=-∴MP MQ k k ⋅为定值32-.【点睛】本题考查了椭圆方程的求法以及直线和椭圆的位置关系,综合考查了学生分析问题,解决问题以及计算方面的能力和综合素养,解答的关键是理清解决问题的思路,并能正确地进行计算.5.已知圆M 过点()1,0,且与直线1x =-相切.(1)求圆心M 的轨迹C 的方程;(2)过点()2,0P 作直线l 交轨迹C 于A 、B 两点,点A 关于x 轴的对称点为A '.问A B '是否经过定点,若经过定点,求出定点坐标;若不经过,请说明理由.【答案】(1)24y x =(2)()2,0-【解析】【分析】(1)根据抛物线的定义计算可得;(2)设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y ,则()11,A x y '-,联立直线与抛物线方程,消元、列出韦达定理,再表示出直线A B '的方程,将12y y +、12y y 代入整理即可得解;(1)解:由题意知动点M 的轨迹C 是以(0,0)O 为顶点,()1,0为焦点,1x =-为准线的抛物线,所以动圆圆心M 的轨迹方程为:24y x =;(2)解:设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y 不妨令21y y >,则()11,A x y '-,联立直线l 与抛物线方程得224x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则124y y t +=、128y y =-,则直线A B '的方程为()()211121y y y y x x x x +--=--,即()()21212121x x y x y y y x y x -+=+-,则()()()()2121212122ty ty y ty y y y x y ty -++=+-+,()()()2121211222t y y y y y x ty y y y -=+--+,即()()21211222y y y x ty y y y =+--+,所以()42824y tx t t ⋅=-⨯--⨯,即()2y t x =+,令200x y +=⎧⎨=⎩解得20x y =-⎧⎨=⎩,所以直线A B '恒过定点()2,0-;6.已知1F ,2F 是椭圆C :()222104x yb b+=>的左、右焦点,过1F 的直线与C 交于A ,B两点,且22::3:4:5AF AB BF =.(1)求C 的离心率;(2)设M ,N 分别为C 的左、右顶点,点P 在C 上(P 不与M ,N 重合),证明:MPN MAN ∠≤∠.【答案】(2)见解析【解析】【分析】(1)由题意设223,4,5AF m AB m BF m ===,由勾股定理的逆定理可得290BAF ∠=︒,再根据椭圆的定义可求出m 的值,从而可求出12,AF AF 的值,则可得点A 是椭圆短轴的一个端点,进而可求出离心率,(2)由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则可得0000tan ,tan 22y y x x αβ==+-,然后求出tan tan αβ+,tan tan αβ,再利用正切的两角和公式可得02tan()y αβ+=,由正切函数可求出αβ+的最小值,从而可求出()MPN παβ∠=-+的最大值,进而可证得结论(1)由()222104x y b b+=>,得24a =,得2a =,由题意设223,4,5AF m AB m BF m ===,则22222AF AB BF +=,所以290BAF ∠=︒,因为223451248AF AB BF m m m m a ++=++===,所以23m =,所以22AF =,所以122422AF a AF =-=-=,所以12AF F △为等腰直角三角形,所以点A 是椭圆短轴的一个端点,所以b c =,因为222224b c b a +===,得b c =所以椭圆的离心率为2c e a ==(2)由(1)可得椭圆方程为22142x y +=,则(2,0),(2,0)M N -,因为点A是椭圆短轴的一个端点,所以不妨设A ,由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则0000tan ,tan 22y y x x αβ==+-,2200142x y +=,所以2200002200001tan tan 22422y y y y x x x y αβ⋅=⋅===+--,00002200000442tan tan 2242y y y y x x x y y αβ+=+===+--,所以0tan tan 4tan()1tan tan y αβαβαβ++==-,所以当0y =tan()αβ+取得最小值由(1)可知290BAF ∠=︒,所以()0,2παβ⎛⎫+∈ ⎪⎝⎭,所以当tan()αβ+取得最小值时,αβ+取得最小值,即点P 与点A 重合时,αβ+取得最小值,此时()MPN παβ∠=-+取得最大,所以MPN MAN∠≤∠7.已知椭圆()2222:10x y C a b a b+=>>的长轴长为,且过点)P(1)求C 的方程:(2)设直线()0y kx m m =+>交y 轴于点M ,交C 于不同两点A ,B ,点N 与M 关于原点对称,BO AN ⊥,Q 为垂足.问:是否存在定点M ,使得·NQ NA 为定值?【答案】(1)221102x y +=(2)存在【解析】【分析】(1)利用待定系数法求方程;(2)联立方程组,结合韦达定理可得直线恒过定点,进而求解.(1)依题意知2a =a =所以C 的方程可化为222110x y b+=,将点)P代入C 得251110b +=,解得22b =,所以椭圆方程为221102x y +=;(2)设点()11,A x y ,()22,B x y ,联立221102x y y kx m ⎧+=⎪⎨⎪=+⎩得,()22215105100k x kmx m +++-=,()()()222104155100km k m ∆=-+->,解得22210m k <+,1221015km x x k -+=+,212251015m x x k -=+,注意到Q ,N ,A 三点共线,NQ NA NQ NA ⋅=⋅,又()NQ NA NB BQ NA NB NA ⋅=+⋅=⋅()()()()1212121222x x y m y m x x kx m kx m =+++=+++()()()()222222212122215102012441515k m k mkx xmk x x mm kk+-=++++=-+++()222221510510415k m m m k--+-=++当()2215105510m m --=-,解得1m =±,因为0m >,所以1m =,此时1NQ NA ⋅=-,满足0∆>,故存在定点()0,1M ,使得1NQ NA ⋅=-等于定值1.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.8.已知椭圆C :22221(0)x y a b a b +=>>,4a M b ⎛⎫ ⎪⎝⎭为焦点是22y x =的抛物线上一点,H 为直线y a =-上任一点,A ,B 分别为椭圆C 的上,下顶点,且A ,B ,H 三点的连线可以构成三角形.(1)求椭圆C 的方程;(2)直线HA ,HB 与椭圆C 的另一交点分别交于点D ,E ,求证:直线DE 过定点.【答案】(1)2214x y +=(2)证明见解析【解析】【分析】(1)由椭圆的离心率求出,a c 的关系式,再由,4a M b ⎛⎫⎪⎝⎭为抛物线22=y x 上的点,结合222a b c =+,即可求出椭圆C 的方程.(2)设点()(),20H m m -≠,求得HA ,HB 的方程,与椭圆联立求得,D E 坐标,写出直线DE 的方程,即可求出DE 恒过的定点.(1)由题意知,222224c aa b a b c⎧=⎪⎪⎪=⨯⎨⎪=+⎪⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为2214x y +=.(2)设点()(),20H m m -≠,易知()0,1A ,()0,1B -,∴直线HA 的方程为31y x m =-+,直线HB 的方程为11y x m=--.联立223114y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得22362410x x m m ⎛⎫+-= ⎪⎝⎭,∴22436D m x m =+,223636D m y m -=+,同理可得284E m x m -=+,2244E m y m -=+,∴直线DE 的斜率为21216m k m-=,∴直线DE 的方程为222241284164m m m y x m m m --⎛⎫-=+ ⎪++⎝⎭,即2121162m y x m -=-,∴直线DE 过定点10,2⎛⎫- ⎪⎝⎭.9.已知点(1,2)M -在抛物线2:2(0)E y px p =>上.(1)求抛物线E 的方程;(2)直线12,l l 都过点12(2,0),,l l 的斜率之积为1-,且12,l l 分别与抛物线E 相交于点A ,C 和点B ,D ,设M 是AC 的中点,N 是BD 的中点,求证:直线MN 恒过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)将点坐标代入求解抛物线方程;(2)设出直线方程,表达出,M N 的坐标,求出直线MN 的斜率,利用直线斜率之积为-1,求出直线MN 恒过的定点,从而证明出结论.(1)∵点(1,2)M -在抛物线2:2E y px =上,∴2(2)2p -=,∴解得:2p =,∴抛物线E 的方程为:24y x =.(2)由12,l l 分别与E 相交于点A ,C 和点B ,D ,且由条件知:两直线的斜率存在且不为零.∴设1122:2,:2l x m y l x m y =+=+由214,2y x x m y ⎧=⎨=+⎩得:21480y m y --=设()()1122,,,A x y C x y ,则1214y y m +=,∴12M y m =,又2122M x m =+,即()21122,2M m m +同理可得:()22222,2N m m +∴()()212212212212222MN m m k m m m m -==++-+,∴()211121:222MN y m x m m m -=--+即MN :()1212121y x m m m m =--⎡⎤⎣⎦+,∵12,l l 的斜率之积为1-,∴12111m m ⋅=-,即121m m =-,∴121:(4)MN y x m m =-+,即直线MN 过定点(4,0).10.已知抛物线()20x ay a =>,过点0,2a M ⎛⎫ ⎪⎝⎭作两条互相垂直的直线12,l l ,设12,l l 分别与抛物线相交于,A B 及,C D 两点,当A 点的横坐标为2时,抛物线在点A 处的切线斜率为1.(1)求抛物线的方程;(2)设线段,AB CD 的中点分别为,E F ,O 为坐标原点,求证直线EF 过定点.【答案】(1)24x y =;(2)证明见解析.【解析】【分析】(1)结合导数知识,利用切线斜率构造方程可得a ,由此可得抛物线方程;(2)将直线AB 方程代入抛物线方程中,结合韦达定理可确定中点坐标,同理可得CD中点坐标,利用直线方程两点式可得直线EF 方程,化简可知其过定点()0,4.(1)由2x ay =得:21y ax =,则2y x a '=,241x y a=∴==',解得:4a =,∴抛物线方程为:24x y =;(2)由题意知:直线12,l l 的斜率都存在且都不为零,由(1)知:()0,2M ,设直线:2AB y kx =+,代入24x y =得:2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,()21212444y y k x x k ∴+=++=+,AB ∴中点()22,22E k k +;12l l ⊥ ,1:2CD y x k ∴=-+,同理可得:CD 中点222,2F k k ⎛⎫-+ ⎪⎝⎭;EF ∴的方程为:()()222222222222k k y k x k k k ⎛⎫+-+ ⎪⎝⎭-+=-+,化简整理得:14y k x k ⎛⎫=-+ ⎪⎝⎭,则当0x =时,4y =,∴直线EF 恒过定点()0,4.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.11.在直角坐标系xOy 中,曲线:C 221x y +=经过伸缩变换x xy '='=⎧⎪⎨⎪⎩后的曲线为1C ,以x 轴正半轴为级轴,建立极坐标系.曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)若1C 上的一点P 到2C 的距离的最大,求距离的最大值及P 点的坐标.【答案】(1)1C :2213y x +=,2C :40x y +-=;(2)max d =,1322P ⎛⎫-- ⎪⎝⎭,.【解析】【分析】()1直接利用转换关系,把参数方程,直角坐标方程和极坐标方程之间进行转换;()2利用三角函数关系式的变换和点到直线的距离公式的应用求出结果.(1)解:由伸缩变换x xy '='=⎧⎪⎨⎪⎩得,代入曲线:C 221x y +=得:1C 的普通方程为2213y x +=,由极坐标方程sin 4πρθ⎛⎫+= ⎪⎝⎭sin y ρθ=,cos x ρθ=可得:2C 的直角坐标方程为40x y +-=.(2)解:直线2C 的普通方程为40x y +-=,设1C上的为点()cos P θθ,到2C 的距离为d =当且仅当()223k k Z πθπ=-+∈时,取得max d =,又因为1cos 23y 2x θθ⎧==-⎪⎪⎨⎪==-⎪⎩,即点P 的坐标为1322⎛⎫-- ⎪⎝⎭.12.已知椭圆C :2222+x y a b=1(a >b >0)经过点A (0,1),且右焦点为F (1,0).(1)求C 的标准方程;(2)过点(0,12)的直线l 与椭圆C 交于两个不同的点P .Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .证明:以MN 为直径的圆过y 轴上的定点.【答案】(1)2212x y +=(2)证明见解析【解析】【分析】(1)由已知得,c b ,再求得a ,即得椭圆方程;(2)由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,由直线,AP AQ 方程求出,M N 坐标,求出以MN 为直径的圆的方程,然后代入1212,x x x x +求得圆方程的常数项,从而可得y 的定点坐标.(1)由题意可得1,1c b ==从而22a =.所以椭圆的标准方程为2212x y +=.(2)证明:由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,将直线l 代入椭圆方程得()2242430k x kx ++-=,所以12122243,,4242k x x x x k k --+==++,直线AP 的方程为1111y y x x -=+,直线AQ 的方程为2211y y x x -=+.可得1212,0,,011x x M N y y ⎛⎫⎛⎫--⎪ ⎪--⎝⎭⎝⎭,以MN 为直径的圆方程为,21212011x x x x y y y ⎛⎫⎛⎫+++= ⎪⎪--⎝⎭⎝⎭,即()()221212121201111x x x x x y x y y y y ⎛⎫++++= ⎪----⎝⎭.①因为()()()1212122121212124111142122x x x x x x y y k x x k x x kx kx ==---++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭22212612842k k k -==--+++.所以在①中令0x =,得26y =,即以MN 为直径的圆过y轴上的定点(0,,13.已知抛物线C :()220y px p =>,过点()2,0R 作x 轴的垂线交抛物线C 于G ,H 两点,且OG OH ⊥(O 为坐标原点).(1)求p ;(2)过()2,1Q 任意作一条不与x 轴垂直的直线交抛物线C 于A ,B 两点,直线AR 交抛物线C 于不同于点A 的另一点M ,直线BR 交抛物线C 于不同于点B 的另一点N .求证:直线MN 过定点.【答案】(1)1p =(2)证明见解析【解析】【分析】(1)由题意知2RG OR ==,不妨设()2,2G ,代入抛物线方程中可求出p 的值,(2)设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫⎪⎝⎭,则可表示出直线AB ,AM ,BN 的方程,再由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-,再表示出直线MN 的方程,结合前面的式子化简可得结论(1)由题意知,2RG OR ==.不妨设()2,2G ,代入抛物线C 的方程,得44p =解得1p =.(2)由(1)知,抛物线C 的方程为22y x =.设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫ ⎪⎝⎭,则直线AB 的斜率为12221212222AB y y k y y y y -==+-.所以直线AB 的方程为2111222y y x y y y ⎛⎫=-+ ⎪+⎝⎭,即()121220x y y y y y -++=.同理直线AM ,BN ,MN 的方程分别为()131320x y y y y y -++=,()242420x y y y y y -++=,()343420x y y y y y -++=,由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-.又直线MN 的方程为()343420x y y y y y -++=,即1212441620x y y y y y ⎛⎫+++= ⎪⎝⎭.所以直线MN 的方程为()1212280y y x y y y +++=.把()121240y y y y -++=代入()1212280y y x y y y +++=,得()12122480y y x y y y +++=,()122)880(y y x y y +++=,所以由20x y +=,880y +=可得2x =,1y =-.所以直线MN 过定点()2,1-.14.已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于P ,A 两点,且PF λFA = .(1)若λ=4,求直线l 的方程;(2)设点E (a ,0),直线PE 与抛物线C 的另一个交点为B ,且PE EB μ=.若λ=4μ,求a的值.【答案】(1)4340x y --=或4340x y +-=(2)4【解析】【分析】(1)由4PF FA =得014y y =-,设直线l :1x my =+,与抛物线C :24y x =联立,结合韦达定理,即得解;(2)由PF λFA = 得01y y λ=-,结合014y y =-,可得204y λ=,再由PE EB μ= 得02y y μ=-,设直线PB :x ny a =+,与抛物线C :24y x =联立由韦达定理可得024y y a =-,故204y aμ=,又4λμ=,代入运算即得解(1)易知焦点F (1,0),设P (0x ,0y ),A (1x ,1y )由4PF FA =得014y y =-设直线l :1x my =+,与抛物线C :24y x =联立得2440y my --=,其中216160m ∆=+>,所以014y y =-由①②可得0141y y =⎧⎨=-⎩或0141y y =-⎧⎨=⎩又014y y m +=,所以34m =或34m =-所以直线l 的方程为314x y =+或314x y =-+.化简得4340x y --=或4340x y +-=(2)由PF λFA =得01y y λ=-又014y y =-可得204y λ=设点B (2x ,2y ),由PE EB μ= 得02y y μ=-设直线PB :x ny a =+,与抛物线C :24y x =联立得2440y ny a --=.所以216()0n a ∆=+>,024y y a=-故204y aμ=又4λμ=,所以2200444y y a=⋅,考虑到点P 异于原点,所以00y ≠,解得4a =此时2216()16(4)0n a n ∆=+=+>所以a 的值为415.平面直角坐标系xOy 中,双曲线22:136x y C -=的右焦点为F ,T 为直线:1l x =上一点,过F 作TF 的垂线分别交C 的左、右支于P 、Q 两点,交l 于点A .(1)证明:直线OT 平分线段PQ ;(2)若3PA QF =,求2TF 的值.【答案】(1)证明见解析(2)12+【解析】【分析】(1)设直线PQ 的方程为3x ty =+,设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与双曲线的方程联立,列出韦达定理,求出线段PQ 的中点N 的坐标,计算得出ON OT k k =,证明出O 、T 、N 三点共线,即可证得结论成立;(2)由3PA QF =得3PA QF = ,可得出1238x x -+=,变形可得出()()12212184384x x x x x x ⎧++=⎪⎨+-=⎪⎩,两式相乘结合韦达定理可求得2t 的值,再利用两点间的距离公式可求得2TF 的值.(1)解:依题意,3F x ==,即()3,0F ,设()1,2T t ,则直线PQ 的方程为3x ty =+,由22326x ty x y =+⎧⎨-=⎩得()222112120t y ty -++=,设()11,P x y 、()22,Q x y ,则()222210Δ14448210t t t ⎧-≠⎪⎨=-->⎪⎩,故212t ≠,由韦达定理可得1221221t y y t +=--,1221221y y t =-,所以()121226621x x t y y t +=++=--,又直线PQ 分别交C 的左、右支于P 、Q 两点,所以()()()22121212122963339021t x x ty ty t y y t y y t +=++=+++=-<-,故212t >所以PQ 中点为2236,2121t N t t ⎛⎫-- ⎪--⎝⎭,所以2ON OT k t k ==,故O 、T 、N 三点共线,即直线OT 平分线段PQ .(2)解:依题意,由3PA QF =得3PA QF =,则()12133x x -=-,即1238x x -+=,所以()12284x x x ++=,①,()121384x x x +-=,②①×②得()()21212123166416x x x x x x +++-=,所以()22222366963166416212121t t t t+⨯-⨯-=-⨯---,解得28374t +=,或28374t -=(舍去),此时,224412t TF =+=+【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.16.已知抛物线2:4E y x =,F 为其焦点,O 为原点,A ,B 是E 上位于x 轴两侧的不同两点,且5OA OB ⋅=.(1)求证:直线AB 恒过一定点;(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等;(3)在(2)的条件下,当F 为ABC 的内心时,求ABC 重心的横坐标.【答案】(1)证明见解析(2)见解析(3)173【解析】【分析】(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x =+⎧⎨=⎩,消x 得:2440y my n --=,124y y m +=,124y y n =-,结合向量的数量积,转化求解直线AB 的方程,推出结果.(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等即CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,根据斜率和为零,从而可得结果;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,由题意可得32AC CF AN NF ==,坐标化,结合点在抛物线上可得点的坐标,从而得到结果.(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x=+⎧⎨=⎩,消x 得:2440y my n --=,则124y y m +=,124y y n =-,由5OA OB ⋅= 得:21212()516y y y y +=,所以:1220y y =-或124y y =(舍去),即4205n n -=-⇒=,所以直线AB 的方程为5x my =+,所以直线AB 过定点(5,0)P .(2)由(1)知,直线AB 过定点(5,0)P 可设直线AB 的方程为5x my =+,此时124y y m +=,1220y y =-,设x 轴上定点C 坐标为(,0)t ,要使F 到直线AC 和BC 的距离相等,则CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,故0AC BC k k +=,即21210y yx t x t+=--,∴()()21120y x t y x t -+-=,∴()()1212250my y t y y +-+=,∴()40450m m t -+-=对任意m 恒成立,∴510t -=,5t =-,故在x 轴上有一定点C (5,0)-,使F 到直线AC 和BC 的距离相等;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,∵F 为ABC 的内心,∴32AC CF AN NF ==,32=,即2211126250x y x +-+=,又2114y x =,∴21122250x x -+=,同理22222250x x -+=,∴12,x x 是方程222250x x -+=的两个根,∴1222x x +=,∴三角形重心的横坐标为1251733x x +-=.17.已知椭圆C 的两个顶点分别为()2,0A -,()2,0B ,焦点在x (1)求椭圆C 的方程;(2)若直线()()10y k x k =-≠与x 轴交于点P ,与椭圆C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于Q ,求MN PQ的取值范围.【答案】(1)2214x y +=;(2)(4,【解析】【分析】(1)由顶点和离心率直接求,,a b c 即可;(2)先联立直线和椭圆方程,借助弦长公式表示出弦长MN ,再求出垂直平分线和Q 坐标,表示出PQ ,最后分离常数求取值范围即可.(1)由题意知2222,a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩可得1,2a b ==,故椭圆C 的方程为2214x y +=.(2)由()22114y k x x y ⎧=-⎪⎨+=⎪⎩,可得()2222418440k x k x k +-+-=,设()()1122,,,M x y N x y ,则22121222844,4141k k x x x x k k -+=⋅=++,()121222241k y y k x x k -+=+-=+,线段MN 的中点为2224,4141k k k k ⎛⎫- ⎪++⎝⎭,线段MN 的垂直平分线方程为22214()4141k k y x k k k --=--++,令0y =,得22341kx k =+,所以223,041k Q k ⎛⎫ ⎪+⎝⎭,又(1,0)P ,则22223114141k k PQ k k +=-=++,又12MN x x =-=所以2241141MN k k PQk +==++220,1331k k ≠∴<-<+ ,故MN PQ的取值范围为(4,.【点睛】(1)关键在于建立,,a b c 的关系式求解;(2)关键在于联立直线和椭圆方程,依次求出垂直平分线和弦长MN 、PQ ,转化成关于k 的代数式求范围即可.18.定义平面曲线的法线如下:经过平面曲线C 上一点M ,且与曲线C 在点M 处的切线垂直的直线称为曲线C 在点M 处的法线.设点()()000,0M x y y >为抛物线2:2(0)C y px p =>上一点.(1)求抛物线C 在点M 处的切线的方程(结果不含0x );(2)求抛物线C 在点M 处的法线被抛物线C 截得的弦长||AB 的最小值,并求此时点M 的坐标.【答案】(1)002y py x y =+(2);()p 【解析】【分析】(1)先化简求导确定切线斜率,再按照在点处的切线方程进行求解;(2)先联立法线和抛物线方程,借助弦长公式表示弦长,最后换元构造函数,求导确定最小值.(1)因为点()()000,0M x y y >在抛物线上方,所以由2:2(0)C y px p =>得y =py y'=,所以在点M 处的切线斜率0y y pk y y ='==,所求切线方程为000()py y x x y -=-,又202y x p=,故切线方程为2000()2y p y y x y p -=-,即002y p y x y =+.(2)点M 处的法线方程为2000()2y y y y x p p-=--,即220022y p p x y y p +=-+.联立抛物线2:2(0)C y px p =>,可得()2232000220y y p y y p y +-+=,可知0∆>,设()()1122,,,A x y B x y ,()2221212002,2p y y y y y p y +=-⋅=-+,所以322212202()y p AB y y y +⋅-=.令200t y =>,则3222()(0)t p AB t t +=>,令3222()()(0)t p f t t t +=>,1312222222223()()()(2)2()2t p t t p t p t p f t t t +⋅-++⋅-'=⨯=,所以()f t 在()20,2p 单调递减,在()22,p +∞单调递增,所以()2min ()2f t f p ==,即min AB =,此时点M的坐标为()p .【点睛】(1)关键在于化简出0y >时的抛物线方程,借助求导确定切线斜率;(2)写出法线方程,联立抛物线求弦长是通用解法,关键在于换元构造函数之后,借助导数求出最小值.19.已知点()11,0F -,()21,0F ,M 为圆22:4O x y +=上的动点,延长1F M 至N ,使得1MN MF =,1F N 的垂直平分线与2F N 交于点P ,记P 的轨迹为Γ.(1)求Γ的方程;(2)过2F 的直线l 与Γ交于,A B 两点,纵坐标不为0的点E 在直线4x =上,线段OE 分别与线段AB ,Γ交于,C D 两点,且2OD OC OE =⋅,证明:AC BC =.【答案】(1)22143x y +=;(2)证明见解析.【解析】【分析】(1)由线段垂直平分线和三角形中位线性质可证得12124PF PF F F +=>,可知P 点轨迹为椭圆,由此可得轨迹方程;(2)由已知可知24D C x x =;当l 斜率不存在时显然不成立;当l 斜率存在时,设l 方程,将其与椭圆方程联立,结合韦达定理可得AB 中点横坐标;设():0OE y k x k ''=≠,与直线l 和椭圆方程联立可求得34k k'=-,由此可整理得到C x ,与AB 中点横坐标相同,由此可得结论.(1)连接1,MO PF,PM 是1NF 的垂直平分线,1PF PN ∴=,1222PF PF PN PF NF ∴+=+=;,M O 分别为112,NF F F 中点,224NF MO ∴==,12124PF PF F F ∴+=>,P ∴点轨迹是以12,F F 为焦点,长轴长为4的椭圆,即2a =,1c =,23b ∴=,P ∴点轨迹Γ的方程为:22143x y +=;(2)2OD OC OE =⋅ ,即OD OE OC OD =,D EC Dx x x x ∴=,由题意知:0C x >,4E x =,24D C x x ∴=,①当直线l 斜率不存在时,即:1l x =,此时1C x =,2D x <,此时24D C x x =不成立;②当直线l 斜率存在时,设():1l y k x =-,()11,A x y ,()22,B x y ,由()221431x y y k x ⎧+=⎪⎨⎪=-⎩得:()22223484120k x k x k +-+-=,2122212283441234k x x k k x x k ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,AB ∴中点的横坐标为21224234x x k k +=+;设直线OE 的方程为:()0y k x k ''=≠,由()1y k x y k x ='=⎧⎨-⎩得:kx k k ='-,即C k x k k ='-;由22143y k xx y =⎧='⎪⎨+⎪⎩得:221234x k ='+,即221234D x k ='+;由24D C x x =得:212434k k k k =''+-,整理可得:34k k '=-,2122434324C x x kk x k k k+∴===++,C ∴为线段AB 的中点,AC BC ∴=.【点睛】关键点点睛:本题考查定义法求解轨迹方程、直线与椭圆综合应用问题;本题证明C 为AB 中点的关键是能够通过已知等式得到,C D 两点横坐标之间满足的等量关系,进而表示出AB 中点横坐标和C 点横坐标,证明二者相等即可.20.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F ,2F,离心率2e =,P为椭圆上一动点,12PF F △面积的最大值为2.(1)求椭圆E 的方程;(2)若C ,D 分别是椭圆E 长轴的左、右端点,动点M 满足MD CD ⊥,连结CM 交椭圆于点N ,O 为坐标原点.证明:OM ON ⋅为定值;(3)平面内到两定点距离之比是常数()1λλ≠的点的轨迹是圆.椭圆E 的短轴上端点为A ,点Q 在圆228x y +=上,求22QA QP PF +-的最小值.【答案】(1)22142x y +=;(2)见解析;4.【解析】【分析】(1)结合离心率和12PF F △面积的最大值列出关于,,a b c 的方程,解方程即可;(2)设直线CM 方程,写出点M 坐标,联立椭圆方程,求点N 坐标,通过向量数量积计算即可;(3)设点R 坐标,借助点Q 在圆228x y +=上,将2QA 转化成RA ,再借助椭圆定义将2PF 转化成14PF -,最后通过1,,R P F 三点共线求出最小值.(1)当P 为短轴端点时,12PF F △的面积最大,2bc =,222222,c a bc a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,a b c ===,故椭圆E 的方程为22142x y +=.(2)由(1)知,()2,0,(2,0)C D -,设直线():2CM y k x =+,11(,)N x y ,,(2,4)MD CD M k ⊥∴ ,联立221,42(2)x y y k x ⎧+=⎪⎨⎪=+⎩整理得()22222218840k x k x k +++-=,由21284221k x k --=+得2122421k x k -=+,1124(2)21ky k x k =+=+,222244(,)2121k k N k k -∴++,2222442442121k kOM ON k k k -⋅=⨯⨯++ ,故OM ON ⋅为定值4.(3)由题意(A ,设()(0,),,R m Q x y ,使2QA QR =,()()22222,4QR x y m QAx y +-==+,整理得222282833m m x y y --++=,又点Q 在圆228x y +=上,20,883m =∴⎨-⎪=⎪⎩解得m =,(0,R 由椭圆定义得124PF PF =-,2112(4)4QA QP PF QR QP PF QR QP PF +-=+--∴=++-,当1,,R P F三点共线时,(10,,(R F 22QA QP PF +-∴4.【点睛】(1)关键在于建立,,a b c 的方程;(2)关键在于设出直线方程,联立得出点N 坐标;(3)关键在于利用题目中给出的圆的定义将2QA 转化成RA ,再结合椭圆定义,将问题简化成共线问题.21.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知O 为坐标原点,P 为椭圆C 上的一个动点,过点E0)作OP 的平行线交椭圆C 于M ,N 两点,问:是否存在实数t (t >0),使得||,||,||EM t OP EN 构成等比数列?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,12t =【解析】【分析】(1)由题意可得2a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程中可求出2b ,从而可求得椭圆的方程,(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =,将直线方程代入椭圆方程中可求出22,x y ,则可得2OP ,设直线MN的方程为()()1122(,,,y k x M x y N x y =,将直线方程代入椭圆方程消去y ,利用根与系数的关系,再利用两点间的距离公式表示出||,||EM EN ,再计算||||EM EN 与2OP 比较可求出t 的值,②当OP 的斜率不存在时,可得||OP =MN的方程为x ||||EM EN 的值,进而可求出t (1)由题意可得24a =,所以2a =.因为点(1,32)在椭圆C 上,所以221914a b +=,解得23b =.所以椭圆C 的标准方程为22143x y +=.(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =.联立方程,得22143y kxx y =⎧⎪⎨+=⎪⎩解得221234x k =+,2221234k y k =+.解得()2222221211212||343434k k OP k k k+=+=+++,设直线MN的方程为()()1122(,,,y k x M x y N x y =-.联立方程,得(22143y k x x y ⎧=-⎪⎨⎪+=⎩化简,得()22223412120k x x k +=+-=.因为点E0)在椭圆内部,所0∆>,221213221212,3434k x x x x k k-+=⋅=++,所以1||EM x =-.同理可得2||EN x =所以()(())22121212||||113EM EN kx xk x x x x ⋅=+=+⋅++()()22222223112122413343434k k kk k k k +-=+⋅-+=+++,假设存在实数(0)t t >),使得||,||,||EM t OP EN 构成等比数列,则22||||||EM EN t OP ⋅=.所以()()22222311213434k k tk k ++=⋅++.解得214t=.四为1t >,所以12t =,②当OP 的斜率不存在时,||OP =MN 的方程为x =x =22143x y +=,得234y =.所以||||2EM EN ==,当||,||,||EM t OP EN 构成等比数列时,22||||||EM EN t OP ⋅=,即2334t =.因为0t >,所以12t =.综上所述,存在实数12t =,使得||,||,||EM t OP EN 构成等比数列.22.在平面直角坐标系xOy 中,曲线C 的参数方程为x y αααα⎧=-⎪⎨=+⎪⎩(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为()cos sin 3m m ρθθ++=l 与曲线C 交于A ,B 两点.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若AB =CD .【答案】(1)2212x y +=,30mx y m ++=;(2)4.【解析】【分析】(1)消参法求曲线C 的普通方程,公式法求直线l 的直角坐标方程.(2)由(1)所得普通方程,结合圆中弦长、半径、弦心距的几何关系求圆心到直线l 的距离,再利用点线距离公式列方程求参数m ,即可得直线的倾斜角大小,由AB 、CD 的关系求CD 即可.(1)由题意,消去参数α,得曲线C 的普通方程为2212x y +=.将cos x ρθ=,sin y ρθ=代入()cos sin 3m m ρθθ++得直线l的直角坐标方程为30mx y m ++=.(2)设圆心到直线l:30mx y m ++=的距离为d,则AB =3d =.3=,解得3m =-.所以直线l的方程为60x +=,则直线l 的倾斜角为30θ=︒.所以4cos30AB CD ==︒.23.在平面直角坐标系xOy中,已知直线340x y ++=与圆1C :222x y r +=相切,另外,椭圆2C :()222210x y a b a b +=>>的离心率为32,过左焦点1F 作x 轴的垂线交椭圆于C ,D 两点.且1CD =.(1)求圆1C 的方程与椭圆2C 的方程;(2)经过圆1C 上一点P 作椭圆2C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆1C 相交于M ,N 两点(异于点P ),求△OAB 的面积的取值范围.【答案】(1)225x y +=,2214x y +=;(2)4,15⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)由直线与圆的相切关系及点线距离公式求参数r ,即可得圆1C 的方程,根据椭圆离心率、22b CD a=及椭圆参数关系求出a 、b 、c ,即可得椭圆2C 的方程.(2)设()11,A x y 、()22,B x y 、()00,P x y ,讨论直线PA ,PB 斜率存在性,则直线PA 为()111y k x x y =-+、直线PB 为()222y k x x y =-+,联立椭圆方程并结合所得一元二次方程0∆=求1k 、2k ,进而得直线PA 为1114x x y y +=、直线PB 为2214x xy y +=,结合P 在直线PA ,PB 上有AB 为0014x xy y +=,联立椭圆方程,应用韦达定理、弦长公式、点线距离公式,结合三角形面积公式得0OAB S = .(1)由题设,圆1C :222x y r +=的圆心为()0,0,因为直线340x y ++=与圆1C相切,则r ==所以圆1C 的方程为225x y +=,因为椭圆2Cc e a ==c =,由221b CD a==,则22a b =,又222a b c =+,所以22324a a a =+,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=.综上,圆1C 为225x y +=,椭圆2C 为2214x y +=.(2)设点()11,A x y ,()22,B x y ,()00,P x y .当直线PA ,PB 斜率存在时,设直线PA ,PB 的斜率分别为1k ,2k ,则直线PA 为()111y k x x y =-+,直线PB 为()222y k x x y =-+.由()11122440y k x x y x y ⎧=-+⎨+-=⎩,消去y 得:()()()22211111111148440k x k y k x x y k x ++-+--=.所以()()()2222111111116441444k y k x k y k x ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()2221111114210x k x y k y -++-=,则11111122111444x y x y x k x y y --=-==-,所以直线PA 为()11114x y x x y y -=-+,化简得:22111144x x y y y x +=+,即1114x x y y +=.经验证,当直线PA 斜率不存在时,直线PA 为2x =或2x =-也满足1114x xy y +=.同理,可得直线PB 为2214x xy y +=.因为()00,P x y 在直线PA ,PB 上,所以101014x x y y +=,202014x xy y +=.综上,直线AB 为0014x xy y +=.由00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,消去y 得:()22200035816160y x x x y +-+-=.所以01220835x x x y +=+,21220161635y x x y -=+.所以12AB x =-=)20203135y y +==+.又O 到直线AB的距离d ==所以)20200311235OABy S y +=⋅+ t =,[]1,4t ∈,则24444OAB t S t t t∆==++,又[]44,5t t+∈,所以△OAB 的面积的取值范围为4,15⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:第二问,设点及直线PA ,PB 的方程,联立椭圆结合相切关系求参数关系,进而确定PA ,PB 的方程,由P 在直线PA ,PB 上求直线AB 的方程,再联立椭圆并应用韦达定理、弦长公式、点线距离公式求三角形面积的范围.24.已知点A ,B 是抛物线x 2=2py (p 为常数且p >0)上不同于坐标原点O 的两个点,且0OA OB ⋅= .(1)求证:直线AB 过定点;(2)过点A 、B 分别作抛物线的切线,两切线相交于点M ,记 OMA 、 OAB 、 OMB 的面积分别为S 1、S 2、S 3;是否存在定值λ使得22s =λS 1S 3?若存在,求出λ值;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,4λ=【解析】【分析】(1)设11(,)A x y ,22(,)B x y ,设直线AB 方程为y kx t =+,代入抛物线方程中,消去y ,。
平面解析几何一、直线的倾斜角与斜率1、直线的倾斜角与斜率(1)倾斜角的范围000180(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1//l2k1k2。
特别地,当直线l1,l2的斜率都不存在时,l1与l2的关系为平行。
(2)两条直线垂直如果两条直线l1,l2斜率存在,设为k1,k2,则l1l2k1k21注:两条直线l1,l2垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果l1,l2中有一条直线的斜率不存在,另一条直线的斜率为0时,l1与l2互相垂直。
二、直线的方程1、直线方程的几种形式名称方程的形式已知条件局限性点斜式不包括垂直于x轴的直线为直线上一定点,k为斜率斜截式k为斜率,b是直线在y轴上的截距不包括垂直于x轴的直线两点式不包括垂直于x轴和y轴的是直线上两定点直线截距式a是直线在x轴上的非零截距,b是直不包括垂直于x轴和y轴或线在y轴上的非零截距过原点的直线一般式A,B,C为系数无限制,可表示任何位置的直线三、直线的交点坐标与距离公式三、直线的交点坐标与距离公式3.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
4.几种距离(1)两点间的距离平面上的两点间的距离公式(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算(二)直线的斜率及应用利用斜率证明三点共线的方法:已知A(x,y),B(x,y),C(x,y),若x1x2x3或k AB k AC,则有A、B、C三点共112233线。
平面解析几何1.(2020届安徽省“江南十校”高三综合素质检测)已知点P是双曲线2222:1(0,0,x y C a b c a b-=>>=上一点,若点P 到双曲线C 的两条渐近线的距离之积为214c ,则双曲线C 的离心率为()ABCD .2【答案】A【解析】设点P 的坐标为(,)m n ,有22221m n a b-=,得222222b m a n a b -=.双曲线的两条渐近线方程为0bx ay -=和0bx ay +=,则点P 到双曲线C的两条渐近线的距离之积为222222222b m a n a b a b c-==+,所以222214a b c c =,则22244()a c a c -=,即()22220c a -=,故2220c a -=,即2222c e a ==,所以e =.故选A 。
2.(2020届河南省濮阳市高三模拟)已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||FA|﹣|FB||的值等于()A.B .8C.D .4【答案】C【解析】F (1,0),故直线AB 的方程为y =x ﹣1,联立方程组241y xy x ⎧=⎨=-⎩,可得x 2﹣6x+1=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知x 1+x 2=6,x 1x 2=1.由抛物线的定义可知:|FA|=x 1+1,|FB|=x 2+1,∴||FA|﹣|FB||=|x 1﹣x 2|==,故选C 。
3.(2020届陕西省西安中学高三第一次模拟)已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为()A .221255x y +=B .2213616x y +=C .2213010x y +=D .2214525x y +=【答案】B【解析】由题意可得c=F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO ,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF ⊥PF′.在Rt △PFF′中,由勾股定理,得|PF′|=8=,由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a 2=36,于是b 2=a 2﹣c 2=36﹣=16,所以椭圆的方程为2213616x y +=,故选B 。
专题08平面解析几何(解答题)近三年高考真题1.(2023•新高考Ⅰ)在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点1(0,2的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于【解析】(1)设点P 点坐标为(,)x y ,由题意得||y ,两边平方可得:22214y x y y ,化简得:214y x,符合题意.故W 的方程为214y x.(2)解法一:不妨设A ,B ,C 三点在W 上,且AB BC .设21(,)4A a a ,21(,)4B b b ,21(,4C c c ,则22(,)AB b a b a ,22(,)BC c b c b.由题意,0AB BC,即2222()()()()0b a c b b a c b ,显然()()0b a c b ,于是1()()0b a c b .此时,||b a .||1c b .于是{||min b a ,||}1c b .不妨设||1c b ,则1a b b c,则||||||||AB BC b a c b||b a c b|||b a c b||c a1|b c b c设||x b c,则1()(f x x x 322(1)()x f x x ,又11222222222(1)(31)(1)(21)()x x x x x f x x x.显然,2x为最小值点.故()(2f x f 故矩形ABCD的周长为2(||||)2()AB BC f x .注意这里有两个取等条件,一个是||1b c,另一个是||b c ,这显然是无法同时取到的,所以等号不成立,命题得证.解法二:不妨设A ,B ,D 在抛物线W 上,C 不在抛物线W上,欲证命题为||||2AB AD .由图象的平移可知,将抛物线W 看作2y x 不影响问题的证明.设(A a ,2)(0)a a ,平移坐标系使A 为坐标原点,则新抛物线方程为22y x ax ,写为极坐标方程,即22sin cos 2cos a ,即2sin 2cos cos a.欲证明的结论为22sin()2cos()sin 2cos 3322||||cos 2cos ()2a a ,也即222sin 2cos ||||cos cos sin sin a a .不妨设22||||cos sin,将不等式左边看成关于a 的函数,根据绝对值函数的性质,其最小值当22sin 0cos cos a 即sin 2cos a时取得,因此欲证不等式为21cos ||cos sin,即21||cos sin ,根据均值不等式,有2|cos sin |由题意,等号不成立,故原命题得证.2.(2023•上海)已知抛物线2:4y x ,在 上有一点A 位于第一象限,设A 的纵坐标为(0)a a .(1)若A 到抛物线 准线的距离为3,求a 的值;(2)当4a 时,若x 轴上存在一点B ,使AB 的中点在抛物线 上,求O 到直线AB 的距离;(3)直线:3l x ,抛物线上有一异于点A 的动点P ,P 在直线l 上的投影为点H ,直线AP 与直线l 的交点为Q .若在P 的位置变化过程中,||4HQ 恒成立,求a 的取值范围.【解析】(1)抛物线2:4y x 的准线为1x ,由于A 到抛物线 准线的距离为3,则点A 的横坐标为2,则2428(0)a a ,解得a ;(2)当4a 时,点A 的横坐标为2444,则(4,4)A ,设(,0)B b ,则AB 的中点为4(,2)2b ,由题意可得24242b ,解得2b ,所以(2,0)B ,则402423AB k,由点斜式可得,直线AB 的方程为2(2)3y x ,即2340x y ,所以原点O 到直线AB13;(3)如图,设22(,),(,),(3,)(0)44t a P t A a H t t a ,则22444AP t a k t a t a,故直线AP 的方程为24()4a y a x t a,令3x ,可得24(3)4a y a t a ,即24(3,(3))4a Q a t a,则24|||(3)|4a HQ t a t a,依题意,24|(3)|44a t a t a恒成立,又24(3)2204a t a a a t a ,则最小值为24a ,即2a ,即2a ,则221244a a a ,解得02a ,又当2a 时,1624442t t,当且仅当2t 时等号成立,而a t ,即当2a 时,也符合题意.故实数a 的取值范围为(0,2].3.(2022•上海)设有椭圆方程2222:1(0)x y a b a b,直线:0l x y , 下端点为A ,M 在l 上,左、右焦点分别为1(F ,0)、2F ,0).(1)2a ,AM 中点在x 轴上,求点M 的坐标;(2)直线l 与y 轴交于B ,直线AM 经过右焦点2F ,在ABM 中有一内角余弦值为35,求b ;(3)在椭圆 上存在一点P 到l 距离为d ,使12||||6PF PF d ,随a 的变化,求d 的最小值.【解析】(1)由题意可得2,a b c ,22:1,(0,42x y A ,AM ∵的中点在x 轴上,M ,代入0x y 得M .(2)由直线方程可知B ,①若3cos 5BAM,则4tan 3BAM ,即24tan 3OAF ,234OA OF ,b.②若3cos 5BMA,则4sin 5BMA ,∵4MBA, 34cos()252510MBA AMB ,cos BAMtan 7BAM .即2tan 7OAF , 7OA , 7b ,综上b或27.(3)设(cos ,sin )P a b ,62a ,很明显椭圆在直线的左下方,则62a ,即) ,222a b ∵,) ,)22a ,|sin()|1 ,整理可得(1)(35)0a a ,即513a ,从而58626233d a .即d 的最小值为83.4.(2022•浙江)如图,已知椭圆22112x y .设A ,B 是椭圆上异于(0,1)P 的两点,且点1(0,2Q 在线段AB上,直线PA ,PB 分别交直线132y x 于C ,D 两点.(Ⅰ)求点P 到椭圆上点的距离的最大值;(Ⅱ)求||CD 的最小值.【解析】(Ⅰ)设椭圆上任意一点(,)M x y ,则222222||(1)12122111213PM x y y y y y y ,[1y ,1],而函数211213z y y 的对称轴为1[1,1]11y ,则其最大值为21114411(213111111, 1441211||1111max PM,即点P 到椭圆上点的距离的最大值为121111;(Ⅱ)设直线11221:,(,),(,)2AB y kx A x y B x y ,联立直线AB 与椭圆方程有2212112y kx x y,消去y 并整理可得,22(121)1290k x kx ,由韦达定理可得,121222129,121121k x x x x k k, 22212121222212366161||()4()121121k k x x x x x x k k k,设3(C x ,3)y ,4(D x ,4)y ,直线111:1y AP y x x ,直线221:1y BP y x x ,联立1111132y y x x y x 以及2211132y y x x y x,可得12341244,(21)1(21)1x x x x k x k x,由弦长公式可得21234124415||1()|||22(21)1(21)1x x CD x x k x k x1212212121225|5|[(21)1][(21)1](21)(21)()1x x x x k x k x k x x k x x66|231555k,当且仅当316k 时等号成立,||CD的最小值为5.5.(2022•北京)已知椭圆2222:1(0)x yE a ba b的一个顶点为(0,1)A,焦距为.(Ⅰ)求椭圆E的方程;(Ⅱ)过点(2,1)P 作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N.当||2MN 时,求k的值.【解析】(Ⅰ)由题意得,12bc,1b,c ,2a ,椭圆E的方程为2214x y .(Ⅱ)设过点(2,1)P 的直线为1(2)y k x,1(B x,1)y,2(C x,2)y,联立得221(2)141y k xx y,即2222(14)(168)16160k x k k x k k,∵直线与椭圆相交, △2222[(168)]4(14)(1616)0k k k k k,0k,由韦达定理得212216814k kx xk,2122161614k kx xk,111ABykx∵, 直线AB为1111yy xx,令0y ,则111xxy,11(1xMy,0),同理22(1xNy ,0),1212211212211||||||()|11(2)(2)22x x x x x xMNy y k x k x k x x212112122()11||||(2)(2)x xk x x k22|216162(168)41414k k,2|2k,1|2,4k .6.(2022•新高考Ⅱ)已知双曲线2222:1(0,0)x y C a b a b的右焦点为(2,0)F,渐近线方程为y .(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点1(P x ,1)y ,2(Q x ,2)y 在C 上,且120x x ,10y .过P且斜率为Q且斜率为的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立.①M 在AB 上;②//PQ AB ;③||||MA MB .注:若选择不同的组合分别解答,则按第一个解答计分.【解析】(1)由题意可得ba,2 ,解得1a,b ,因此C 的方程为2213y x ,(2)解法一:设直线PQ 的方程为y kx m ,(0)k ,将直线PQ 的方程代入2213y x 可得222(3)230k x kmx m ,△2212(3)0m k ,120x x ∵122203kmx x k ,2122303m x x k,230k,1222333x x k ,设点M 的坐标为(M x ,)M y,则1122))M M M M y y x x y y x x ,两式相减可得1212)M y y x x ,1212()y y k x x ∵,1212)()M x x k x x ,解得23M kmX k ,两式相加可得12122())M y y y x x ,1212()2y y k x x m ∵,12122)()2M y x x k x x m ,解得M y ,3M M y x k,其中k 为直线PQ 的斜率;若选择①②:设直线AB 的方程为(2)y k x ,并设A 的坐标为3(x ,3)y ,B 的坐标为4(x ,4)y ,则3333(2)y k x y,解得3x,3y ,同理可得4x4y 234243k x x k ,342123ky y k ,此时点M 的坐标满足(2)3M M M My k x y x k,解得234221()32M k X x x k ,34261()32M k y y y k ,M 为AB 的中点,即||||MA MB ;若选择①③:当直线AB 的斜率不存在时,点M 即为点(2,0)F ,此时不在直线3y x k上,矛盾,当直线AB 的斜率存在时,设直线AB 的方程为(2)(0)y m x m ,并设A 的坐标为3(x ,3)y ,B 的坐标为4(x ,4)y ,则3333(2)y m x y,解得3x,3y ,同理可得4x,4y 此时234212()23M m x x x m ,34216()23M my y y m,由于点M 同时在直线3y x k 上,故2362m m k,解得k m ,因此//PQ AB .若选择②③,设直线AB 的方程为(2)y k x ,并设A 的坐标为3(x ,3)y ,B 的坐标为4(x ,4)y ,则3333(2)y k x y,解得3x,3y ,同理可得4x4y 设AB 的中点(C C x ,)C y ,则234212()23C k x x x k ,34216()23C ky y y k ,由于||||MA MB ,故M 在AB 的垂直平分线上,即点M 在直线1()C C y y x x k上,将该直线3y x k 联立,解得2223M C k x x k ,263M C ky y k ,即点M 恰为AB 中点,故点M 在直线AB 上.(2)解法二:由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①② ③,或选由②③ ①:由②成立可知直线AB 的斜率存在且不为0.若选①③ ②,则M 为线段AB 的中点,假设AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,从而12x x ,已知不符.综上,直线AB 的斜率存在且不为0,直线AB 的斜率为k ,直线AB 的方程为(2)y k x .则条件①M 在直线AB 上,等价于20000(2)(2)y k x ky k x ,两渐近线的方程合并为2230x y ,联立方程组,消去y 并化简得:2222(3)440k x k x k ,设3(A x ,3)y ,4(B x ,4)y ,线段中点为(N N x ,)N y ,则2342223N x x k x k .26(2)3N N ky k x k ,设0(M x ,0)y ,则条件③||||AM BM 等价于222203030404()()()()x x y y x x y y ,移项并利用平方差公式整理得:3403434034()[2()]()[(2()]0x x x x x y y y y y ,3403403434[2()][2()]0y y x x x y y y x x,00()0N N x x k y y ,3403403434[2()][2()]0y y x x x y y y x x,00()0N N x x k y y ,200283k x ky k ,由题意知直线PM的斜率为QM的斜率为,由1010)y y x x,2020)y y x x,121202)y y x x x ,直线PQ的斜率1201212122)x x x y y m x x x x,直线00:)PM y x x y,即00y y ,代入双曲线的方程为22330x y,即)3y y 中,得0000(()]3y y ,解得P的横坐标为100)]3x y ,同理,2022003()3x y y x ,012002200323x x x x x y x ,03x m y, 条件②//PQ AB 等价于003m k ky x ,综上所述:条件①M 在AB 上等价于200(2)m k ky k x ,条件②//PQ AB 等价于003ky x ,条件③||||AM BM 等价于200283k x ky k .选①② ③:由①②解得20223k x k 20002843k x ky x k , ③成立;选①③ ②:由①③解得:20223k x k ,20263k ky k ,003ky x , ②成立;选②③ ①:由②③解得:20223k x k ,20263k ky k , 02623x k , ①成立.7.(2022•上海)已知椭圆222:1(1)x y a a,A 、B 两点分别为 的左顶点、下顶点,C 、D 两点均在直线:l x a 上,且C 在第一象限.(1)设F 是椭圆 的右焦点,且6AFB,求 的标准方程;(2)若C 、D 两点纵坐标分别为2、1,请判断直线AD 与直线BC 的交点是否在椭圆 上,并说明理由;(3)设直线AD 、BC 分别交椭圆 于点P 、点Q ,若P 、Q 关于原点对称,求||CD 的最小值.【解析】(1)由题可得(0,1)B ,(,0)F c ,因为6AFB,所以1tan tan 63b AFBc c,解得c ,所以214a ,故 的标准方程为2214x y ;(2)直线AD 与直线BC 的交点在椭圆上,由题可得此时(,0)A a ,(0,1)B ,(,2)C a ,(,1)D a ,则直线3:1BC y x a ,直线11:22AD y x a ,交点为3(5a ,4)5,满足2223()45()15a a ,故直线AD 与直线BC 的交点在椭圆上;(3)(0,1)B ,(cos ,sin )P a ,则直线sin 1:1cos BP y x a ,所以sin 1(,1)cos C a,(,0)A a ,(cos ,sin )Q a ,则直线sin :()cos AQ y x a a a,所以2sin (,cos 1D a,所以222222sin cos 4sin cossin 12sin 222222||11cos cos 12222sin cos CD cos sin sin,设tan 2t ,则11||2()21CD t t,因为114a ba b ,所以114411t t t t,则||6CD ,即||CD 的最小值为6.8.(2021•北京)已知椭圆2222:1(0)x y E a b a b的一个顶点(0,2)A ,以椭圆E 的四个顶点围成的四边形面积为.(Ⅰ)求椭圆E 的方程;(Ⅱ)过点(0,3)P 作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB 、AC 分别与直线3y 交于点M 、N ,当||||15PM PN 时,求k 的取值范围.【解析】(Ⅰ)因为椭圆2222:1(0)x y E a b a b过点(0,2)A ,则2b ,又因为以四个顶点围成的四边形面积为,所以1222a b,解得a ,故椭圆E 的标准方程为22154x y;(Ⅱ)由题意,设过点(0,3)P ,斜率为k 的直线为直线l ,设直线l 的方程为(3)(0)y k x ,即3y kx ,当0k 时,直线l 与椭圆E 没有交点,而直线l 交椭圆E 于不同的两点B ,C ,所以0k ,设1(B x ,1)y ,2(C x ,2)y ,联立方程组223154y kx x y,可得22(45)30250k x kx ,则△22(30)425(45)0k k ,解得||1k ,所以1212223025,4545k x x x x k k,则221212121222036(3)(3)3()945k y y kx kx k x x k x x k ,121212224(3)(3)()645y y kx kx k x x k,直线AB 的方程为11(2)(2)(0)0y y x x ,即1122y y x x ,直线AC 的方程为22(2)(2)0)0y y x x,即2222y y x x ,因为直线AB 交3y 于点M ,所以令3y ,则112M x x y ,故11(,3)2x M y ,同理可得22(,3)2x N y ,注意到12225045x x k,所以1x ,2x 同号,因为120y ,220y ,所以M x ,N x 同号,故||||||||||M N M N PM PN x x x x ,则1212211212(2)(2)|||||||22(2)(2)x x x y x y PM PN y y y y 1221121212(3)(3)2()||2()4x kx x kx x x y y y y 121212122()||2()4kx x x x y y y y 22222253024545||20364844545kk k k k k k5||k ,故||||5||PM PN k ,又||||15PM PN ,即5||15k ,即||3k ,又||1k ,所以1||3k ,故k 的取值范围为[3 ,1)(1 ,3].9.(2021•浙江)如图,已知F 是抛物线22(0)y px p 的焦点,M 是抛物线的准线与x 轴的交点,且||2MF .(Ⅰ)求抛物线的方程:(Ⅱ)设过点F 的直线交抛物线于A ,B 两点,若斜率为2的直线l 与直线MA ,MB ,AB ,x 轴依次交于点P ,Q ,R ,N ,且满足2||||||RN PN QN ,求直线l 在x轴上截距的取值范围.【解析】(Ⅰ)依题意,2p ,故抛物线的方程为24y x ;(Ⅱ)由题意得,直线AB 的斜率存在且不为零,设直线:(1)AB y k x ,将直线AB 方程代入抛物线方程可得,2222(24)0k x k x k ,则由韦达定理有,242,1A B A B x x x x k,则4A B y y ,设直线1:(1)AM y k x ,其中11A A y k x,设直线2:(1)BM y k x ,其中21B B yk x ,则12(1)(1)(1)(1)0011(1)(1)(1)(1)(1)(1)A B A B A B A B A B A B A B A B A B A B A B y y y x y y x y k x x k x k x x k x k k x x x x x x x x,2122244(1)(1)1121A B A B y y k k k x x k k,设直线:2()l y x t ,联立2()(1)y x t y k x ,可得22R k t x k ,则2||||||22R k t k kt x t t k k ,联立12()(1)y x t y k x ,可得1122P k t x k ,则111112||||||22P k t k k t x t t k k ,同理可得,222222,||||22Q Q k t k k tx x t k k,又2||||||RN PN QN ,2112212||||222k k t k k tk kt k k k ,即2222(1)()234k kt k t k k ,22222222(1)343(2)12(2)16161243333()(1)(1)(2)(2)(2)22244t k k k t t k k k k k ,224(21)3(21)t t t t ,即21410t t,解得7t或71)t t ;当直线AB 的斜率不存在时,则直线:1AB x ,(1,2)A ,(1,2)B ,(1,0)M ,直线MA 的方程为1y x ,直线MB 的方程为1y x ,设直线:2()l y x t ,则(12,22)P t t ,2122(,)33t t Q ,(1,22)R t ,(,0)N t ,又2||||||RN PN QN,故22(1)(22)t t 解得t满足(,77,1)(1,) .直线l 在x轴上截距的取值范围为(,77,1)(1,) .10.(2021•新高考Ⅰ)在平面直角坐标系xOy中,已知点1(F ,0),2F ,0),点M 满足12||||2MF MF .记M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且||||||||TA TB TP TQ ,求直线AB 的斜率与直线PQ 的斜率之和.【解析】(1)由双曲线的定义可知,M 的轨迹C 是双曲线的右支,设C 的方程为22221(0,0),1x y a b x a b ,根据题意22222c a c a b,解得14a b c,C 的方程为221(1)16y x x ;(2)(法一)设1(,)2T m ,直线AB 的参数方程为1cos 2sin x t y m t,将其代入C 的方程并整理可得,2222(16cos sin )(16cos 2sin )(12)0t m t m ,由参数的几何意义可知,1||TA t ,2||TB t ,则2212222121216117m m t t sin cos cos,设直线PQ 的参数方程为1cos 2sin x y m,1||TP ,2||TQ ,同理可得,212212117m cos ,依题意,22221212117117m m cos cos,则22cos cos ,又 ,故cos cos ,则cos cos 0 ,即直线AB 的斜率与直线PQ 的斜率之和为0.(法二)设1(,)2T t ,直线AB 的方程为11()2y k x t ,1(A x ,1)y ,2(B x ,2)y ,设1212x x ,将直线AB 方程代入C 的方程化简并整理可得,22222111111(16)(2)1604k x k tk x k k t t ,由韦达定理有,22211111212221111624,1616k k t t k k tx x x x k k ,又由111111(,),(,)22A x k x k t T t可得11||)2AT x ,同理可得21||)2BT x ,222111221(1)(12)11||||(1)()()2216k t AT BT k x x k,设直线PQ 的方程为233441(),(,),(,)2y k x t P x y Q x y ,设3412x x ,同理可得22222(1)(12)||||16k t PT QT k ,又||||||||AT BT PT QT ,则22122212111616k k k k ,化简可得2212k k ,又12k k ,则12k k ,即120k k ,即直线AB 的斜率与直线PQ 的斜率之和为0.11.(2021•乙卷(文))已知抛物线2:2(0)C y px p 的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF,求直线OQ 斜率的最大值.【解析】(1)由题意知,2p ,24y x .(2)由(1)知,抛物线2:4C y x ,(1,0)F ,设点Q 的坐标为(,)m n ,则(1,)QF m n,9(99,9)PQ QF m nP 点坐标为(109,10)m n ,将点P 代入C 得21004036n m ,整理得22100362594010n n m ,当0n 时,2100259n n K m n,当0n 时,2101019259325n n K m n n n,当且仅当925n n ,即35n 时,等号成立,取得最大值.故答案为:13.12.(2022•甲卷(文))设抛物线2:2(0)C y px p 的焦点为F ,点(,0)D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,||3MF .(1)求C 的方程;(2)设直线MD ,ND 与C 的另一个交点分别为A ,B ,记直线MN ,AB 的倾斜角分别为 , .当 取得最大值时,求直线AB 的方程.【解析】(1)由题意可知,当x p 时,222y p,得M y,可知||MD ,||2p FD .则在Rt MFD 中,222||||||FD DM FM,得22())92p,解得2p .则C 的方程为24y x ;(2)设1(M x ,1)y ,2(N x ,2)y ,3(A x ,3)y ,4(B x ,4)y ,当MN 与x 轴垂直时,由对称性可知,AB 也与x 轴垂直,此时2,则0 ,由(1)可知(1,0)F ,(2,0)D ,则1212221212124tan 44MN y y y y k y y x x y y,又N 、D 、B 三点共线,则ND BD k k ,即24240022y y x x,242224002244y y y y,得248y y ,即428y y;同理由M 、D 、A 三点共线,得318y y .则34123434124tan 2()y y y y x x y y y y.由题意可知,直线MN 的斜率不为0,设:1MN l x my ,由241y x x my ,得2440y my ,124y y m ,124y y ,则41tan 4m m,41tan 242m m,则11tan tan 12tan()1111tan tan 122m m m m m m,∵1tan m,1tan 2m,tan 与tan 正负相同,22, 当 取得最大值时,tan() 取得最大值,当0m时,1tan()142m m;当0m 时,tan() 无最大值, 当且仅当12m m,即2m 时,等号成立,tan() 取最大值,此时AB 的直线方程为33344()y y x x y y ,即34344()0x y y y y y ,又123412128()888y y y y m y y y y∵34128816y y y y ,AB的方程为4160x,即40x .13.(2023•甲卷(文))已知直线210x y 与抛物线2:2(0)C y px p 交于A ,B两点,||AB .(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,且0FM FN,求MFN 面积的最小值.【解析】设1(A x ,1)y ,2(B x ,2)y ,联立22102(0)x y y px p,消去x 得:2420y py p ,124y y p ,122y y p ,△21680p p ,(21)0p p ,12p,12|||4AB y y ,216848p p ,2260p p ,(23)(2)0p p ,2p ,(2)由(1)知24y x ,所以(1,0)F ,显然直线MN 的斜率不可能为零,设直线:MN x my n ,1(M x ,1)y ,2(N x ,2)y 由24y x x my n,可得2440y m n ,所以124y y m ,124y y n ,△22161600m n m n ,因为0MF NF,所以1212(1)(1)0x x y y ,即1212(1)(1)0my n my n y y ,即221212(1)(1)()(1)0m y y m n y y n ,将124y y m ,24y n ,代入得22461m n n ,224()(1)0m n n ,所以1n ,且2610n n ,解得3n 或3n 设点F 到直线MN 的距离为d ,所以d12|||MN y y1|n ,所以MNF 的面积11||1|22S MN d n,又3n 或3n 3n 时,MNF 的面积2(212min S .14.(2023•甲卷(理))设抛物线2:2(0)C y px p ,直线210x y 与C 交于A ,B 两点,且||AB .(1)求p 的值;(2)F 为22y px 的焦点,M ,N 为抛物线上的两点,且0MF NF,求MNF 面积的最小值.【解析】设1(A x ,1)y ,2(B x ,2)y ,联立22102(0)x y y px p,消去x 得:2420y py p ,124y y p ,122y y p ,△21680p p ,(21)0p p ,12p,12|||4AB y y ,216848p p ,2260p p ,(23)(2)0p p ,2p ;(2)由(1)知24y x ,所以(1,0)F ,显然直线MN 的斜率不可能为零,设直线:MN x my n ,1(M x ,1)y ,2(N x ,2)y ,由24y x x my n,可得2440y my n ,所以124y y m ,124y y n ,△22161600m n m n ,因为0MF NF ,所以1212(1)(1)0x x y y ,即1212(1)(1)0my n my n y y ,即221212(1)(1)()(1)0m y y m n y y n ,将124y y m ,24y n ,代入得22461m n n ,224()(1)0m n n ,所以1n ,且2610n n ,解得3n 或3n 设点F 到直线MN 的距离为d ,所以d12|||MN y y1|n ,所以MNF 的面积11||1|22S MN d n ,又3n 或3n 3n 时,MNF 的面积2(212min S .15.(2023•天津)设椭圆22221(0)x y a b a b的左、右顶点分别为1A ,2A ,右焦点为F ,已知1||3A F ,2||1A F .(Ⅰ)求椭圆方程及其离心率;(Ⅱ)已知点P 是椭圆上一动点(不与顶点重合),直线2A P 交y 轴于点Q ,若△1A PQ 的面积是△2A FP 面积的二倍,求直线2A P 的方程.【解析】(Ⅰ)由题意可知,31a c a c ,解得21a c,222413b a c .则椭圆方程为22143x y ,椭圆的离心率为12c e a ;(Ⅱ)由题意可知,直线2A P 的斜率存在且不为0,当0k 时,直线方程为(2)y k x ,取0x ,得(0,2)Q k .联立22(2)143y k x x y ,得2222(43)1616120k x k x k .△2222(16)4(43)(1612)1440k k k ,221612243P k x k ,得228643P k x k ,则21243P k y k .11212322111216124(2)4()224343A PQ A A Q A A Pk k k S S S k k k .22211261()24343A FP k k S k k . 3221612124343k k k k k ,即223k ,得6(0)2k k ;同理求得当0k 时,62k . 直线2A P 的方程为6(2)2y x .16.(2022•天津)椭圆22221(0)x y a b a b的右焦点为F 、右顶点为A ,上顶点为B ,且满足||3||2BF AB .(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于(N N 异于)M .记O 为坐标原点,若||||OM ON ,且OMN 3【解析】(1)∵22||3||BF aAB a b 22234a a b ,223a b ,2223()a a c ,2223a c ,222633c e a ;(2)由(1)可知椭圆为222213x y a a,即2223x y a ,设直线:l y kx m ,联立2223x y a ,消去y 可得:2222(31)6(3)0k x kmx m a ,又直线l 与椭圆只有一个公共点,△2222364(31)(3)0k m k m a ,2223(31)m a k ,又2331M km x k , 22233131M M k m m y kx m m k k ,又||||OM ON , 222223(()3131km m m k k ,解得213k,3k ,又OMN的面积为2113||||||||2231M km ON x m k ,212224m ,又k 2223(31)m a k ,26a ,22b , 椭圆的标准方程为22162x y .17.(2022•新高考Ⅰ)已知点(2,1)A 在双曲线2222:1(1)1x y C a a a 上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ,求PAQ 的面积.【解析】(1)将点A 代入双曲线方程得224111a a ,化简得42440a a ,22a ,故双曲线方程为2212x y ,由题显然直线l 的斜率存在,设:l y kx m ,设1(P x ,12)(y Q x ,2)y ,则联立双曲线得:222(21)4220k x kmx m ,故122421km x x k ,21222221m x x k ,12121212111102222AP AQ y y kx m kx m k k x x x x ,化简得:12122(12)()4(1)0kx x m k x x m ,故2222(22)4(12)(4(1)02121k m km m k m k k ,即(1)(21)0k m k ,而直线l 不过A 点,故1k ;(2)设直线AP 的倾斜角为,由tan PAQ22tan21tan 2PAQ PAQ,得tan 22PAQ 由2PAQ , 2PAQ,得tan AP k,即1112y x ,联立1112y x ,及221112x y得1110533x y ,同理22x y 故12122068,39x x x x ,而12||2|,|||2|AP x AQ x,由tan PAQsin 3PAQ,故12121||||sin 2()4|29PAQ S AP AQ PAQ x x x x .18.(2023•新高考Ⅱ)已知双曲线C中心为坐标原点,左焦点为( 0).(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点(4,0) 的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于P ,证明P 在定直线上.【解析】(1)双曲线C中心为原点,左焦点为( 0),则222c a b c c e a,解得24a b ,故双曲线C 的方程为221416x y ;(2)证明:过点(4,0) 的直线与C 的左支交于M ,N 两点,则可设直线MN 的方程为4x my ,1(M x ,1)y ,2(N x ,2)y ,记C 的左,右顶点分别为1A ,2A ,则1(2,0)A ,2(2,0)A ,联立224416x my x y ,化简整理可得,22(41)32480m y my ,故△222(32)448(41)2641920m m m 且2410m ,1223241m y y m ,1224841y y m ,直线1MA 的方程为11(2)2y y x x,直线2NA 方程22(2)2y y x x ,故21211212(2)(2)22(2)(6)y x y my x x y x y my 121211212()26my y y y y my y y 12212483222414148641m m y m m m y m 1212162141483641m y m m y m ,故2123x x ,解得1x ,所以1P x ,故点P 在定直线1x 上运动.19.(2021•上海)已知22:12x y ,1F ,2F 是其左、右焦点,直线l 过点(P m,0)(m ,交椭圆于A ,B 两点,且A ,B 在x 轴上方,点A 在线段BP 上.(1)若B 是上顶点,11||||BF PF ,求m 的值;(2)若1213F A F A ,且原点O 到直线l的距离为15,求直线l 的方程;(3)证明:对于任意m 12//F A F B 的直线有且仅有一条.【解析】(1)因为 的方程:2212x y ,所以22a ,21b ,所以2221c a b ,所以1(1,0)F ,2(1,0)F ,若B 为 的上顶点,则(0,1)B ,所以1||BF ,1||1PF m ,又11||||BF PF ,所以1m(2)设点A ,sin ) ,则2221211)213F A F A sin cos sin ,因为A 在线段BP 上,横坐标小于0,解得cos ,故()33A ,设直线l的方程为(0)33y kx k ,由原点O 到直线l,则15d ,化简可得231030k k ,解得3k 或13k ,故直线l的方程为13y x或3y x(舍去,无法满足m ,所以直线l的方程为139y x ;(3)联立方程组2212y kx km x y ,可得22222(12)4220k x k mx k m ,设1(A x ,1)y ,2(B x ,2)y ,则222121222422,1212k m k m x x x x k k ,因为12//F A F B ,所以2112(1)(1)x y x y ,又y kx km ,故化简为122212x x k ,又122216882||||1212k k m x x k k ,两边同时平方可得,2224210k k m ,整理可得22142k m ,当m 时,221042k m ,因为点A ,B 在x 轴上方,所以k 有且仅有一个解,故对于任意m ,使得12//F A F B 的直线有且仅有一条.20.(2021•甲卷(文))在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为 .(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P满足AP ,写出P 的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.【解析】(1)由极坐标方程为,得2cos ,化为直角坐标方程是22x y ,即22(2x y,表示圆心为C 0)(2)【解法1】根据题意知,点P 的轨迹是以A为缩放比例将圆1C 作位似变换得到的,因此1C的圆心为(3 0),半径差为2 ,所以圆C 内含于圆1C ,圆C 与圆1C 没有公共点.【解法2】设点P 的直角坐标为(,)x y ,1(M x ,1)y ,因为(1,0)A ,所以(1,)AP x y ,1(1AM x ,1)y ,由AP ,即1111)x x y ,解得11(1)122x x y y ,所以1)1M x)y ,代入C的方程得221)1)2x ,化简得点P的轨迹方程是22(34x y,表示圆心为1(3C ,0),半径为2的圆;化为参数方程是32cos 2sin x y, 为参数;计算1|||(332CC ,所以圆C 与圆1C 内含,没有公共点.21.(2023•北京)已知椭圆2222:1(0)x y E a b a b,A 、C 分别为E 的上、下顶点,B 、D 分别为E 的左、右顶点,||4AC .(1)求E 的方程;(2)点P 为第一象限内E 上的一个动点,直线PD 与直线BC 交于点M ,直线PA 与直线2y 交于点N .求证://MN CD .【解析】(1)由题意可得:24b,c e a,222a b c ,解得2b ,29a , 椭圆E 的方程为22194x y .(2)证明:(0,2)A ,(3,0)B ,(0,2)C ,(3,0)D ,直线BC 的方程为132x y ,化为2360x y .设直线AP 的方程为:2y kx ,(0)k ,4(N k ,2) .联立222194y kx x y ,化为:22(49)360k x kx ,解得0x 或23649k k,236(49k P k ,22818)49k k .直线PD 方程为:22218849(3)36349k k y x k k ,即22188(3)273612k y x k k ,与2360x y 联立,解得26432k x k k ,2281896k y k k.264(32k M k k,2281896k k k .2228182296464332MN k k k k k k k k,23CD k,//MN CD .22.(2021•新高考Ⅱ)已知椭圆C 的方程为22221(0)x y a b a b,右焦点为F ,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x 相切.证明:M ,N ,F 三点共线的充要条件是||MN .【解析】(Ⅰ)由题意可得,椭圆的离心率3c a,又c所以a 2221b a c ,故椭圆的标准方程为2213x y ;(Ⅱ)证明:先证明充分性,当||MN 时,设直线MN 的方程为x ty s ,此时圆心(0,0)O 到直线MN的距离1d ,则221s t ,联立方程组2213x ty s x y ,可得222(3)230t y tsy s ,则△22222244(3)(3)12(3)24t s t s t s ,因为2||3MN t ,所以21t ,22s ,因为直线MN 与曲线222(0)x y b x 相切,所以0s,则s ,则直线MN的方程为x ty恒过焦点F ,故M ,N ,F 三点共线,所以充分性得证.若M ,N ,F 三点共线时,设直线MN的方程为x my ,则圆心(0,0)O 到直线MN的距离为1d ,解得21m ,联立方程组2213x my x y,可得22(3)10m y ,即2410y ,所以||44MN所以必要性成立;综上所述,M,N,F三点共线的充要条件是||MN.23.(2021•天津)已知椭圆22221(0)x y a ba b的右焦点为F,上顶点为B,离心率为,且||BF.(1)求椭圆的标准方程;(2)直线l与椭圆有唯一的公共点M,与y轴的正半轴交于点N,过N与BF垂直的直线交x轴于点P.若//MP BF,求直线l的方程.【解析】(1)因为离心率5e,||BF所以222caaa b c,解得a ,2c ,1b ,所以椭圆的方程为2215x y .(2)先证明椭圆22221x ya b上过点(M x,)y的椭圆的切线方程为:00221xx yya b.由于椭圆过点0(x,0)y,则2200221x ya b①,对椭圆求导得22b xya y,即切线的斜率22b xka y,故切线的方程2002()b xy y x xa y,将①代入得00221xx yya b.则切线MN 的方程为0015x x y y ,令0x ,得01N y y,因为PN BF ,所以1PN BF k k ,所以1(12PN k ,解得2NP k ,设1(P x ,0),则01120NPy k x ,即1012x y ,因为//MP BF ,所以MP BF k k ,所以0001122y x y ,即000122y x y ,所以000122x y y,又因为220015x y ,所以22002042115520y y y ,解得06y ,因为0N y ,所以00y ,所以06y,036x ,所以6156y,即0x y .24.(2021•甲卷(文))抛物线C 的顶点为坐标原点O ,焦点在x 轴上,直线:1l x 交C 于P ,Q 两点,且OP OQ .已知点(2,0)M ,且M 与l 相切.(1)求C ,M 的方程;(2)设1A ,2A ,3A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.【解析】(1)因为1x 与抛物线有两个不同的交点,故可设抛物线C 的方程为:22(0)y px p ,令1x ,则2y p ,根据抛物线的对称性,不妨设P 在x 轴上方,Q 在x 轴下方,故2),(1,2P p Q p ,因为OP OQ ,故112(202p p p,抛物线C 的方程为:2y x ,因为M 与l 相切,故其半径为1,故22:(2)1M x y .另(1)根据抛物线的对称性,由题意可得45POx QOx ,因此点P ,Q 的坐标为(1,1) ,由题意可设抛物线C 的方程为:22(0)y px p ,可得12p ,因此抛物线C 的方程为2y x .而圆M 的半径为圆心M 到直线l 的距离为1,可得M 的方程为22(2)1x y .(2)很明显,对于12A A 或者13A A 斜率不存在的情况以及23A A 斜率为0的情况满足题意.否则:设11(A x ,1)y ,22(A x ,2)y ,33(A x ,3)y .当1A ,2A ,3A 其中某一个为坐标原点时(假设1A 为坐标原点时),设直线12A A 方程为0kx y ,根据点(2,0)M 到直线距离为11,解得k 联立直线12A A 与抛物线方程可得3x ,此时直线23A A 与M 的位置关系为相切,当1A ,2A ,3A 都不是坐标原点时,即123x x x ,直线12A A 的方程为1212()0x y y y y y ,1 ,即22212121(1)230y y y y y ,同理,由对称性可得,22213131(1)230y y y y y ,所以2y ,3y 是方程222111(1)230y t y t y 的两根,则2112323221123,11y y y y y y y y ,依题意有,直线23A A 的方程为2323()0x y y y y y ,令M 到直线23A A 的距离为d ,则有22122223122123213(2)(2)1121()1()1y y y y d y y y y ,此时直线23A A 与M 的位置关系也为相切,综上,直线23A A 与M 相切.(2)另设2(i i A y ,)i y ,1i ,2,3,由直线的两点式可知,直线12A A 的方程为222122122()()()()y y y y y y x y ,化简可得1212()0x y y y y y ,因为直线12A A 与圆M2212121(2)1()y y y y ,整理得22212121(1)230y y y y y ,同理有22213131(1)230y y y y y ,所以2y ,3y 是关于y 的方程222111(1)230y y y y y 的两个根,则2112323221123,11y y y y y y y y ,依题意有,直线23A A 的方程为2323()0x y y y y y ,令M 到直线23A A 的距离为d ,则有22122223122123213(2)(2)1121()1()1y y y y d y y y y ,此时直线23A A 与M 的位置关系也为相切,综上,直线23A A 与M 相切.25.(2023•乙卷(文))已知椭圆2222:1(0)y x C a b a b的离心率为3,点(2,0)A 在C 上.(1)求C 的方程;(2)过点(2,3) 的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【解析】(1)由题意,22232c a b a b c,解得32a b c . 椭圆C 的方程为22194y x ;证明:(2)如图,要使过点(2,3) 的直线交C 于点P ,Q 两点,则PQ 的斜率存在且小于0,设:3(2)PQ y k x ,即23y kx k ,0k ,1(P x ,1)y ,2(Q x ,2)y ,联立2223194y kx k y x ,得22(49)8(23)16(3)0k x k k x k k .△22[8(23)]4(49)16(3)17280k k k k k k .1228(23)49k k x x k ,12216(3)49k k x x k ,直线11:(2)2y AP y x x,取0x ,得112(0,)2y M x ;直线22:(2)2y AQ y x x,取0x ,得222(0,2y N x . 1212211212222(2)2(2)22(2)(2)y y y x y x x x x x 12211212(23)(2)(23)(2)22()4kx k x kx k x x x x x 121212122(43)()4(23)22()4kx x k x x k x x x x 222216(3)8(23)2(43)4(23)4949216(3)8(23)244949k k k k k k k k k k k k k k k 32322322223296649648723272481082164832481636k k k k k k k k k k k k k k 1082636.MN 的中点为(0,3),为定点.。
解析几何经典练习题(含答案)题目一:已知平面直角坐标系中两点A(-3,4)和B(5,-2),求直线AB的斜率和方程。
解答:直线AB的斜率可以使用斜率公式计算:斜率 = (y2 - y1) / (x2 - x1)其中,A的坐标为(x1, y1) = (-3, 4),B的坐标为(x2, y2) = (5, -2)。
斜率 = (-2 - 4) / (5 - (-3)) = -6 / 8 = -3/4直线AB的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - 4 = (-3/4)(x + 3)化简得到直线AB的方程为:4y - 16 = -3x - 9整理得到标准形式方程:3x + 4y = 7答案:直线AB的斜率为 -3/4,方程为 3x + 4y = 7。
题目二:已知直线L的斜率为2,经过点A(3,-1),求直线L的方程。
解答:直线L的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = 2(x - 3)化简得到直线L的方程为:y + 1 = 2x - 6整理得到标准形式方程:2x - y = 7答案:直线L的方程为 2x - y = 7。
题目三:已知直线L的方程为 3x + y = 5,求直线L的斜率和经过点A (2,-1)的方程。
解答:直线L的斜率可以从方程的标准形式中直接读取:3x + y = 5将方程转化成斜截式形式:y = -3x + 5可以看出直线L的斜率为-3。
经过点A(2,-1)的直线方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = -3(x - 2)化简得到通过点A的直线方程为:y + 1 = -3x + 6整理得到标准形式方程:3x + y = 5答案:直线L的斜率为-3,经过点A(2,-1)的方程为 3x + y = 5。
平面解析几何题含答案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】平面解析几何一、直线的倾斜角与斜率1、直线的倾斜角与斜率(1)倾斜角α的范围000180α≤<(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线12,l l,其斜率分别为12,k k,则有1212//l l k k⇔=。
特别地,当直线12,l l的斜率都不存在时,12l l与的关系为平行。
(2)两条直线垂直如果两条直线12,l l斜率存在,设为12,k k,则12121l l k k⊥⇔=-注:两条直线12,l l垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l与互相垂直。
二、直线的方程1、直线方程的几种形式名称方程的形式已知条件局限性点斜式为直线上一定点,k为斜率不包括垂直于x轴的直线斜截式k为斜率,b是直线在y轴上的截距不包括垂直于x轴的直线两点式是直线上两定点不包括垂直于x轴和y轴的直线截距式a是直线在x轴上的非零截距,b是直线在y轴上的非零截距不包括垂直于x轴和y轴或过原点的直线一般式A,B,C为系数无限制,可表示任何位置的直线三、直线的交点坐标与距离公式三、直线的交点坐标与距离公式1.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
2.几种距离(1)两点间的距离平面上的两点间的距离公式(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算 (二)直线的斜率及应用利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。
平面解析几何
一、直线的倾斜角与斜率
1、直线的倾斜角与斜率
(1)倾斜角的范围0°1800
(2)经过两点F〔 h、R )、F〔尸、y )[还 H、J、的直线的斜率公式是
h——-------- (工| 丰 rr j.
卫—花I
(3)每条直线都有倾斜角,但并不是每条直线都有斜率
2.两条直线平行与垂直的判定
(1)两条直线平行
对于两条不重合的直线l it,其斜率分别为k i,k2,则有l i /很k i k2。
特别地,当直线l i」2的斜率都不存在时,l i与12的关系为平行。
(2)两条直线垂直
如果两条直线l i,l2斜率存在,设为k i,k2,则l i l2 k i g<2 i
注:两条直线l i,l2垂直的充要条件是斜率之积为-i,这句话不正确;由两直线的斜率之积为-i,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-i。
如果l i,l2中有一条直线的斜率不存在,另一条
直线的斜率为0时,^与l2互相垂直。
二、直线的方程
i、直线方程的几种形式
三、直线的交点坐标与距离公式
三、直线的交点坐标与距离公式 1.两条直线的交点
设两条直线的方程是厶;4 丁亠B y+C| m ; A .T +|B y 4 C -,两条直线的交点坐
f Ai Bi,+ Ci =0
标就是方程组山计鸟:y+ G=o的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐
标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
2.几种距离
(1)两点间的距离平面上的两点 Pi (彩儿(需z,鬼)间的距离公式
11 Pi P' | = 工;—工|〉+ ( y —加5~~・
(2 )点到直线的距离
” _ I A J4>+B^D + C|
点PM站,沖)到直线i;Ax+ By+ C=0的距离;
(3)两条平行线间的距离
匸IG—
两条平行线血十加・G = 0耳皿・By-C 间的距离
注:(1)求点到直线的距离时,直线方程要化为一般式;
(2) ___________
(二)直线的斜率及应用利用斜率证明三点共线的方法:
已知A(X i, yj, B(X2,y2),C(X3, y3),若X i x? X3或k AB k Ac,则有A、B、C 三点共线。
注:斜率变化分成两段,90°是分界线,遇到斜率要谨记,存在与否需讨论。
直线的参数方程
〖例1〗已知直线的斜率 k=-cos ( €求直线的倾斜角的取值范围。
思路解析:cos 的范围斜率k的范围 tan 的范围倾斜角的取值范围。
〖例2〗设a,b,c是互不相等的三个实数,如果A(a,a3)、B(b,b3)、C(c,c3)在同一直线上,求证:
思路解析:若三点共线,则由任两点所确定的直线斜率相等或都不存在。
〖例3〗已知点M ( 2,2),N( 5,-2),点P在x轴上,分别求满足下列条件的P点坐标。
(1 )Z MOP= / OPN (O 是坐标原点);
(2)Z MPN是直角。
思路解析:/ MOP= / OPN OM//PN,/ MPN是直角 MP NP,故而可利用两直线平行和垂直的条件求得。
注:(1)充分掌握两直线平行的条件及垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线
和I?,h M 丄I. O 陆 * h 二rl。
的斜率是多少一定要特别注意
K例4〗求过点P (2,-1),在x轴和y轴上的截距分别为a、b,且满足a=3b的直线方程。
h丄l2时,求
a的值
思路解析:可直接根据方程的一般式求解,也可根据斜率求解,所求直线的斜率可能不存在,故应按率是否存在为分类标准进行分类讨论。
〖例6〗已知点P (2,-1 )。
(1)求过P点且与原点距离为 2的直线I的方程;
(2)求过P点且与原点距离最大的直线丨的方程,最大距离是多少?
(3)是否存在过 P点且与原点距离为 6的直线?若存在,求岀方程;若不存在,请说明理由l i
若有一条直线的斜率不存在,那么另一条直线
思路解析:对截距是否为 0分类讨论设岀直线方程代入已知条件求解得直线方程。
(二)用一般式方程判定直线的位置关系
两条直线位置关系的判定
已知直线h : Ax B1 y C1 0 I2: A?x B2y C2 0,则
(1)
(2)
l1 / /l2 A1A2 B1B2 0.
(3) l l与12重合 A B? A2 B i 0 且A1C2 A?C i 0 (或B1C2 B2C10)或记为(△£
A B1 C1
B i
(4) 2丄相交OZ-ABH。
或记为殳工#
K例 5〗已知直线l1 :ax 2y 6
2
0和直线l2:x (a 1)y a 10,(1)试判断l1与l2是否平行; (2)
l2的斜
(三)轴对称
①点关于直线的对称
若两点Pl ,贵)与Pg (虺F梵)关于直线I : Ax+By+C=O对称,则线段Fl P 的中点在对称轴I上,而且连接Pl 的直线垂直于对称轴1上,由方程组
可得到点P l关于1
对称的点B的坐标X2,y2(其中 A 0- X l x2)
②直线关于直线的对称
此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行。
K例7〗求直线I l : y 2x 3关于直线I : y X 1对称的直线I2的方程。
思路解
析:
转化为点关于直线的对称问题,利用方程组求解。
练习题
1 .过点(1,0)且与直线x-2y-2=0平行的直线方程是()
(A) x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 ( D) x+2y-仁0
2 2
2.圆C: x y 2x 4y 4 0的圆心到直线3x 4y 4 0的距离d ____ 。
3•已知圆C过点(1,0),且圆心在 x轴上,直线丨:y x 1过圆C所截得的弦长为2 2,则过圆心有与
直线I垂直的直线的方程为_________________
4•倾斜角为45,在y轴上的截距为1的直线方程是()
A x y 1 0
B x y 1 0
C x y 1 0
D x y 1 0
5.过点M 2,1
的直线I与x轴、y轴的正半轴分别交于P、Q两点,且
MQ 2 MP
,则直线I的方程为
()
A.x+2y-4=0
B.x-2y=0
C.x-y-1=0
D.x+y-3=0
6.已知过点A( 2,m)和B(m,4)的直线与直线2x y 1 0平行,则m的值为()
A. 0
B. 8
C. 2
D. 10
7.已知ab 0,bc 0,则直线ax by c通过()
A.第一、二、三象限
B.第一、二、四象限
C.第一、三、四象限
D. 第二、三、四象限
思路解析:设出直线方程由点到直线距离求参数判断何时取得最大值并求之。
8 .
2
若方程(2m
m 3)x (m2m)y 4m 1 0表示一条直线,则实数m满足( )
A. m 0
B. m 3
1 1 2
C. m 1
D. m 1,m 3 ,m 0
2
9 .
2x
函数y e图像上的点到直线2x y 4 0距离的最小值是_
10.若直线l l:mx y 1 0与l2:x 2y 5°垂直,则m的值是_______ .
11.一条光线从点A(— 1,3)射向x轴,经过x轴上的点P反射后通过点 B(3,1),求P点的坐标.
12.写出下列直线的点斜式方程.
(1)经过点A(2,5),且与直线y= 2x + 7平行;
⑵经过点C( — 1,— 1),且与x轴平行.
13.三角形ABC的三个顶点分别为 A(0,4),B( — 2,6),C(— 8,0).
(1)求边AC和AB所在直线的方程;
⑵求AC边上的中线BD所在直线的方程;
(3)求AC边上的中垂线所在直线的方程.
14.已知直线丨仁(m+ 3)x + y— 3m+ 4= 0, I2: 7x + (5 — m)y — 8= 0,问当 m为何值时,直线丨1与b平行。