线性常系数非齐次递推关系
- 格式:ppt
- 大小:1.54 MB
- 文档页数:52
组合数学讲义3章递推关系递推关系§3.1 基本概念(一)递推关系定义3.1.1 (隐式)对数列aii 0 和任意自然数n,一个关系到an和某些个ai i n 的方程式,称为递推关系,记作F a0,a1, ,an 0 (3.1.1)__例an an 1 an 2 a0 n 0an 3an 1 2an 2 2a1 1 0定义3.1.1'(显式)对数列aii 0 ,把an与其之前若干项联系起来的等式对所有n≥k均成立(k为某个给定的自然数),称该等式为ai 的递推关系,记为an F an 1,an 2, ,an k (3.1.1)'例an 3an 1 2an 2 2a1 1 (二)分类(1)按常量部分:① 齐次递推关系:指常量=0,如Fn Fn 1 Fn 2;② 非齐次递推关系,即常量≠0,如hn 2hn 1 1。
(2)按ai的运算关系:组合数学讲义① 线性关系,F是关于ai的线性函数,如(1)中的Fn与hn均是如此;② 非线性关系,F是ai的非线性函数,如hn h1hn 1 h2hn2 hn 1h1。
(3)按ai的系数:① 常系数递推关系,如(1)中的Fn与hn;② 变系数递推关系,如pn npn 1,pn 1之前的系数是随着n而变的。
(4)按数列的多少:① 一元递推关系,其中的方程只涉及一个数列,如(3.1.1)和(3.1.1)'均为一元的;② 多元递推关系,方程中涉及多个数列,如an 7an 1 bn 1bn 7bn 1 an 1(5)显式与隐式:yn 1(三)定解问题xn 1yn h yn 1 2 yn 1定义3.1.2 (定解问题)称含有初始条件的递推关系为定解问题,其一般形式为F a0,a1, ,an 0,(3.1.2)a0 d0,a1 d1, ,ak 1 dk 1所谓解递推关系,就是指根据式(3.1.1)或(3.1.2)求an的与a0、a1、、an-1无关的解析表达式或数列{an}的母函数。
用升阶法求常系数非齐次线性递推关系的特解黄纯洁【摘要】This article makes use of the sequence difference, and transforms the invariable coefficient number of times different linear recursion sequence to the coefficient inhomogeneous linear difference equation ( qo (qo△k+i+q1△k+i-1…+qk△i)an=△if(n), The fourf(n)=gm (n),f(n)=qngm(n),f(n)=qngm(n)cosβn,f(n)=qkgm(n)sinβn) are discussed under constant coefficient inho-mogeneous linear difference equation, thus obtains the special solutions of coefficient inhomogeneous linear recursion sequence, which is called the method of increasing order.%利用数列的差分算子和移位算子,将常系数非齐次线性递推关系转化成为常系数非齐次线性差分方程(qo△k+i+q1△k+i-1…+qk△i)an=△if (n),并将f(n)=gm(n),f(n)=qngm(n),f(n)=qngm(n)cosβn,f(n)=qkgm(n)sinβn)这四种类型的常系数非齐次递推关系转化为相应的差分方程,从而得到求常系数非齐次线性递推关系特解的简易方法——升阶法。
【期刊名称】《广东石油化工学院学报》【年(卷),期】2011(021)006【总页数】4页(P67-69,74)【关键词】差分方程;差分算子;移位算子;特解【作者】黄纯洁【作者单位】华南师范大学数学科学学院,广东广州510631【正文语种】中文【中图分类】O175.70 引言设k阶常系数非齐次线性递推关系形式为p0an+k+p1an+k-1+…+pkan=f(n)(p0,pk≠0),(1)。
关于常系数非齐次线性递推关系特解的注记唐善刚【摘要】By using algebraic properties of one-variable polynomial multiple root and block matrix method of solving non-homogeneous linear equations,it is proved that a class of constant coefficient non-homogeneous linear recurrence relation only depends on the computational formula of constant coefficient's particular solution and its proof.These results expand the corresponding ones in the existing literatures.Two examples for the application of particular solution of constant coefficient non-homogeneous linear recurrence relation are given in the final part for the purpose of proving the validity of particular solution of constant coefficient non-homogeneous linear recurrence relation.%利用一元多项式重根的代数性质与求解非齐次线性方程组的分块矩阵方法给出常系数非齐次线性递推关系的一类只依赖于常系数的特解计算公式及其证明,所得结果拓宽了已有文献的相应结果,最后,给出两个实例作为常系数非齐次线性递推关系的特解计算公式的应用,验证了特解计算公式的有效性.【期刊名称】《西华师范大学学报(自然科学版)》【年(卷),期】2017(038)001【总页数】6页(P75-79,105)【关键词】导数;一元多项式;重根;常系数非齐次线性递推关系;特解【作者】唐善刚【作者单位】西华师范大学数学与信息学院,四川南充 637009【正文语种】中文【中图分类】O157.1求递推关系的显式解是组合学的一个重要研究课题,关于常系数线性齐次递推关系的显式解可以应用生成函数[1-5]给出统一的求解,但用生成函数试图求得常系数非齐次线性递推关系的显式解往往需要很高的技巧,而应用代数方法[6-7]及赋权有向图路径的权和[8]得到的常系数线性齐次及非齐次递推关系的显式解是一个多重求和公式,由于该多重求和公式中的求和变量依赖于某个线性不定方程的所有非负整数解,进而导致显式解的多重求和公式在应用中的诸多不便。